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Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model
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We investigate the stochastic thermodynamics of a two-particle Langevin system. Each particle is in contact
with a heat bath at different temperatures T1 and T2 (<T1), respectively. Particles are trapped by a harmonic
potential and driven by a linear external force. The system can act as an autonomous heat engine performing
work against the external driving force. Linearity of the system enables us to examine thermodynamic properties
of the engine analytically. We find that the efficiency of the engine at maximum power ηMP is given by
ηMP = 1 − √

T2/T1. This universal form has been known as a characteristic of endoreversible heat engines. Our
result extends the universal behavior of ηMP to nonendoreversible engines. We also obtain the large deviation
function of the probability distribution for the stochastic efficiency in the overdamped limit. The large deviation
function takes the minimum value at macroscopic efficiency η = η̄ and increases monotonically until it reaches
plateaus when η � ηL and η � ηR with model-dependent parameters ηR and ηL.
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I. INTRODUCTION

Heat engines are devices to generate mechanical work
by exploiting heat flows between hot and cold heat baths
at temperatures T1 and T2 (<T1). Since the advance of
stochastic thermodynamics, Brownian heat engines consisting
of microscopic small components have been attracting a
great deal of theoretical and experimental interest. Those
engines work in nonequilibrium conditions and are subject to
large thermal fluctuations. Much efforts have been devoted to
understanding common properties that are shared by a variety
of different engine models.

The efficiency η, defined as the ratio of the work to the
absorbed heat from a hot heat bath, is one of the most important
characteristics of a heat engine. According to the laws of
thermodynamics, the efficiency is limited from above by the
Carnot efficiency ηC ≡ 1 − T2/T1. The Carnot efficiency is
achieved only when an engine operates infinitely slow and
reversibly. Hence, an engine operating at the Carnot efficiency
is of no practical importance because its power, i.e., work per
unit time, is zero.

Instead of optimizing the efficiency, researchers are in-
terested in the efficiency of an engine when it is optimized
to yield the maximum power, which is called the efficiency
at maximum power (EMP) ηMP . The EMP is shown to be
universal for endoreversible engines that operate reversibly
except when they exchange heats with external heat baths
[1]. The EMP of the endoreversible engines is given by
ηMP = ηCA ≡ 1 − √

T2/T1. This efficiency ηCA is called
the Curzon-Ahlborn efficiency since it was rediscovered by
Curzon and Ahlborn [1], although it had been known long
before [2,3].

Most of realistic engines are not endoreversible [4,5].
Nevertheless, the EMP of many engines is close to ηCA

when T1 and T2 are close to each other, so ηC � 1. In this
limit, the Curzon-Ahlborn efficiency is expanded as ηCA =
1 − √

1 − ηC = 1
2ηC + 1

8η2
C + O(η3

C). Some engines, which
are not endoreversible, share the same expansion up to first
or second order in ηC [6–32]. It was found that the first-order
term reflects the tight coupling between thermodynamic fluxes

[33] and the second-order term the left-right symmetry [34].
The universality of the expansion has been investigated in the
context of irreversible thermodynamics [35].

When one measures the efficiency of an engine for a time
interval t , it varies from one measurement to another due
to thermal fluctuations. Thus, the efficiency is a fluctuating
random variable characterized by the probability distribution
function Pt (η) and the large deviation function L(η) ≡
− limt→∞ 1

t
ln Pt (η) in the long time limit. Recently, it was

found that the large deviation function L(η) is maximum at
η = ηC . This means that the Carnot efficiency is least likely in
the t → ∞ limit. To be precise, such a property was proved for
a heat engine that has only a finite number of microscopic con-
figurations and is driven by a time-symmetric protocol [36,37].
The least likeliness of the Carnot efficiency was demonstrated
in two-level systems analytically and numerically. However, it
remains an open question whether it is valid for systems with
continuous variables.

