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Quantum Fokker-Planck-Kramers equation and entropy production
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We use a canonical quantization procedure to set up a quantum Fokker-Planck-Kramers equation that accounts
for quantum dissipation in a thermal environment. The dissipation term is chosen to ensure that the thermodynamic
equilibrium is described by the Gibbs state. An expression for the quantum entropy production that properly
describes quantum systems in a nonequilibrium stationary state is also provided. The time-dependent solution is
given for a quantum harmonic oscillator in contact with a heat bath. We also obtain the stationary solution for
a system of two coupled harmonic oscillators in contact with reservoirs at distinct temperatures, from which we
obtain the entropy production and the quantum thermal conductance.
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Ordinary Brownian motion and other stochastic phenomena
with an underlying motion that follows the laws of classical
mechanics are well described by the Fokker-Planck-Kramers
(FPK) equation [1–4], which accounts for the classical dissipa-
tive behavior in a thermal environment. Quantum dissipation
[5], on the other hand, cannot be explained by the classical FPK
equation and requires an extension of the stochastic theory to
the domain of quantum mechanics. In fact, many approaches
to a stochastic theory of quantum systems have been put
forward [5–20]. We mention the approach of Lindblad [9],
which uses a nonunitary time evolution of the density matrix,
and the approach of Caldeira and Leggett [15,16], in which
a quantum system interacts with a heat reservoirs composed
by a collection of harmonic oscillators. The approach to a
stochastic theory of quantum systems that we consider here is
based on a quantum version of the classical FPK equation. The
construction of the quantum FPK equation that we consider
here is based on the canonical quantization of the classical FPK
equation. The resulting equation is similar to the one found by
Caldeira and Leggett [16], but differs by the dissipation term,
which we choose in such a way that in equilibrium the steady
state is the Gibbs state.

The classical FPK equation, when extended to a system
of many particles, can also be the basis for a stochastic
approach to equilibrium and nonequilibrium thermodynamics
[21–26]. Here, we also consider a quantum FPK equation for
a system with many degrees of freedom, which is appropriate
to describe a thermodynamic system in contact with one or
several thermal reservoirs, which serves as the basis for a
quantum thermodynamics [27,28]. To this end it is necessary
to define the rate of entropy production for quantum system
[29–31], which is also provided here.

The present approach is applied to two nonequilibrium
situations. In the first, we obtain the time-dependent properties
of a quantum harmonic oscillator in contact to a heat reservoir.
We find the time-dependent density matrix from which we
get the entropy production. In the second case, we apply
the present approach to get the nonequilibrium steady-state
properties of two coupled quantum oscillators in contact with
two heat reservoirs at distinct temperatures. We determine the
entropy production as well as the heat flux across the system.

We start with the classical FPK equation, which gives the
time evolution of the probability density P (x,p,t) related to

the motion of a particle of mass m subject to a potential V (x)
and in contact with a heat reservoir at temperature T [1–4],

∂P

∂t
= − p

m

∂P

∂x
+ dV

dx

∂P

∂p
+ γ

∂(pP )

∂p
+ γm

β

∂2P

∂p2
, (1)

where x and p are the position and momentum of the particle, γ
is the dissipation parameter, and β = 1/kBT . In the stationary
state, it is straightforward to show that P = (1/Z)e−βH, which
means to say that indeed Eq. (1) describes the contact with a
heat bath.

Using the definition of the Poisson brackets {A,B} =
(∂A/∂x)(∂B/∂p) − (∂A/∂p)(∂B/∂x), the FPK Eq. (1) can
be written in the form

∂P

∂t
= {H,P } + γ {x,pP } + γm

β
{x,{x,P }}, (2)

where H = p2/2m + V (x) is the Hamiltonian of the system.
A canonical quantization [32] of Eq. (2) can be achieved

by replacing the Poisson bracket {A,B} by [Â,B̂]/i�, where
[Â,B̂] = ÂB̂ − B̂Â is the commutator between the quantum
operators Â and B̂ associated to the quantities A and B,
respectively. For instance, the commutator between x and p

is [x,p] = i�. This procedure combined with the use of a
symmetrized product leads us to the following equation [16]:

i�
∂ρ

∂t
= [H,ρ] + γ

2
[x,ρp + pρ] + γm

i�β
[x,(x,ρ)], (3)

where ρ is the density matrix and H = p2/2m + V (x) is the
quantum Hamiltonian. This procedure will guarantee that,
in the classical limit, Eq. (3) will become the FPK Eq. (2).
However, as can be verified by a direct substitution, e−βH is
not the stationary solution of Eq. (3), except for a free particle.

