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Random tessellations of the space represent a class of prototype models of heterogeneous media, which are
central in several applications in physics, engineering, and life sciences. In this work, we investigate the statistical
properties of d-dimensional isotropic Poisson geometries by resorting to Monte Carlo simulation, with special
emphasis on the case d = 3. We first analyze the behavior of the key features of these stochastic geometries as
a function of the dimension d and the linear size L of the domain. Then, we consider the case of Poisson binary
mixtures, where the polyhedra are assigned two labels with complementary probabilities. For this latter class of
random geometries, we numerically characterize the percolation threshold, the strength of the percolating cluster,
and the average cluster size.
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I. INTRODUCTION

Heterogeneous and disordered media emerge in several ap-
plications in physics, engineering, and life sciences. Examples
are widespread and concern for instance light propagation
through engineered optical materials [1–3] or turbid media
[4–6], tracer diffusion in biological tissues [7], neutron
diffusion in pebble-bed reactors [8] or randomly mixed
immiscible materials [9], inertial confinement fusion [10,11],
and radiation trapping in hot atomic vapors [12], only to
name a few. Stochastic geometries provide convenient models
for representing such configurations, and have been therefore
widely studied [13–18], especially in relation to heterogeneous
materials [14], stochastic or deterministic transport processes
[19], image analysis [20], and stereology [21].

A particularly relevant class of random media is provided by
the so-called Poisson geometries [13], which form a prototype
process of isotropic stochastic tessellations: a portion of a
d-dimensional space is partitioned by randomly generated
(d − 1)-dimensional hyperplanes drawn from an underlying
Poisson process. The resulting random geometry (i.e., the
collection of random polyhedra determined by the hyper-
planes) satisfies the important property that an arbitrary line
thrown within the geometry will be cut by the hyperplanes
into exponentially distributed segments [13]. In some sense,
the exponential correlation induced by Poisson geometries
represents perhaps the simplest model of disordered random
fields, whose single free parameter (i.e., the average correlation
length) can be deduced from measured data [22]. Following
the pioneering works by Goudsmit [23], Miles [24,25], and
Richards [26] for d = 2, the statistical features of the Poisson
tessellations of the plane have been extensively analyzed, and
rigorous results have been proven for the limit case of domains
having an infinite size: for a review, see, e.g., Refs. [13,17,18].
An explicit construction amenable to Monte Carlo simulations
for two-dimensional homogeneous and isotropic Poisson
geometries of finite size has been established in Ref. [27].

Theoretical results for infinite Poisson geometries have
been later generalized to d = 3, which is key for real-world
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applications but has comparatively received less attention,
and higher dimensions by several authors [13,28–32]. The
two-dimensional construction for isotropic Poisson geometries
has been analogously extended to three-dimensional (and in
principle d-dimensional) domains [20,22].

In this work, we will numerically investigate the statistical
properties of d-dimensional isotropic Poisson geometries by
resorting to Monte Carlo simulation, with special emphasis
on the case d = 3. Our aim is twofold: first, we will focus
on finite-size effects and on the convergence towards the limit
behavior of infinite domains. In order to assess the impact
of dimensionality on the convergence patterns, comparisons
to analogous numerical or exact findings obtained for d = 1
and d = 2 (where available) will be provided. In so doing, we
will also present and discuss the simulation results for some
physical observables for which exact asymptotic results are
not yet known.

Then we will consider the case of colored Poisson geome-
tries, where each polyhedron is assigned a label with a given
probability. Such models emerge, for instance, in connection
to particle transport problems, where the label defines the
physical properties of each polyhedron [19,22]. The case of
random binary mixtures, where only two labels are allowed,
will be examined in detail. In this context, we will numerically
determine the statistical features of the colored polyhedra,
which are obtained by regrouping into clusters the neighboring
volumes by their common label. Attention will be paid in
particular to the percolation properties of such binary mixtures
for d = 3: the percolation threshold at which a cluster will span
the entire geometry, the average cluster size and the probability
that a polyhedron belongs to the the spanning cluster will be
carefully examined and contrasted to the case of percolation
on lattices [33]. The effect of dimensionality will be again
assessed by comparison with the case d = 2, for which
analogous results were numerically determined in Ref. [34].

This paper is structured as follows: in Sec. II we will recall
the explicit construction for d-dimensional isotropic Poisson
geometries, with focus on d = 3. In Sec. III we will discuss
the statistical properties of Poisson geometries, and assess the
convergence to the limit case of infinite domains. In Sec. IV
we will extend our analysis to the case of colored geometries

2470-0045/2016/94(1)/012130(14) 012130-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.012130


LARMIER, DUMONTEIL, MALVAGI, MAZZOLO, AND ZOIA PHYSICAL REVIEW E 94, 012130 (2016)

and related percolation properties. Conclusions will be finally
drawn in Sec. V.

II. CONSTRUCTION OF POISSON GEOMETRIES

For the sake of completeness, in this section we will recall
the strategy for the construction of Poisson geometries, spa-
tially restricted to a d-dimensional box. The case d = 1 simply
stems from the Poisson point process on the line [13], and will
not be detailed here. The explicit construction of homogeneous
and isotropic Poisson geometries for the case d = 2 restricted
to a square has been originally proposed by Ref. [27], based on
a Poisson point field in an auxiliary parameter space in polar
coordinates. It has been recently shown that this construction
can be actually extended to d = 3 and even higher dimensions
[22] by suitably generalizing the auxiliary parameter space
approach of Ref. [27] and using the results of Ref. [20].
In particular, such d-dimensional construction satisfies the
homogeneity and isotropy properties [22].

The method proposed by Ref. [22] is based on a spatial
decomposition (tessellation) of the d hypersphere of radius
R centered at the origin by generating a random number
q of (d − 1) hyperplanes with random orientation and
position. Any given d-dimensional subspace included in the
d hypersphere will therefore undergo the same tessellation
procedure, restricted to the region defined by the boundaries
of the subspace. The number q of (d − 1) hyperplanes is
sampled from a Poisson distribution with parameter R�d ,
with �d = λAd (1)/Vd−1(1). Here Ad (1) = 2πd/2/�(d/2)
denotes the surface of the d-dimensional unit sphere (�(a)
being the � function [35]), Vd (1) = πd/2/�(1 + d/2) denotes
the volume of the d-dimensional unit sphere, and λ is
the arbitrary density of the tessellation, carrying the units
of an inverse length. This normalization of the density λ

corresponds to the convention used in Ref. [13], and is
such that λt yields the mean number of (d − 1) hyperplanes
intersected by an arbitrary segment of length t .

Let us now focus on the case d = 3. Suppose, for the sake
of simplicity, that we want to obtain an isotropic tessellation of
a box of side L, centered in the origin O. This means that the
Poisson tessellation is restricted to the region [−L/2,L/2]3.
We denote R the radius of the sphere circumscribed to the cube.
The algorithm proceeds then as follows. The first step consists
in sampling a random number of planes q from a Poisson
distribution of parameter 4λR, where the factor 4 stems from
A3(1)/V2(1) = 4. The second step consists in sampling the
random planes that will cut the cube. This is achieved by
choosing a radius r uniformly in the interval [0,R] and then
sampling two other random numbers, denoted ξ1 and ξ2, from
two independent uniform distributions in the interval [0,1].
Based on these three random parameters, a unit vector n =
(n1,n2,n3)T is generated (see Fig. 1), with components

n1 = 1 − 2ξ1

n2 =
√

1 − n2
1 cos (2πξ2)

n3 =
√

1 − n2
1 sin (2πξ2).