In this paper we introduce an exactly solvable model for a
Brownian heat engine. The model consists of two Brownian
particles in one dimension that are trapped by a harmonic
potential and driven by a linear external force. Each particle
is in contact with a heat bath at different temperatures. The
temperature difference induces a heat flow, which enables
the system to work against the external force. Owing to
solvability, the linear systems have been adopted for detailed
study of various subjects in stochastic thermodynamics such
as entropy production, fluctuation theorems, and information
engines [38–41]. We will investigate thoroughly the linear
model in terms of the heat engine with the focus on the
efficiency of the heat engine. Our results can be summarized
as follows. (i) The exact expressions for the macroscopic
efficiency and power are derived. We find that the EMP is
equal to ηCA. Our engine model operates in a nonequilibrium
condition, hence it is not an endoreversible engine. This result
indicates that endoreversibility is not a necessary condition
for ηMP = ηCA. (ii) The large deviation function L(η) for the
efficiency is obtained analytically. The function is minimum
at the macroscopic efficiency, increases monotonically as η

departs from the macroscopic efficiency, and reaches constant
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plateaus in the regions with η � ηR and η � ηL. The large
deviation function does not have a peak at the Carnot efficiency,
which is in sharp contrast to the property of finite-configuration
heat engines.

This paper is organized as follows. We introduce the model
system and calculate the steady-state average of the heat and
work in Sec. II. We elaborate on the EMP and compare it with
ηCA in Sec. III. In Sec. IV we derive the exact expression for
the large deviation function for the efficiency. We summarize
our results in Sec. V.

II. LINEAR ENGINE MODEL

We consider a system consisting of two Brownian particles
of mass m in one dimension. Two particles are in contact
with two different heat baths at temperatures T1 and T2 (<T1),
respectively, and linear forces are applied. Their motions are
governed by the underdamped Langevin equations

ẋ1 = v1, ẋ2 = v2,

mv̇1 = −γ v1 − Kx1 + εx2 + ξ1(t), (1)

mv̇2 = −γ v2 − Kx2 + δx1 + ξ2(t),

where xi and vi are the position and the velocity of ith particle
(where i = 1,2), respectively, γ is a damping coefficient, K is a
stiffness constant of a harmonic potential trapping the particles
at the origin, (ε,δ) are the coupling constants, and ξi(t) is the
Gaussian-distributed random force satisfying 〈ξi(t)〉 = 0 and
〈ξi(t)ξj (t ′)〉 = 2γ kBTiδij δ(t − t ′). We use shorthand notation
˙for a time derivative and set the Boltzmann constant kB to be
unity hereafter.

The two-particle system may be interpreted as a single-
Brownian-particle system in two dimensions with position
column vector x = (x1,x2)T and velocity column vector v =
(v1,v2)T = ẋ. The superscript T stands for the transpose. In this
interpretation, the total applied force f is decomposed into the
sum of two parts f = f c + f nc, with the conservative force

f c = −Kx = −∇V (x), (2)

with a harmonic potential V (x) = 1
2Kx2 and the nonconser-

vative driving force

f nc = (εx2,δx1)T, (3)

which does not have a corresponding potential function unless
ε = δ. The motions along the x1 axis and the x2 axis are
affected independently by the heat baths of temperatures T1

and T2, respectively.
For appropriate choices of ε and δ, the system can work

against the nonconservative force by exploiting the heat flow
between the heat baths. Thus it can act as a heat engine as
well as a heat pump or a refrigerator. According to stochastic
energetics [42], the heat absorbed from the heat baths into the
system and the work done by the system against the driving
force during an infinitesimal time interval [t,t + dt] are given
by

gd-Q1(t) = v1(t) ◦ [−γ v1(t)dt + d�1(t)],

d-Q2(t) = v2(t) ◦ [−γ v2(t)dt + d�2(t)], (4)

d-W (t) = − f nc ◦ dx = −[εv1(t)x2(t) + δx1(t)v2(t)]dt,

where d�i(t) ≡ ∫ t+dt

t
dt ′ξi(t ′) are Gaussian random variables

satisfying 〈d�i(t)〉 = 0 and 〈d�i(t)d�j (t)〉 = 2γ Tiδij dt . The
notation ◦ represents the Stratonovich product [43,44]. Those
quantities satisfy the energy conservation dE(t) = d-Q1(t) +
d-Q2(t) − d-W (t) with the internal energy E = 1