This simple procedure of replacing the classical Poisson
bracket by the quantum commutator and the classical variables
by quantum operators does not give an unambiguous prescrip-
tion to construct a quantum version of a classical equation.
Bearing this in mind, we look for a more general quantum
version of Eq. (2) by assuming the following form for the
quantum FPK equation:

i�
∂ρ

∂t
= [H,ρ] + γ

2
[x,ρg + g†ρ] + γm

i�β
[x,(x,ρ)], (4)

2470-0045/2016/94(1)/012128(4) 012128-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.012128
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where the operator g does not depend on ρ and are to be
found based on two assumptions. First, g → p in the classical
limit, so that Eq. (4) goes onto Eq. (2) in this limit. Second,
we require that ρ0 = (1/Z)e−βH is the stationary solution of
Eq. (4) for any potential V . To this end, we begin by writing
Eq. (4) in the form

i�
∂ρ

∂t
= [H,ρ] − [x,J (ρ)], (5)

where

J (ρ) = −γ

2
(ρg + g†ρ) − γ m

i�β
[x,ρ]. (6)

In the stationary state, which is understood here as the
thermodynamic equilibrium state, J = 0, that is, the insertion
of the equilibrium density matrix ρ0 = (1/Z0)e−βH into
Eq. (6) should result in J (ρ0) = 0. This yields

g = − m

i�β

(
ρ−1

0 xρ0 − x
) = − m

i�β
(eβHxe−βH − x), (7)

which is the desired expression for g. The expansion of the
first term between parentheses in powers of β allows us to
write g in a form involving nested commutators,

g=p+ β

2!
[H,p]+β2

3!
[H,(H,p)]+β3

4!
{H,[H,(H,p)]} + · · ·

(8)

In the classical limit, all terms, except the first, on the right-
hand side of Eq. (8) vanish and g approaches p as desired.

Next we wish to connect the present approach with nonequi-
librium thermodynamics. To this end we consider the evolution
of the free energy F , defined by F = U − T S, where U = 〈H〉
and S is the von Neumann entropy, S = −kBTr{ρ ln ρ}. The
expression for the free energy can be written in the form

F = kBT Tr{ρ ln ρ − ρ ln ρ0} + F0, (9)

where ρ0 = (1/Z)e−βH is the equilibrium density matrix and
F0 = −kBT ln Z0. Using Klein’s inequality [33], Tr{ρ ln ρ −
ρ ln ρ0} � 0, it follows at once that F � F0.

The time derivative of F is related to the entropy production
rate � by dF/dt = −T � [23,26]. Using Eq. (5) to calculate
dF/dt from Eq. (9), we arrive at the following expression for
the rate of entropy production:

� = kB

i�
Tr{[x,J (ρ)](ln ρ − ln ρ0)}, (10)

which can also be written as

� = kB

i�
Tr{[x,J (ρ)](ln ρ + βH}. (11)

It is worth mentioning that, in the classical limit, the entropy
production rate reduces to the following expression [23,26]:

� = 1

γ T m

∫
J 2

P
dxdp, (12)

which is a quantity manifestly nonnegative, where J =
−γpP − (γm/β)∂P/∂p.

Let us determine g for some simple situations. In the case of
a free particle, for whichH = p2/2m, the quantity g simplifies
substantially. In this case all the commutators in Eq. (8) vanish

and g = p. The resulting quantum FPK equation reduces to
Eq. (3), which is thus understood as the equation describing a
quantum Brownian motion of a free particle.

In the case of an harmonic oscillator, for which H =
p2/2m + mω2x2/2, a straightforward calculation gives g =
ap + ibx, where a and b are real numbers, given by

a = 1

β�ω
sinh β�ω, b = m

β�
(cosh β�ω − 1). (13)

The time evolution of the covariances are

d

dt
〈p2〉 = −mω2(〈px〉 + 〈xp〉) + �bγ − 2aγ 〈p2〉 + 2γm

β
,

(14)

d

dt
〈x2〉 = 1

m
(〈px〉 + 〈xp〉), (15)

d

dt
〈px〉 = d

dt
〈xp〉 = 1

m
〈p2〉 − mω2〈x2〉

− aγ

2
(〈px〉 + 〈xp〉). (16)