Let now M be the point such that OM = rn. The
random plane K will be finally defined by the equation
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FIG. 1. Cutting a cube with a random plane. A cube of side L is
centered in O. The circumscribed sphere centered in O has a radius
R = √

3L/2. The point M is defined by M = rn, where r is uniformly
sampled in the interval [0,R] and n is a random unit vector of compo-
nents n = (n1,n2,n3)T , with n1 = 1 − 2ξ1, n2 =

√
1 − n2

1 cos (2πξ2)
and n3 =

√
1 − n2

1 sin (2πξ2). The auxiliary variables ξ1 and ξ2 are
sampled from two independent uniform distributions in the interval
[0,1]. The random plane K of equation n1x + n2y + n3z = r is
orthogonal to the vector n and intersects the point M.

n1x + n2y + n3z = r , passing trough M and having normal
vector n. By construction, this plane does intersect the
circumscribed sphere of radius R but not necessarily the cube:
the probability that the plane intersects both the sphere and
the cube can be deduced from a classical result of integral
geometry. For two convex sets J0 and J1 in R3, with J1 ⊂ J0,
the probability that a randomly chosen plane meets both J0

and J1 is given by the ratio M1(J1)/M1(J0), M1(J ) being
the mean orthogonal 1-projection of J onto an isotropic
random line [13]. The quantity M1(J ) takes also the name of
mean caliper diameter of the set J [31].

The average caliper diameter of a cube of side L is 3L/2,
whereas for the sphere the average caliper diameter coincides
with its diameter 2R = L

√
3, which yields a probability√

3/2 � 0.866 for the random planes to fall within the cube.1

The tessellation is built by successively generating the q

random planes. Initially, the stochastic geometry is composed
of a single polyhedron, i.e., the cube. If the first sampled
plane intersects the region [−L/2,L/2]3, new polyhedra are
generated within the cube and the tessellation is updated.
This procedure is then iterated until q random planes have
been generated. By construction, the polyhedra defined by the
intersection of such random planes are convex. For illustration
purposes, some examples of isotropic Poisson tessellation of a

1In the plane R2, the probability that a random line intercepts both
square of side L and the circumscribed circle of radius R = √

2L/2
is again given by the ratio of the respective mean caliper diameters,
which for d = 2 are simply proportional to the perimeters of each
set (the so-called Barbier-Crofton theorem). This yields a probability
4L/(2π

√
2L/2) = 2

√
2/π � 0.900 for a random line to fall within

the square [13].
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FIG. 2. Examples of Monte Carlo realizations of isotropic Pois-
son geometries restricted to a three-dimensional box of linear size
L. For all realizations, we have chosen L = 20. The geometry at (a)
the top has λ = 0.2, that at (b) the middle has λ = 1 and that at (c)
the bottom has λ = 3. For fixed L, the average number of random
polyhedra composing the geometry increases with increasing λ.

cube of side L = 20 obtained by Monte Carlo simulation are
presented in Fig. 2, for different values of the density λ. The
number of random polyhedra of the tessellation increases with
increasing λ.

III. MONTE CARLO ANALYSIS

The physical observables of interest associated to the
stochastic geometries, such as the volume of a polyhedron,

FIG. 3. The average number 〈Np|L〉 of d polyhedra in d-
dimensional Poisson geometries as a function of the linear size L of
the domain. The scaling law Ld is displayed for reference with dashed
lines. Inset. The dispersion factor σ [Np|L]/〈Np|L〉 as a function of
L. The scaling law 1/

√
L is displayed for reference with dashed lines.

its surface, the number of edges, and so on, are clearly random
variables, whose statistical distribution we would like to char-
acterize. In the following, we will focus on the case of Poisson
geometries restricted to a d-dimensional box of linear size L.

With a few remarkable exceptions, the exact distributions
for the physical observables are unfortunately unknown [13]. A
number of exact results have been nonetheless established for
the (typically low-order) moments of the observables and for
their correlations, at least in the limit case of domains having
an infinite extension [13,15,16]. Monte Carlo simulation offers
a unique tool for the numerical exploration of the statistical
features of Poisson geometries. In particular, by resorting
to the algorithm described above we can (i) investigate the
convergence of the moments and distributions of arbitrary
physical observables to their known limit behavior (if any),
and (ii) numerically explore the scaling of the moments and
the distributions for which exact asymptotic results are not yet
available. We will thus address these issues with the help of a
Monte Carlo code developed to this aim.

A. Number of polyhedra

We will first analyze the growth of the number Np of poly-
hedra in d-dimensional Poisson geometries as a function of
the linear size L of the domain, for a given value of the density
λ. In the following, we will always assume that λ = 1, unless
otherwise specified (with both λ and L expressed in arbitrary
units). The quantity Np provides a measure of the complexity
of the resulting geometries. The simulation findings for the
average number 〈Np|L〉 of d polyhedra (at finite L) and the
dispersion factor, i.e., the ratio σ [Np|L]/〈Np|L〉, σ denoting
the standard deviation, are illustrated in Fig. 3. For large L, we
find an asymptotic scaling law 〈Np|L〉 ∼ Ld : the complexity
of the random geometries increases with system size and
dimension (Fig. 3, top), as expected on physical grounds. This
means that the computational cost to generate a realization of a
Poisson geometry is also an increasing function of the system
size and of the dimension. As for the dispersion factor, an
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asymptotic scaling law σ [Np|L]/〈Np|L〉 ∼ 1/
√

L is found
for large L, independent of the dimension (Fig. 3, bottom):
for large systems, the distribution of Np will be then peaked
around the average value 〈Np|L〉.

B. Markov properties

Poisson geometries are Markovian, which means that in the
limit case of infinite domains an arbitrary line will be cut by
the (d − 1)-surfaces of the d-polyhedra into segments whose
lengths � are exponentially distributed, i.e.,

P(�) = μe−μ�, (1)

with average density μ = λ. Conversely, the number of
intersections ni of an arbitrary segment of length t with the
(d − 1)-surfaces of the d-polyhedra in an infinite domain will
obey a Poisson distribution

P(ni) = νni
e−ν

ni!
, (2)

with mean value ν = λt .
In order to verify that the geometries constructed by

resorting to the algorithm described above satisfy the Markov
properties, we have numerically computed by Monte Carlo
simulation the probability density of the segment lengths and
the probability of the number of intersections as a function of
the linear size L of the domain and for different dimensions
d. For the former, a Poisson geometry is first generated, and
a line is then drawn by uniformly choosing a point in the box
and an isotropic direction: this choice corresponds to formally
assuming a so-called I -randomness for the lines [36]. The
intersections of the line with the polyhedra of the geometry
are computed, and the resulting segment lengths are recorded.
The whole procedure is repeated a large number of times in
order to get the appropriate statistics. For the latter, a test
segment of unit length is sampled by choosing a point and a
direction as before, and the number of intersections with the
polyhedra are again determined.