2mv2 + V (x).
We focus on the average quantities in the steady state,

denoted by 〈·〉s . Fluctuations are considered later. The steady-
state average of the internal energy change 〈dE〉s vanishes.
Hence, there exist only two relevant quantities describing the
energy flow. We choose the heat flow rate from the hot reservoir
q1 ≡ 〈d-Q1/dt〉s and the work production rate w ≡ 〈d-W/dt〉s .
The Stratonovich algebra yields that 〈v1(t) ◦ d�1(t)〉s =
〈 1

2 [v1(t) + v1(t + dt)]d�1(t)〉s = γ T1

m
dt + o(dt). Thus, we

obtain the expressions [41,45–47]

q1 = 2γ

m

(
T1

2
− 1

2
m

〈
v2

1

〉
s

)
,

w = −ε〈v1x2〉s − δ〈x1v2〉s . (5)

The average heat flux from the cold reservoir is given by
q2 ≡ 〈d-Q2/dt〉s = w − q1.

The Langevin equations in (1) are linear in z =
(x1,x2,v1,v2)T and belong to the class of the multivariate
Ornstein-Uhlenbeck process [43,44]. In such a case, the
steady state is Gaussian distributed with the covariance matrix
� = 〈zzT〉s being determined as a solution of a set of linear
equations. Following the standard procedure (see Sec. 4.5.6 of
Ref. [44]), we obtain that

� =

⎛
⎜⎜⎜⎝

(Kψ+γ 2φ)
δ

ψ 0 γφ

ψ
(Kψ−γ 2φ)

ε
−γφ 0

0 −γφ T1
m

− εφ 0
γφ 0 0 T2

m
+ δφ

⎞
⎟⎟⎟⎠, (6)

with ψ = δT1+εT2
2(K2−εδ) and φ = δT1−εT2

2(γ 2K+mεδ) . Using the covariance
matrix, we find that

q1 = γ εφ = γ ε(δT1 − εT2)

2(γ 2K + mεδ)
,

w = γ (ε − δ)φ = γ (ε − δ)(δT1 − εT2)

2(γ 2K + mεδ)
. (7)

The covariance matrix is positive definite in the region

−γ 2K

m
< εδ < K2. (8)

Outside the region, the nonconservative force is so strong
that the particle escapes from the harmonic potential. The
nonconservative force drives the particle to rotate around the
potential center generating a centrifugal force in a rotating
frame (negative εδ case) or blows the particle away from the
potential center (positive εδ case). Hence, instability occurs
when |εδ| is large. Mathematically, the stability condition
can be also derived from linear stability analysis of the
deterministic part of (1). We will restrict ourselves to the stable
region for further analysis.

III. EFFICIENCY AT MAXIMUM POWER

As one varies ε and δ within the stable region, q1 and w flip
their signs. There are four different regions. (i) When q1 > 0
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FIG. 1. Function diagram of the linear engine model. The dashed
lines are the boundary of the stable region.

and w > 0, the system operates as a heat engine that absorbs
heat from the hot bath, dissipates heat to a cold bath, and works
against the driving force. The macroscopic efficiency is given
by

η̄ = w

q1
= 1 − δ

ε
. (9)

We use the notation η̄ for the macroscopic efficiency in order to
distinguish it from the stochastic efficiency η investigated later.
(ii) When q1 < 0, w < 0, and q2 = w − q1 > 0, the system
operates as a heat pump or a refrigerator that transfers heat
from the cold bath (q2) to the hot bath (|q1|) with the help of
external work (|w|). (iii) When q1 > 0, w < 0, and q2 < 0,
heat flows from the hot bath to the cold bath at the expense of
external work. (iv) When q1 < 0, w < 0, and q2 < 0, external
work is dissipated into the two baths. The borderlines of these
four regions and the stable region are drawn in Fig. 1. The two
regions (iii) and (iv) are of no practical importance. We focus
on the heat engine region (i).

The regions (i) and (iii) are separated by the line δ = ε,
where the force f nc becomes a conservative one. Hence the
power w vanishes and the system plays the role of a heat
conductor.