At the stationary state, 〈xp〉 = −〈xp〉 = i�/2, 〈p2〉 =
(�b/2a) + (m/aβ), and 〈x2〉 = 〈p2〉/mω2. From these results
one gets the expected expression for 〈H〉,

〈H〉 = �ω

(
1

eβ�ω − 1
+ 1

2

)
. (17)

A time-dependent solution of the quantum FPK equation
for the harmonic oscillator is

ρ = 1

Z
exp

{
− c1

2
p2 − c2

2
x2 − c3

2
(xp + px)

}
, (18)

where c1, c2, and c3 are time-dependent parameters. That
this form is indeed a solution can be verified by replacing
Eq. (18) into the FPK equation. From Eq. (18) one obtains the
relation between the covariances 〈p2〉, 〈x2〉, 〈xp + px〉 and the
parameters c1, c2, c3 so that from the time-dependent solution
of Eqs. (14), (15), and (16), we may find the time behavior of
c1, c2, c3, and ρ. We are thus able to get the time-dependent
properties of the harmonic oscillator in contact with a heat
reservoir, given an initial condition. Using this procedure,
we have determined the time behavior of several quantities,
including the free energy F and the production of entropy
�, which are shown in Fig. 1. In this figure we used initial
conditions such that 〈p2〉/m�ω = 1/2, m〈x2〉/�ω = 1/2, and
〈xp + px〉 = 0.

As stated before, the present approach may serve as the basis
for a nonequilibrium thermodynamics. The fundamental prop-
erties that distinguish nonequilibrium from equilibrium are the
production of entropy, whose nonnegativity is equivalent to the
second law, and the existence of fluxes such as heat flow. It
is convenient to distinguish two forms of nonequilibrium. A
system may be out of equilibrium because it did not yet reach
equilibrium. This was exemplified by the case of an harmonic
oscillator that we have just considered. As shown in Fig. 1,
the entropy production is nonnegative but vanishes for large
times because the system reaches equilibrium. Another aspect
is the nonequilibrium behavior in systems that are in the steady
state, as happens to a system in contact to two heat reservoirs
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FIG. 1. Free energy and rate of entropy production as functions
of time for a quantum oscillator in contact with a heat reservoir.
The dimensionless quantities in the plot are as follows: �F ∗ = (F −
F0)/�ω, �∗ = �/kBω, and t∗ = ωt . The values of the parameters
are kBT /�ω = 1 and γ /ω = 1.

at distinct temperatures. In this case, there will be a permanent
heat flow and the production of entropy is positive and constant
in time. To deal with this case we consider next a system of
many interacting particles in contact with heat reservoirs at
distinct temperatures.

A system of interacting particles is described by the
Hamiltonian

H =
∑

i

p2
i

2m
+ V (x), (19)

where here x represents the collection of the positions {xi}
of the particles and pi is the momentum conjugate to xi . The
quantum FPK equation for this case reads

i�
∂ρ

∂t
= [H,ρ] −

∑
i

[xi,Ji(ρ)], (20)

where ρ(x,v) is the density matrix and

Ji(ρ) = −γi

2
(ρgi + g

†
i ρ) − γim

i�βi

[xi,ρ], (21)

with

gi = − m

i�βi

(eβiHxie
−βiH − xi). (22)

We are considering a general case in which each particle is
in contact with a heat reservoir at a temperature Ti and βi =
1/kBTi .

Let us assume that some particles are in contact (γi �= 0)
with the same reservoir at temperature T , whereas the others
are not connected (γi = 0) to any reservoir. In this case,
the steady-state solution of the quantum FPK Eq. (20) is
the canonical Gibbs density matrix ρ0 = (1/Z)e−βH because
Ji(ρ0) = 0 for each i, a condition that may be understood
as detailed balance, and the system is found to be in

thermodynamic equilibrium. It is worth mentioning that the
canonical density matrix ρ0 will be the steady-state solution
no matter how many particles are in contact (γi �= 0) with
the reservoirs, as long as there is at least one. This feature
distinguishes the present approach from that in which local
Lindblad forms are used to describe the contact with heat
reservoirs, which does not lead to a thermalization of the
system into the Gibbs state [34].