The numerical results forP(�|L) at finite L are illustrated in
Figs. 4 and 5. For small L, finite-size effects are apparent in the
segment length density: this is due to the fact that the longest
line that can be drawn across a box of linear size L is

√
dL,

which thus induces a cutoff on the distribution (see Fig. 4). For
λL � 1, the finite-size effects due to the cutoff fade away and
the probability densities eventually converge to the expected
exponential behavior. The rate of convergence appears to be
weakly dependent on the dimension d (see Fig. 5). The case
d = 1 can be treated analytically and might thus provide a
rough idea of the approach to the limit case. For any finite L,
the distribution of the segment lengths for d = 1 is

P(�|L) = λe−λ�11�<L + e−λLδ(� − L), (3)

11J being the marker function of the domain J . The moments
of order m of the segment length � for finite L thus yield

〈�m|L〉 = �(m + 1)

λm
− �m+1(λL)

λm
+ e−λLLm, (4)

where �a(x) is the incomplete � function [35]. In the limit
case L → ∞, we have 〈�m〉 = �(m + 1)/λm, so that for the
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FIG. 4. The probability densities P(�|L) of the segment lengths
as a function of the linear size L of the domain, in dimension d = 3.
Symbols correspond to the Monte Carlo simulation results, with lines
added to guide the eye: blue triangles denote L = 1, red diamonds
L = 2, green circles L = 3, black squares L = 5, and purple crosses
L = 40. The asymptotic (i.e., L → ∞) exponential distribution given
in Eq. (1) is displayed as a black dashed line for reference. The inset
displays the same data in log-linear scale.

convergence rate we obtain

〈�m|L〉
〈�m〉 = 1 − �m+1(λL) − e−λL(λL)m

�(m + 1)
, (5)
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FIG. 5. The probability densities P(�|L) of the segment lengths
as a function of the linear size L of the domain and of the dimension
d . Symbols correspond to the Monte Carlo simulation results, with
lines added to guide the eye: for L = 1, blue crosses denote d = 1,
green circles d = 2, and orange triangles d = 3; for L = 2, red pluses
denote d = 1, gray squares d = 2, and purple diamonds d = 3. The
asymptotic (i.e., L → ∞) exponential distribution given in Eq. (1)
is displayed as a black dashed line for reference. Inset. The case
of a system size L = 40: red crosses denote d = 1, green circles
d = 2, and blue diamonds d = 3; the black dashed line corresponds
to Eq. (1).
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TABLE I. The average segment lengths 〈�〉. Monte Carlo simula-
tion results are obtained with L = 80 and λ = 1 for any dimension d .

d 〈�〉 Theoretical value Monte Carlo

1 1/λ 1 1.0002 ± 10−4

2 1/λ 1 0.9932 ± 6×10−4

3 1/λ 1 0.9985 ± 3×10−3

which for large λL � 1 gives

〈�m|L〉
〈�m〉 � 1 − (λL)m−1e−λL

�(m + 1)
. (6)

Thus, the average segment length (m = 1) converges ex-
ponentially fast to the limit behavior, whereas the higher
moments (m � 2) converge subexponentially with power-law
corrections. For d > 1, the cutoff is less abrupt, but the
distributions P(�|L) still show a peak at � = L, and vanish
for � > L

√
d . The asymptotic average segment lengths for

L → ∞ yield 〈�〉 = 1/λ for any d; the Monte Carlo simulation
results obtained for a large L = 80 are compared to the
theoretical formulas in Table I.

For d = 1 we performed 106 realizations, with an average
number 〈Np〉 = 80.986 ± 9×10−3 of 1-polyhedra per real-
ization. For d = 2 we performed 105 realizations, with an
average number 〈Np〉 = 5189 ± 3 of 2-polyhedra per realiza-
tion. For d = 3 we performed 2×103 realizations, with an
average number 〈Np〉 = 2.82×105 ± 1.4×103 of 3-polyhedra
per realization.

The convergence of the distribution of the number of
intersections to the limit Poisson distribution P(ni) is very
fast as a function of L, which most probably stems from the
unit test segment being only weakly affected by finite-size
effects (i.e., by the polyhedra that are cut by the boundaries of
the box), contrary to the case of the lines. Finite-size effects are
appreciable only for large values of the number of intersections
ni , which in turn occur with small probability. The asymptotic
average number of intersections per unit length for L → ∞
yield 〈ni〉 = λ for any d; the Monte Carlo simulation results
obtained for a large L = 80 are compared to the theoretical
formulas in Table II, with the same simulation parameters as
above.

C. Inradius distribution

The inradius rin is defined as the radius of the largest sphere
that can be contained in a (convex) polyhedron, and as such
represents a measure of the linear size of the polyhedron [13].
The probability density of the inradius is exactly known in any

TABLE II. The average number of intersections 〈ni〉. Monte
Carlo simulation results are obtained with L = 80 and λ = 1 for
any dimension d .

d 〈ni〉 Theoretical value Monte Carlo

1 λ 1 1.001 ± 10−3

2 λ 1 0.995 ± 3×10−3

3 λ 1 1.03 ± 2×10−2

dimension d for Poisson geometries of infinite size: it turns
out that rin has an exponential distribution, namely,

P(rin) = �de
−�drin , (7)

where the dimension-dependent constant �d reads �1 = 2λ,
�2 = πλ, and �3 = 4λ. In principle, it would be possible to
analytically determine the coordinates of the center and the
radius of the largest contained sphere, once the equations of
the (d − 1)-hyperplanes defining the d polyhedron are known
[37]. We have, however, chosen to numerically compute the
inradius by resorting to a linear programming algorithm. For
a given realization of a Poisson geometry, we select in turn a
convex d-polyhedron: this will be formally defined by a set
x ∈ Rd such that

aT
i x � bi (1 � i � q), (8)

where q is the number of (d − 1) hyperplanes composing the
surface of the d polyhedron. The inradius rin can be then
computed based on the Chebyshev center (x,rin) of the d

polyhedron, which can be found by maximizing rin with the
constraints

∀i ∈ {1,2, . . . ,q}, aT
i x + rin‖ai‖ � bi (9)

rin > 0. (10)

This maximization problem has been finally solved by using
the simplex method [38].

The results of the Monte Carlo simulation for rin are
shown in Fig. 6 as a function of L and d. The case
d = 1 is straightforward, since the inradius simply coincides
with the half-length of the 1 polyhedron. For any finite L,
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FIG. 6. The probability density P(rin|L) of the inradius as a
function of the system size L and of the dimension d . Symbols
correspond to Monte Carlo simulation results. For d = 1, red squares
denote L = 5 and blue pluses L = 40. For d = 2, red crosses denote
L = 5 and blue diamonds L = 40. For d = 3, red circles denote
L = 5 and blue triangles L = 40. The black dashed lines represent the
asymptotic (i.e., L → ∞) distribution in Eq. (7). Inset. Comparison
between P(rin|L) for a typical polyhedron (blue triangles) and
P0(rin|L) for the polyhedron containing the origin (green circles),
for d = 3 and L = 40. The dashed line represents the asymptotic
distribution in Eq. (7).
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TABLE III. The average inradius 〈rin〉. Monte Carlo simulation
results are obtained with L = 80 and λ = 1 for any dimension d .

d 〈rin〉 Theoretical value Monte Carlo

1 1/2λ 0.5 0.50009 ± 6×10−5

2 1/πλ 0.31831 0.31795 ± 9×10−5

3 1/4λ 0.25 0.2499 ± 4×10−4

the numerical distributions suffer from finite-size effects,
analogous to those affecting the distributions of the segment
lengths �: in particular, a cutoff appears at rin = L/2. As
λL � 1, finite-size effects fade away and the numerical
distributions converge to the expected exponential behavior.
The convergence rate as a function of the system size L is
weakly dependent on the dimension d. The asymptotic average
inradius for L → ∞ yields 〈rin〉 = 1/�d ; the Monte Carlo
simulation results obtained for a large L = 80 are compared to
the theoretical formulas in Table III, with the same simulation
parameters as above.