The heat engine regime (i) is separated from the heat pump
regime (ii) by the line δ = (T2/T1)ε = (1 − ηC)ε, drawn with
the thick line in Fig. 1. Along this line, the efficiency in
(9) is given by the Carnot efficiency ηC = 1 − T2/T1 with
vanishing power [see (7)]. In macroscopic thermodynamics,
the Carnot efficiency is achieved only when an engine operates
quasistatically and reversibly. The vanishing power and the
Carnot efficiency along the line are thus consistent with each
other [6,8,12]. In fact, our model can be shown to be in
effective thermal equilibrium along the line δ = (1 − ηC)ε.
In terms of dimensionless parameters x̃1 = x1

(
√

mT1/γ )
, x̃2 =

x2

(
√

mT2/γ )
, and t̃ = t

(m/γ ) , the Langevin equation (1) becomes

FIG. 2. Density and contour plots for the engine power w.

equivalent to that for a two-dimensional Brownian particle
in thermal contact with a single heat bath at unit tempera-
ture. The particle is driven by the effective nonconservative

force f̃ nc = ( m
γ 2

√
T2
T1

εx̃2,
m
γ 2

√
T1
T2

δx̃1)T, which turns into the

conservative force along the line δ = (T2/T1)ε = (1 − ηC)ε.
The temperature difference (T1 �= T2) and the nonconservative
force f nc are the ingredients that drive the system out of
equilibrium. When δT1 = εT2, their effects cancel each other
and the system becomes equivalent to an equilibrium system
with an effective temperature.

The power w of the engine varies in the (ε,δ) plane as
shown in Fig. 2. We will find the maximum power point and
investigate how the EMP depends on the temperatures. The
power w is given by a function of ε and δ in (7). Recalling that
the macroscopic efficiency η̄ in (9) is a function of δ/ε, we
find it convenient to write w as a function of εδ and η̄ instead
of a function of ε and δ:

w(εδ,η̄) = γ εδT1

2(γ 2K + mεδ)

η̄(ηC − η̄)

1 − η̄
, (10)

with ηC = 1 − T2/T1. Then, for a given εδ, the power is
maximum when ∂w

∂η̄
= 0, which yields that

ηMP = 1 −
√

1 − ηC. (11)

This is the EMP along the constant-εδ curves (see Fig. 2).
The global maximum of the power is achieved in the limiting
case where εδ approaches K2, the border of the stable region
[see (8)], the efficiency at which is also given by (11).

To our surprise, the result for the efficiency at maximum
power is the same as the Curzon-Ahlborn efficiency ηCA

obtained for the endoreversible engine [1]. It reveals that the
endoreversibility is not a necessary condition for ηMP = ηCA.
In order to understand the similarity between our model and
the endoreversible engines, we rederive the Curzon-Ahlborn
result [1,48,49]. An endoreversible engine operates under
the assumption that it maintains internal temperatures T1i

and T2i when it exchanges heat with the heat baths at
temperatures at T1 and T2, respectively. The endoreversibility
means that the engine operates as the Carnot engine between
two temperatures T1i and T2i . Assuming the Fourier law, the
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FIG. 3. Linear heat engine model in the (s1,s2) plane. The model
acts as a heat engine in the shaded area satisfying (1 − ηC)s2 < s1 <

s2. The dotted curve represents a characteristic of the engine. The
maximum power is achieved when the curve is tangential to a straight
line of slope 1 − ηC .

incoming (q1) and outgoing (−q2) heat fluxes are given by
q1 = α1(T1 − T1i) and −q2 = α2(T2i − T2), respectively, with
the heat conductivities αi . Then the endoreversible condition
amounts to q1/T1i = −q2/T2i . The power is given by w =
q1 + q2 = α1(T1 − T1i) − α2(T2i − T2). It is a function of the
internal temperatures T1i and T2i , which are determined by an
operating condition. Using the endoreversible condition and
the expression for the efficiency η̄ = 1 − α2(T2i−T2)

α1(T1−T1i )
, one can

eliminate T1i and T2i in w to obtain that

w = α1α2T1

α1 + α2

η̄(ηC − η̄)

1 − η̄
. (12)

Apart from the overall factor, it has the same η̄ dependence as
in (10), hence the same efficiency at maximum power.