If the temperatures of the heat reservoirs are different from
each other then, in the steady state, the system will not be in
thermodynamic equilibrium. This nonequilibrium steady state
may be characterized by a nonzero production of entropy. In
analogy with Eq. (11), we define the rate of entropy production
as

� = kB

i�

∑
i

Tr{[xi,Ji(ρ)](ln ρ + βiH)}. (23)

The time variation of the von Neumann entropy S =
−kBTr{ρ ln ρ} can be written as

dS

dt
= kB

i�

∑
i

Tr{[xi,Ji(ρ)] ln ρ}, (24)

so that the flux of entropy, 	 = � − dS/dt , from the system
toward the reservoirs is thus

	 = 1

i�

∑
i

1

Ti

Tr{[xi,Ji(ρ)]H}. (25)

From the quantum FPK Eq. (20), the evolution of the
average of the energy U = 〈H〉 is given by

dU

dt
= −

∑
i

φi, (26)

where

φi = 1

i�
Tr{[xi,Ji]H} (27)

is the heat flux from the system toward the reservoir at
temperature Ti , so that we may write

	 =
∑

i

φi

Ti

. (28)

Replacing Ji in the expression for φi , we get

φi = γi

(
1

2m
〈gipi + pig

†
i 〉 − kBTi

)
. (29)

For two reservoirs in the stationary state, φ1 + φ2 = 0 and

	 = φ1

T1
+ φ2

T2
= φ

(
1

T2
− 1

T1

)
, (30)

where φ = φ2 = −φ1 is interpreted as the heat flow across the
system from reservoir 1 to reservoir 2.

Let us consider a system of two coupled harmonic oscilla-
tors, described by the Hamiltonian

H = 1

2m

(
p2

1 + p2
2

) + k

2
(x1 − x2)2 + k′

2

(
x2

1 + x2
2

)
, (31)
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in contact with reservoirs at temperature T1 and T2. In this
case, the quantities g1 and g2 are given by

gi =
∑
j=1,2

(aijpj + ibij xj ), (32)

where

aij = sinh(βi�ω)

2βi�ω
± sinh(βi�ω′)

2βi�ω′ , (33)

bij = m cosh(βi�ω) − 1

2βi�
± m cosh(βi�ω′) − 1

2βi�
, (34)

where the plus and minus signs are to be used when i = j and
i �= j , respectively, and ω = √

k′/m and ω′ = √
(2k + k′)/m.

From the quantum FPK Eq. (20), and using gi given
by Eq. (32), we set up the evolution equations for the
correlations 〈xixj 〉, 〈xipj 〉, and 〈pipj 〉. From the solution of
these equations we can determine the heat flow φ, given by
Eq. (29). In the stationary state, we find

φ = k2

k′mγ (a1 + a2)

(
�ω

eβ1�ω − 1
− �ω

eβ2�ω − 1

)
, (35)

valid for k 	 k′, where

a1 = sinh(β1�ω)

β1�ω
, a2 = sinh(β2�ω)

β2�ω
. (36)

We have used the same dissipation parameters, γ1 = γ2 = γ .
The heat flux φ, given by Eq. (35), is positive if T2 > T1

and negative if T2 < T1. Therefore, the entropy production �,

which in the stationary state is identified as the entropy flux
	, given by Eq. (30), is nonnegative, as desired. Notice that,
in the classical limit, Eq. (35) reduces to the expression that
one obtains from the classical FPK equation [23,35].

The quantum thermal conductance κ is obtained by writing
T1,2 = T ± �T/2 and φ = κ�T . For small values of �T ,

κ = kBk2

2k′mγa

(
β�ω

eβ�ω − 1

)2

, (37)

where a is given by Eq. (13).
In summary, by the use of a canonical quantization we have

set up a quantum FPK equation describing the time evolution of
quantum systems in contact with heat reservoirs. For a system
in contact with just one heat reservoir the stationary state is the
equilibrium Gibbs state. We have applied the present approach
to a system of two coupled harmonic oscillators in contact
with reservoirs at distinct temperatures. From the steady-state
solution of the quantum FPK equation we have obtained the
heat flux and the entropy production, which was shown to be
positive.

As a final comment, it should be pointed out that the results
we have obtained for the harmonic oscillator in equilibrium do
not depend on damping parameter. Since this is to be expected
when the damping parameter is small [5], it follows that the
present approach is able to give the expected results in the
quantum regime at least in the low damping regime.

We wish to acknowledge useful conversation with G. T.
Landi.
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