D. Volume distribution

One of the most important physical observables related
to the stochastic geometries is the distribution P(Vd ) of the
d volumes Vd of the polyhedra. For d = 1, this distribution
coincides with that of the segment lengths, P(�), which
means that the approach to the limit case of infinite domains
follows from the same arguments as above. Unfortunately,
the functional form of the distribution P(Vd ) is not known
for d > 1 [13,30,31]. We have thus resorted to Monte Carlo
simulation so as to assess the impact of the domain size L

and of the dimension d on P(Vd |L) for finite L. In order
to compare the results for different d, we found convenient to
introduce the dimensionless variable Yd = Vd/〈Vd〉, where the
asymptotic average d-volume size is estimated by Monte Carlo
for large L. The numerical findings are shown in Fig. 7. It is
apparent that for λL � 1 the distributions P(Yd |L) approach
an asymptotic shape. The rate of convergence as a function of
L decreases with increasing d, which is expected on physical
grounds because the complexity of the geometries grows as
∼Ld . The tails of P(Yd ) for large values of the argument Yd

also depend on d: for d = 1, P(Yd ) ∼ exp(−Yd ), whereas for
d > 1 the tail appears to be increasingly slower as a function
of d. Due to poor statistics for very large values of Yd , we
are not able to precisely characterize the asymptotic decay of
P(Yd ). It seems, however, that for d > 1 the tail is not purely
exponential, and that power-law corrections might thus appear.

Supplementary information can be retrieved from the
analysis of the mth moments 〈V m

d 〉, for which exact results
are available in the case m = 1,2, and 3 for infinite domains
[13,30–32]. The convergence of the dimensionless moments
〈Ym

d |L〉 = 〈V m
d |L〉/〈V m

d 〉 to the limit case as a function of L

is displayed Fig. 8. The convergence to the asymptotic value
limL→∞〈Ym

d |L〉 = 1 is increasingly slower as a function of L

as d increases, whereas the order m of the moments has a weak
impact on the convergence rate. The Monte Carlo simulation
results for the asymptotic mth moments 〈V m

d 〉 obtained for a
large L = 80 are finally compared to the theoretical formulas
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FIG. 7. The probability density P(Yd |L) of the dimensionless d-
volume Yd = Vd/〈Vd〉 as a function of the linear size L of the domain
and of the dimension d . Black inverted triangles denote a system
size L = 40 for d = 1. For d = 2, purple diamonds are chosen for a
system size L = 40 and orange squares for L = 10. For d = 3, blue
crosses are chosen for a system size L = 40, red circles for L = 10,
and gray triangles for L = 5. For d = 1, the asymptotic (i.e., L → ∞)
exponential distribution given in Eq. (1) is displayed as a black dashed
line. For d = 2 and d = 3, dashed lines denote exponential decay.
Inset. Comparison between P(Vd |L) for a typical polyhedron (blue
triangles) and P0(Vd |L) for the polyhedron containing the origin
(green circles), for d = 3.
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FIG. 8. The dimensionless first moment 〈Y 1
d |L〉 = 〈V 1

d |L〉/〈V 1
d 〉

of the d volume, as a function of the system size L and of
the dimension d . Monte Carlo simulation results are displayed as
symbols, with dashed lines lines to guide the eye for d = 2 and
d = 3. For d = 1, the solid line represents the exact formula given in
Eq. (5). Red diamonds denote d = 1; green circles denote d = 2; blue
triangles denote d = 3. Inset. The dimensionless moments 〈Ym

d |L〉 =
〈V m

d |L〉/〈V m
d 〉 of the d volume, for m = 1,2,3, as a function of the

system size L, for d = 1 and d = 2. Monte Carlo simulation results
are displayed as symbols, with dashed lines lines to guide the eye
for d = 3. For d = 1, the solid line represents the exact formula
given in Eq. (5). For d = 1, red diamonds denote m = 1; red pluses
denote m = 2; red inverted triangles denote m = 3. For d = 3, blue
triangles denote m = 1; blue crosses denote m = 2; blue squares
denote m = 3.
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TABLE IV. The average d-volume size 〈Vd〉. Monte Carlo
simulation results are obtained with L = 80 and λ = 1 for any
dimension d .

d 〈Vd〉 Theoretical value Monte Carlo

1 1/λ 1 1.0002 ± 10−4

2 4/πλ2 1.27324 1.2703 ± 7×10−4

3 6/πλ3 1.90986 1.91 ± 10−2

in Table IV for 〈Vd〉, in Table V for 〈V 2
d 〉, and in Table VI

for 〈V 3
d 〉, respectively, with the same simulation parameters as

above.

E. Moments of the surfaces

The analysis of the d surfaces Ad of the d polyhedra is
also of utmost importance, in that it provides information on
the interface between the constituents of the geometry (see,
for instance, the considerations in Ref. [31]). We have then
computed the first few moments 〈Am

d 〉 of the d surfaces by
Monte Carlo simulation. Results are recalled in Table VII,
where we compare the numerical findings for large L = 80 to
the exact formulas for infinite domains.

F. Moments of the outradius

The outradius rout is defined as the radius of the smallest
sphere enclosing a (convex) polyhedron, and can be thus used
together with the inradius so as to characterize the shape of
the polyhedra. For d = 1, the outradius coincides with the
inradius. The probability density and the moments of the
outradius of Poisson geometries for d > 1 are not known. We
have then numerically computed the moments of the outradius
by resorting to an algorithm recently proposed in Ref. [39].
This algorithm implements a pivoting scheme similar to the
simplex method for linear programming. It starts with a large
d ball that includes all vertices of the convex d polyhedron
and progressively shrinks it [39]. For reference, the Monte
Carlo simulation results for the first few moments of rout

obtained for a large L = 80 are given in Table VIII, with the
same simulation parameters as above: these numerical findings
might inspire future theoretical advances.

G. Polyhedron containing the origin

So far, the properties of the constituents of the Poisson
geometries have been derived by assuming that each d

polyhedron has an identical statistical weight (for a precise

TABLE V. The second moment 〈V 2
d 〉 of the d volume. Monte

Carlo simulation results are obtained with L = 80 and λ = 1 for any
dimension d .

d 〈V 2
d 〉 Theoretical value Monte Carlo

1 2/λ2 2 2.0007 ± 5×10−4

2 8/λ4 8 7.9609 ± 9×10−4

3 48/λ6 48 47.7 ± 0.5

TABLE VI. The third moment 〈V 3
d 〉 of the d volume. Monte

Carlo simulation results are obtained with L = 80 and λ = 1 for any
dimension d .

d 〈V 3
d 〉 Theoretical value Monte Carlo

1 6/λ3 6 6.003 ± 3×10−3

2 256π/7λ6 114.893 114.1 ± 0.2
3 1344π/λ9 4222.3 4144 ± 75

definition, see, e.g., Refs. [24,29,30,32]). It is also possible
to attribute to each d polyhedron a statistical weight equal
to its d volume. It can be shown that the statistics of
any observable related to the d polyhedron containing the
origin O obeys this latter volume-weighted distribution [29].
This surprising property can be understood by following
the heuristic argument proposed by Miles [24]: the origin
has greater chances of falling within a larger rather than a
smaller volume. In particular, for the moments 〈X〉0 of the d

polyhedron containing the origin we formally have

〈X〉0 = 〈VdX〉
〈Vd〉 , (11)

where X denotes an arbitrary observable [29]. We have carried
out an extensive analysis of the moments of the features of the
d polyhedra containing the origin by Monte Carlo simulation:
numerical findings for the most relevant quantities are reported
in Table IX. For some of the computed quantities, such as the
average inradius 〈rin〉0 or the average outradius 〈rout〉0, exact
results are not available, and our numerical findings may thus
support future theoretical investigations.

The full distribution P0(rin|L) of the inradius of the d

polyhedron containing the origin has been estimated, and is
compared to P(rin|L) for the inradius of a typical polyhedron
of the tessellation in the inset of Fig. 6 for d = 3 and a large
system size L = 40: it is immediately apparent that 〈rin〉0 >

〈rin〉. Moreover, the behavior of the two distributions for small
rin is also different: for L → ∞, P(rin|L) attains a finite value
for rin → 0 due to its exponential shape; on the contrary, our
Monte Carlo simulations seem to suggest a power-law scaling
P0(rin|L) ∼ rαd

in for rin → 0, with αd = 1 + (d − 1)/2.
The distribution P0(Vd |L) of the d volume of the d

polyhedron containing the origin has been also computed,
and is compared to P(Vd |L) for the d volume of a typical
polyhedron of the tessellation in the inset of Fig. 7 for d = 3
and a large system size L = 40. Again, 〈Vd〉0 > 〈Vd〉.

TABLE VII. The moments 〈Am
d 〉 of the d surface of the d

polyhedra. Monte Carlo simulation results are obtained with L = 80
and λ = 1 for any dimension d .

〈Am
d 〉 Theoretical value Monte Carlo

〈A2〉 4/λ 4 3.995 ± 10−3

〈A2
2〉 (2π 2 + 8)/λ2 27.74 27.67 ± 2×10−2

〈A3〉 24/πλ2 7.64 7.63 ± 2×10−2

〈A2
3〉 240/λ4 240 239.5 ± 1.7

012130-7



LARMIER, DUMONTEIL, MALVAGI, MAZZOLO, AND ZOIA PHYSICAL REVIEW E 94, 012130 (2016)

TABLE VIII. The moments 〈rm
out〉 of the outradius in dimension d .

Monte Carlo simulation results are obtained with L = 80 and λ = 1
for any dimension d .

d Monte Carlo

2 〈rout〉 0.8444 ± 2×10−4

2 〈r2
out〉 1.2291 ± 7×10−4

3 〈rout〉 1.153 ± 2×10−3

3 〈r2
out〉 2.127 ± 7×10−3

H. Other moments and correlations

A number of moments and correlations of other physical
observables are exactly known for Poisson geometries of
infinite size for d = 2 and d = 3. For the sake of completeness,
our Monte Carlo estimates corresponding to these quantities
are reported in Appendix A. When analytical results are not
known, Monte Carlo simulation findings are displayed for
reference.

IV. COLORED GEOMETRIES

So far, we have addressed the statistical properties of
Poisson geometries based on the assumption that all polyhedra
share the same physical properties, i.e., the medium is
homogeneous. In many applications, the polyhedra emerging
from a random tessellation are actually characterized by
different physical properties, which for the sake of simplicity
can be assumed to be piecewise constant over each volume.
Such stochastic mixtures can be then formally described by
assigning a distinct label (also called color) to each polyhedron
of the geometry, with a given probability p. A widely studied
model is that of stochastic binary mixtures, where only
two labels are allowed, say red and blue, with associated
complementary probabilities p and 1 − p [19].

Stochastic mixtures are realized by resorting to the fol-
lowing procedure: first, a d-dimensional Poisson geometry is
constructed by resorting to the algorithm detailed in Sec. II.
Then, the corresponding colored geometry is immediately
obtained by assigning to each polyhedron a label with a given

TABLE IX. Moments of the d polyhedron containing the origin.
Monte Carlo simulation results are obtained with L = 80 and λ = 1
for any dimension d .

d Formula Theoretical value Monte Carlo

1 〈V1〉0 2/λ 2 2.000 ± 10−3

1 〈V 2
1 〉0 6/λ2 6 6.001 ± 9×10−3

2 〈V2〉0 2π/λ2 6.28319 6.28 ± 2×10−2

2 〈V 2
2 〉0 64π 2/7λ4 90.2364 90.6 ± 0.9

2 〈A2〉0 π 2/λ 9.8696 9.87 ± 2×10−2

2 〈rin〉0 0.886 ± 2×10−3

2 〈rout〉0 2.028 ± 3×10−2

3 〈V3〉0 8π/λ3 25.1327 25.3 ± 0.9
3 〈V 2

3 〉0 224π 2/λ6 2210.79 2129.1 ± 182
3 〈A3〉0 16π/λ2 50.2655 50.6 ± 1.0
3 〈rin〉0 0.89 ± 10−2

3 〈rout〉0 3.11 ± 3×10−2

FIG. 9. Examples of Monte Carlo realizations of colored isotropic
Poisson geometries restricted to a three-dimensional box of linear size
L. For all realizations, we have chosen L = 20. The geometry at (a)
the top has λ = 0.3 and p = 0.5; the geometry in (b) the center has
λ = 1 and p = 0.5; the geometry at (c) the bottom has λ = 1 and
p = 0.25.

probability. Adjacent polyhedra sharing the same label are
finally merged. For the specific case of binary stochastic
mixtures, this gives rise to (generally) nonconvex red and
blue clusters, each composed of a random number of convex
polyhedra. For illustration, some examples of binary stochastic
mixtures based on colored Poisson geometries are provided in
Fig. 9 by Monte Carlo simulation, for a three-dimensional box
of side L = 20 and different values of λ and p.
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By increasing p, the size of the red clusters also increases,
and a large red cluster spanning the entire box may eventually
appear for p > pc, where pc is some critical probability value.
In this case, the red clusters are said to have attained the
percolation threshold [33]. The same argument applies also
to the blue clusters: in particular, depending on the kind of
underlying stochastic geometry and on the dimension d, there
might exist a range of probabilities p for which both colored
clusters can simultaneously percolate.

Percolation theory has been intensively investigated for the
case of regular lattices [33]. Although less is comparatively
known for percolation in stochastic geometries, remarkable
results have been nonetheless obtained in recent years for,
e.g., Voronoi and Delaunay tessellations in two dimensions
[40–42], whose analysis demands great ingenuity (see, e.g.,
Refs. [43–45]). The percolation properties of two-dimensional
isotropic Poisson geometries have been first addressed in
Ref. [34], where the percolation threshold pc and the frac-
tion of polyhedra pertaining to the percolating cluster were
numerically estimated by Monte Carlo simulation. In the
following, we will focus on the case of three-dimensional
isotropic Poisson geometries, with special emphasis on the
transition occurring at p = pc.

A. Percolation threshold

To fix the ideas, we will consider the percolation properties
of the red clusters in the geometry. The results for blue clusters
can be easily obtained by using the symmetry p → 1 − p. For
infinite geometries, the percolation threshold pc is defined as
the probability of assigning a red label to each d polyhedron
above which there exists a giant connected cluster, i.e., an
ensemble of connected red d polyhedra spanning the entire
geometry [33]. The percolation probability PC(p), i.e., the
probability that there exists such a connected percolating
cluster, has thus a step behavior as a function of the coloring
probability p, i.e., PC(p) = 0 for p < pc, and PC(p) = 1
for p > pc. Actually, for any finite L, there exists a finite
probability that a percolating cluster exists below p = pc, due
to finite-size effects.

The case d = 1 is straightforward and can be solved
analytically: PC(p) simply coincides with the probability that
all the segments composing the Poisson geometry on the
line are colored in red. For any finite L, this happens with
probability

PC(p|L) = pe−(1−p)λL. (12)

It is easy to understand that for d = 1 we have pc = 1. For
very large L → ∞,PC(p|L) converges to a step function, with
PC(p) = 1 for p = pc and PC(p) = 0 otherwise. This behav-
ior is analogous to that of percolation on one-dimensional
lattices [33].

To the best of our knowledge, exact results for the percola-
tion probability for Poisson geometries in d > 1 are not known.
The percolation threshold can be numerically estimated by
determining pc at finite L and extrapolating the results to
the limit behavior for L → ∞. The value of pc for two-
dimensional isotropic Poisson geometries has been estimated
to be pc � 0.586 ± 10−3 by means of Monte Carlo simulation
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FIG. 10. Monte Carlo simulation of the percolation probability
PC(p|L) for d = 3 as a function of the coloring probability p and of
the system size L. Purple crosses represent L = 30, green diamonds
L = 40, orange squares L = 60, blue triangles L = 80, and red
circles L = 100. Curves have been added to guide the eye. The
estimated pc is displayed as a dashed line, with confidence error
bars drawn as thinner dashed lines. For all sizes L we have generated
103 realizations, with the exception of L = 100, for which 5×102

realizations were generated.

[34]. This means that pc for Poisson geometries in d = 2 is
quite close to the percolation threshold of two-dimensional
regular square lattices, which reads p

square
c � 0.5927 [46].

The comparison with respect to regular square lattices might
nonetheless appear somewhat artificial, since the features of
the constituents of Poisson geometries have broad statistical
distributions around their average values. In particular, the
typical 2 polyhedron of infinite Poisson geometries, while
having the same average number of sides as a square (see
Table XI), does not share the same surface-to-volume ratio
χ , which is a measure of the connectivity of the geometry
components: for the 2 polyhedron we have χ = 〈A2〉/〈V2〉 =
π for λ = 1, whereas for a square of side u we have χ = 4/u,
which for u equal to the average side of the 2 polyhedron,
namely u = 〈A2〉/〈N〉 = 1, yields χ = 4.

Simulation results for the probability PC(p|L) in three-
dimensional Poisson geometries are shown in Fig. 10 as a
function of p, for various system sizes L. As L increases, the
shape of PC(p|L) converges to a step function, as expected.
Based on the Monte Carlo results, we were able to estimate a
confidence interval for the percolation threshold, which lies
close to pc = 0.290 ± 7×10−3. As expected, pc decreases
as dimension increases, since the probability that a red
cluster can make its way through the blue clusters (acting
as obstacles) and eventually reach the opposite side of the box
also increases with dimension. For comparison, our estimate
of pc for Poisson geometries lies close to the percolation
threshold for three-dimensional regular cubic lattices, which
reads pcube

c � 0.3116 [47]. This difference might again be
explained by noting that the typical 3 polyhedron of infinite
Poisson geometries has the same number of vertices (nv = 8),
edges (ne = 12), and faces (nf = 6) as a cube (see Table XII),
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but it does not share the same surface-to-volume ratio χ . The
3 polyhedron has χ = 〈A3〉/〈V3〉 = 4 for λ = 1, whereas for a
cube we have χ = 6/u = 6 by assuming an average side u =
l3/ne = 1. For d = 3, the estimated pc for Poisson geometries
is also very close to that of continuum percolation models
based on spheres, whose threshold reads p

sphere
c � 0.2895 [48];

this is not true for d = 2, where the threshold for continuum
percolation models based on disks yields pdisk

c � 0.676339
[49].

B. Segment length distributions

In colored geometries, the distribution of the segment
lengths cut by the (d − 1) hyperplanes can be quite naturally
conditioned to the color of the d polyhedra. Two possible ways
of defining such conditioned probability densities actually
exist. Suppose that a line is randomly drawn as before, and
that we are interested in assessing the statistics of the segments
crossing the red d polyhedra. Then, one can either assume that
the counter for the lengths is reinitialized each time that the line
crosses a red region (coming from a blue region), regardless
of whether the newly crossed region belongs to an already
traversed cluster (this is possible since the colored clusters are
generally nonconvex); or, one can sum up all the segments
crossing red d polyhedra pertaining to the same nonconvex
cluster. These two definitions give rise to distinct distributions
Pc(�) and P†

c (�), respectively, where the index c can take the
values red (r) and blue (b). In the former case, it can be
shown that for domains of infinite size the segment lengths
obey

Pr (�) = λre
−λr�,

Pb(�) = λbe
−λb�, (13)

respectively, where λr = (1 − p)λ and λb = pλ, which can
be interpreted as a generalization of the Markov property
holding for uncolored Poisson geometries [34]. Monte Carlo
simulation results corresponding to this former definition are
illustrated in Fig. 11 for different values of the probability
p: for large λL � 1, the obtained probability densities of the
segment lengths conditioned to red polyhedra asymptotically
converge to the expected exponential density Pr (�) given in
Eq. (13). The average segment length 〈�〉r has been also
computed as a function of p: numerical findings are reported
in Table X and compared to the exact result 〈�〉r = 1/λr =
1/(1 − p) for λ = 1.

For the latter definition, the exact functional form P†
c (�) is

not known. For p � pc, it turns out that P†
r (�) � Pr (�) (see

Fig. 11); on the contrary, for p � pc the probability density
P†

r (�) largely differs from Pr (�) and depends on the system
size L (see Figs. 12 and 13). This behavior is due to the
shape of the clusters in the geometry: for small p, most red
clusters are composed of a small number of d polyhedra, and
are thus still typically convex. As p increases, there is an
increasing probability for a random line to cross nonconvex
red clusters, and the shape of P†

r (�) correspondingly drifts
away from that of Pr (�). Eventually, for p → 1, the entire
domain will be colored in red, and P†

r (�) converges to the
probability density hI (z) of the chord through a d box of side
L, which for our choice of lines obeying the I randomness is

10-4

10-3

10-2

10-1

100

0 5 10 15 20 25 30

FIG. 11. Monte Carlo simulation of the segment length distribu-
tions Pr (�|L) and P†

r (�|L) for d = 3 as a function of the coloring
probability p. Purple crosses represent Pr (�|L) with p = 0.2; blue
triangles:Pr (�|L) with p = 0.6; red diamonds:Pr (�|L) with p = 0.8.
Green circles denote the segment length distribution P†

r (�|L) for
p = 0.2. All simulations have been performed for a system size
L = 40 and 5×103 realizations. For each p, the black dashed lines
correspond to the exponential distribution Pr (�|L) given in Eq. (13).

given by [36]

2πLhI (z) =
⎧⎨
⎩

8z − 3z2 if 0 < z � 1
f (z) if 1 < z �

√
2

g(z) if
√

2 < z �
√

3,

(14)

with z = �/L, where

f (z) = 6z4 + 6π − 1 − 8[2z2 + 1]
√

z2 − 1

z2

and

g(z) = 8[z2 + 1]
√

z2 − 2 + 6π − 5 − 3z4

z2

− 24

z2
tan−1

√
z2 − 2.

TABLE X. The average segment length 〈�|L〉r restricted to the
red clusters, as a function of the coloring probability p. Monte Carlo
simulation results are obtained by either following the prescriptions
coherent with Pr (�) (marked with i), or with P†

r (�) (marked with ii).
In both cases, we used L = 60, with 103 realizations. For reference,
the exact result corresponding to prescription (i), namely, 1/λr =
1/(1 − p) is also reported.

p 1/λr 〈�|L〉r (i) 〈�|L〉r (ii)

0.1 1.11111 1.08 ± 2×10−2 1.09 ± 2×10−2

0.2 1.25 1.20 ± 2×10−2 1.27 ± 2×10−2

0.25 1.33333 1.28 ± 2×10−2 1.46 ± 2×10−2

0.3 1.42857 1.38 ± 2×10−2 2.25 ± 4×10−2

0.35 1.53846 1.52 ± 2×10−2 6.0 ± 0.1
0.4 1.66667 1.64 ± 2×10−2 10.7 ± 0.2
0.6 2.5 2.49 ± 3×10−2 28.8 ± 0.4
0.8 5 4.89 ± 7×10−2 41.4 ± 0.5
0.9 10 9.6 ± 0.2 46.2 ± 0.6
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FIG. 12. Monte Carlo simulation of the segment length distribu-
tions Pr (�) and P†

r (�) for d = 3 and L = 40 as a function of the
coloring probability p. Gray squares denote Pr (�|L) for p = 0.6
and red circles denote Pr (�|L) for p = 0.8. Purple crosses denote
P†

r (�) for p = 0.6, green diamonds P†
r (�) for p = 0.8, blue triangles

P†
r (�|L) for p = 0.95. The dashed curve corresponds to the chord

length distribution hI (�|L) of a cube, as given in Eq. (14). Inset:
Effects of system size L for fixed p = 0.8. Black squares denote
Pr (�|L) for L = 20; red circles denote Pr (�|L) for L = 40. Orange
triangles denote P†

r (�|L) for L = 20; green diamonds denoteP†
r (�|L)

for L = 40. The chord length distribution hI (z), z = �/L, is displayed
as a dotted curve for L = 20; and as a dashed curve for L = 40.

The average segment lengths corresponding to P†
r (�) have

been also computed as a function of p, and are reported in
Table X.

0

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

102

103

0.01 0.1

FIG. 13. The average cluster size S(p|L) as a function of the
coloring probability p and of the system size L. Purple crosses
represent L = 10, green diamonds L = 20, orange squares L = 30,
blue triangles L = 40, and red circles L = 60. Curves have been
added to guide the eye. The estimated pc is displayed as a dashed
line for reference. For all sizes L we have generated 103 realizations.
Inset: The behavior of S(p|L) as a function of p − p∗

c , where p∗
c is

our best estimate for the percolation threshold, namely, p∗
c = 0.290.

Blue triangles correspond to L = 40 and red circles to L = 60. The
dashed line corresponds to the power-law scaling S(p) ∝ |p − pc|−γ ,
with γ = 1.793.

C. Average cluster size

For percolation on lattices, the average cluster size S(p) is
defined by

S(p) =
∑

s

sws, (15)

where ws is the probability that the cluster to which a red
site belongs contains s sites, and the sum is restricted to
sites belonging to nonpercolating clusters [33]. Now, ws ∝
sns(p), where ns(p) is the number of clusters of size s

per lattice site, which means that S(p) ∝ ∑
s s2ns(p) [33].

Close to the percolation threshold, S(p) is known to behave
as S(p) ∝ |p − pc|−γ for infinite lattices, where γ is a
dimension-dependent critical exponent that does not depend
on the specific lattice type [33]. For finite lattices of linear size
L, the behavior of S(p|L) close to p → p−

c is dominated by
finite-size effects, with a scaling S(p|L) ∝ Lγ/ν , where ν is
another dimension-dependent critical exponent that does not
depend on the specific lattice type [33].

In order to adapt the definition in Eq. (15) to the calculation
of average cluster size of the Poisson geometries, we can either
compute the sum by weighting each d polyhedron composing a
nonpercolating cluster by its volume, or by attributing to each
constituent an equal unit weight. The former choice seems
more appropriate on physical grounds. We have computed the
quantity S(p|L) by Monte Carlo simulation by weighting each
polyhedron by its volume: numerical results as a function of
the coloring probability p and of the system size L are shown
in Fig. 13. The shape of S(p|L) is similar to that obtained for
percolation on regular lattices (see, for instance, Ref. [33]),
and it displays in particular a divergence for p close to the
percolation threshold. Far from the value of pc estimated
above, the curves S(p|L) do not depend on the system
size, provided that L is large. For p � pc, S(p|L) → 0.
For p → 0, numerical evidences show that S(p|L) → 〈V3〉0,
which is coherent with the volume-weighted average that
we have introduced in order to compute the mean cluster
size.

Close to pc, S(p|L) suffers from strong finite-size effects,
which are coherent with the behavior of S(p|L) for regular
lattices. The inset of Fig. 13 illustrates the scaling of S(p|L)
as a function of p − p∗

c , where p∗
c is our best estimate for the

percolation threshold, namely, p∗
c = 0.290. We have examined

different values of the system size, namely, L = 40 and
L = 60. As L increases, S(p|L) shows a power-law behavior
with an exponent that is compatible with the universal critical
exponent γ = 1.793 for dimension d = 3 [33].

D. Strength of the percolating cluster

We conclude our investigation of the percolation properties
by addressing the behavior of the so-called strength P (p),
which for percolation on lattices is defined as the probability
that an arbitrary site belongs to the percolating cluster [33].
Close to the percolation threshold, for infinite lattices P (p)
is known to behave as P (p) ∝ (p − pc)β when p → p+

c ,
where β is a dimension-dependent critical exponent that
does not depend on the specific lattice type [33]. For finite
lattices of linear size L, the behavior of P (p|L) close to
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FIG. 14. The percolation strength P (p|L) as a function of the
coloring probability p and of the system size L. Purple crosses
represent L = 10, green diamonds L = 20, orange squares L = 30,
blue triangles L = 40, and red circles L = 60. Curves have been
added to guide the eye. The estimated pc is displayed as a solid line
for reference. For all sizes L we have generated 103 realizations.
Inset: The behavior of P (p|L) as a function of p − p∗

c , where p∗
c is

our best estimate for the percolation threshold, namely, p∗
c = 0.290.

Blue triangles correspond to L = 40 and red circles to L = 60. The
dashed line corresponds to the power-law scaling P (p) ∝ (p − pc)β ,
with β = 0.4181.

p = pc is dominated by finite-size effects, with a scaling
P (p|L) ∝ L−β/ν [33].

The strength of Poisson geometries can be again computed
by either weighting each d polyhedron composing the perco-
lating cluster by its volume, or by attributing to each constituent
an equal unit weight. Monte Carlo simulation results of P (p|L)
corresponding to weighting each polyhedron by its volume are
shown in Fig. 14, as a function of the coloring probability p

and of the system size L. Analogously as in the case of S(p|L),
the shape of the strength P (p|L) is also similar to that obtained
for percolation on regular lattices [33]. Far from the value of
pc estimated above, the curves P (p|L) do not depend on the
system size, provided that L is large. In particular, for p � pc

the entire geometry will be colored in red, so that we obtain a
linear scaling P (p|L) ∝ p for the probability of belonging to
the percolating cluster. For p � pc, P (p|L) falls off rapidly
to zero. Close to pc, P (p|L) displays strong finite-size effects,
which are again coherent with the behavior of P (p|L) for
regular lattices. The inset of Fig. 14 shows the scaling of
P (p|L) as a function of p − p∗

c for different values of the
system size, namely, L = 40 and L = 60. As L increases,
P (p|L) displays a power-law behavior with an exponent that
is compatible with the universal critical exponent β = 0.4181
for dimension d = 3 [33].

V. CONCLUSIONS

In this paper we have examined the statistical properties of
isotropic Poisson stochastic geometries by resorting to Monte
Carlo simulation. First, we have addressed the scaling of
the key features of the random d polyhedra composing the
geometry, encompassing the volume, the surface, the inradius,

the crossed lengths, and so on, as a function of the system size
and of the dimension. When possible, we have compared the
results of our Monte Carlo simulations for very large systems to
the exact findings that are known for infinite geometries. When
exact asymptotic results were not available from literature, we
have provided accurate numerical estimates that could support
future theoretical advances.

Then, we have considered the case of binary mixtures of
Poisson geometries, where each d polyhedron is assigned a
random label with two possible values. All adjacent polyhedra
sharing the same label have been regrouped into possibly
nonconvex clusters, whose statistical features have been
characterized for the case of three-dimensional geometries.
We have in particular examined the percolation properties of
this prototype model of disordered systems: the probability
that a cluster spans the entire geometry, the probability that
a given polyhedron belongs to a percolating cluster (the
so-called strength), and the average cluster size. We have been
able to determine the corresponding percolation threshold,
namely, pc � 0.290 ± 7×10−3, which lies close to that of
percolation on regular cubic lattices. An analogous result had
been previously established for the two-dimensional Poisson
geometries, where the percolation threshold had been also
found to lie close to that of regular square lattices. The
critical exponents associated to the percolation strength and
to the average cluster size have been finally determined,
and were found to be compatible with the theoretical values
β � 0.4181 and γ � 1.793, respectively, that are conjectured
to be universal for percolation on lattices. Future work will be
aimed at refining these Monte Carlo estimates.

APPENDIX: OTHER MOMENTS AND CORRELATIONS
RELATED TO POISSON GEOMETRIES

For the sake of completeness, in this Appendix we report the
exhaustive Monte Carlo calculations corresponding to other
relevant moments and correlations for the physical observables
of Poisson geometries of infinite size, in dimension d = 2
and d = 3. The case of typical d polyhedra and that of d

polyhedra containing the origin are separately considered.
When analytical results are known (from Refs. [13,30–32]),
our Monte Carlo estimates are compared to the exact val-
ues. Otherwise, numerical findings are provided for refer-
ence. Notation is as follows. For the case of the 2 polyhedron,

TABLE XI. Moments and correlations of physical observables
related to two-dimensional Poisson geometries. Monte Carlo simula-
tion results are obtained with L = 80 and λ = 1.

Formula Theoretical value Monte Carlo

〈N〉 4 4 4 ± 0
〈N 2〉 (π 2 + 24)/2 16.9348 16.9347 ± 10−4

〈NA2〉 (π 2 + 8)/λ 17.870 17.848 ± 5×10−3

〈NV2〉 2π/λ2 6.283 6.268 ± 3×10−3

〈NV 2
2 〉 16(8π 2 − 21)/21λ4 44.16 43.94 ± 5×10−2

〈A2V2〉 4π/λ3 12.57 12.52 ± 10−2

〈A2V
2

2 〉 256π 2/21λ5 120.3 119.6 ± 0.2
〈r2

in〉 2/π 2λ2 0.2026 0.2022 ± 10−4
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TABLE XII. Moments and correlations of physical observables
related to three-dimensional Poisson geometries. Monte Carlo simu-
lation results are obtained with L = 80 and λ = 1.

Formula Theoretical value Monte Carlo

〈nv〉 8 8 7.99999 ± 2×10−6

〈ne〉 12 12 12.000 ± 3×10−6

〈nf 〉 6 6 6.000000 ± ×10−6

〈l3〉 12/λ 12 12.00 ± 2×10−2

〈n2
v〉 (13π 2 + 96)/3 74.768 74.767 ± 10−3

〈nvV3〉 8π/λ3 25.13 25.1 ± 0.1
〈nvA3〉 28π/λ2 87.9646 87.9 ± 0.3
〈nvl3〉 (10π 2 + 24)/λ 122.696 122.7 ± 0.2
〈n2

f 〉 (13π 2 + 336)/12 38.6921 38.6916 ± 3×10−4

〈nf V3〉 4(π 2 + 3)/πλ3 16.3861 16.36 ± 8×10−2

〈nf A3〉 (14π 2 + 48)/πλ2 59.2612 59.2 ± 0.2
〈nf l3〉 (5π 2 + 36)/λ 85.348 85.3 ± 0.1
〈V3A3〉 96/λ5 96 95.7 ± 0.8
〈V3l3〉 24π/λ4 75.3982 75.2 ± 0.5
〈A3l3〉 72π/λ3 226.195 225.9 ± 1.2
〈l2

3〉 24(π 2 + 1)/λ2 260.871 260.7 ± 0.9
〈r2

in〉 1/8λ2 0.125 0.1249 ± 4×10−4

TABLE XIII. Moments and correlations of physical observables
related to two-dimensional Poisson geometries. Monte Carlo simula-
tion results are obtained with L = 80 and λ = 1.

Monte Carlo

〈Nrin〉 1.4538 ± 4×10−4

〈V2rin〉 1.125 ± 10−3

〈A2rin〉 2.269 ± 10−3

〈Nrout〉 3.755 ± 10−3

〈V2rout〉 2.572 ± 2×10−3

〈A2rout〉 5.815 ± 3×10−3

〈rinrout〉 0.4669 ± 3×10−4

we denote N the number of sides. For the 3 polyhedron, we
denote l3 the total length of edges, nv the number of vertices, ne

the number of edges, and nf the number of faces, respectively.
All other symbols have been introduced above. The moments
and the correlations are reported in Tables XI–XV. For the
case d = 2 we have also computed the fraction P3 of random
polygons having three sides, which yields 0.35505 ± 2×10−5

TABLE XIV. Moments and correlations of physical observables
related to three-dimensional Poisson geometries. Monte Carlo simu-
lation results are obtained with L = 80 and λ = 1.

Monte Carlo

〈n2
e〉 168.225 ± 3×10−3

〈nenv〉 112.15 ± 2×10−3

〈nenf 〉 80.075 ± 10−3

〈neV3〉 37.6 ± 0.2
〈neA3〉 131.9 ± 0.4
〈nel3〉 184.0 ± 0.3
〈nvnf 〉 53.3833 ± 7×10−4

〈nvrin〉 2.584 ± 4×10−3

〈nerin〉 3.875 ± 7×10−3

〈nf rin〉 1.792 ± 3×10−3

〈V3rin〉 1.70 ± 10−2

〈A3rin〉 4.92 ± 3×10−2

〈l3rin〉 5.53 ± 2×10−2

〈nvrout〉 11.13 ± 2×10−2

〈nerout〉 16.70 ± 3×10−2

〈nf rout〉 7.87 ± 10−2

〈V3rout〉 5.90 ± 4×10−2

〈A3rout〉 19.1 ± 0.1
〈l3rout〉 23.08 ± 8×10−2

〈rinrout〉 0.478 ± 2×10−3

TABLE XV. Moments and correlations for the d polyhedron
containing the origin in d-dimensional Poisson geometries. Monte
Carlo simulation results are obtained with L = 80 and λ = 1 for any
dimension d .

d Formula Theoretical value Monte Carlo

2 〈N〉0 π 2/2 4.9348 4.932 ± 4×10−3

2 〈V2N〉0 (32π 3 − 84π )/21λ2 34.6813 34.6 ± 0.1
2 〈V2A2〉0 64π 3/21λ3 94.4953 94.5 ± 0.6
3 〈nv〉0 4π 2/3 13.1595 13.18 ± 9×10−2

3 〈ne〉0 19.8 ± 0.1
3 〈nf 〉0 (2π 2 + 6)/3 8.57974 8.59 ± 4×10−2

3 〈l3〉0 4π 2/λ 39.4784 39.6 ± 0.4

and the fraction P4 of polygons having four sides, which yields
0.38148 ± 3×10−5. These estimates are to be compared with
the exact results P3 = 2 − π2/6 � 0.35507 and

P4 = − 1
3 − 7

36π2 + π2 log(2) − 7
2ζ (3) � 0.38147, (A1)

respectively [50], where ζ is the Riemann ζ function [35].
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