Comparing (10) and (12), one finds that the Curzon-
Ahlborn efficiency ηCA = 1 − √

T2/T1 is a consequence of
the specific relation between the thermodynamic quantities
irrespective of microscopic details of engines. It is convenient
to use the parameters s1 = q1/T1 (entropy loss of the hot
bath) and s2 = −q2/T2 (entropy gain of the cold bath). Using
w = s1T1 − s2T2 and η̄ = 1 − s2T2/s1T1, we can rewrite (10)
and (12) in the form s1 = F(s2), where the function F(x) is
given by

F(x) = x

1 + ζx
, (13)

with ζ = 2(γ 2K + mεδ)/γ εδ for (10) and ζ = α−1
1 + α−1

2
for (12).

In general, as one varies engine-specific parameters, such as
ε and δ in our model or T1i and T2i in the endoreversible engine,
s1 and s2 will move along a curve s1 = F(s2). We now address
the question whether the function F(x) in (13) is uniquely
determined for all systems displaying the Curzon-Ahlborn
efficiency. In Fig. 3 we draw an arbitrary curve (dotted line)
in the (s1,s2) plane. The second law of thermodynamics
s1 � s2 requires that the function F(x) should be below the
straight line s1 = s2. The device works as a heat engine
when s1 > 0, s2 > 0, and w = q1 + q2 = T1s1 − T2s2 � 0.
Hence, the shaded area between two straight lines s1 = s2 and
s1 = (T2/T1)s2 = (1 − ηC)s2 is the region of physical interest.
Noting that the power of the engine is constant along a straight

line s1 = (1 − ηC)s2 + w/T1, one finds that the maximum
power achieved when the curve s1 = F(s2) is tangential to
the straight line of slope 1 − ηC . The tangential point (s∗

1 ,s∗
2 ),

hence the maximum power point, is determined by

s∗
1 = F(s∗

2 ), (1 − ηC) = F ′(s∗
2 ). (14)

The efficiency at maximum power is then given by

ηMP = 1 − (1 − ηC)
s∗

2

s∗
1

. (15)

We now impose that ηMP = 1 − √
1 − ηC for any combina-

tions for T1 and T2, i.e., any value of ηC . Eliminating ηC

using (14) and (15), we obtain the differential equation for the
function F(x):

F ′(x) = F(x)2

x2
. (16)

The solution of the differential equation is given by the
function in (13). This analysis shows that the Curzon-Ahlborn
efficiency at maximum power is achieved if and only if the
entropy loss rate in the hot reservoir and the entropy gain rate
in the cold reservoir are constrained by the function given in
(13).

We add a few remarks. First, there have been attempts to
understand the Curzon-Ahlborn efficiency from the symmetry
consideration. Near equilibrium where T1  T2 or ηC =
1 − T2/T1 � 1, the Curzon-Ahlborn efficiency is expanded
as ηCA = 1

2ηC + 1
8η2

C + O(η3
C). The first-order term 1

2ηC

reflects the tight coupling between thermodynamic fluxes [33].
Namely, the heat fluxes and mechanical flux are proportional
to each other, so the total entropy production should also be
proportional to the heat flux or s1. The function form F(x) =
x/(1 + ζx) implies that the total entropy production rate is
given by stot = −s1 + s2 = ζ s1s2, which shows that our model
belongs to the tight coupling category. The second-order term
1
8η2

C is a manifestation of the so-called left-right symmetry
[34] under the exchange of the role between the hot and cold
heat baths. Note that the relation s1 = F(s2) is invariant under
the changes s1 → −s2 and s2 → −s1 because the inverse of
F(x) is given by F−1(x) = −F(−x). Thus, our model has
the left-right symmetry. The higher-order terms do not have
a simple explanation yet. Hopefully, our result will shed light
on the physical meaning of all the higher-order terms.

Second, in general, as one varies microscopic parameters,
an engine may cover the whole physical region in the (s1,s2)
plane instead of following a one-dimensional curve such as
s1 = F(s2) in our model. Such a one-dimensional represen-
tation is possible when there exist only a single independent
parameter. The model of Curzon and Ahlborn includes two
parameters T1i and T2i [1]. However, the endoreversibility
condition eliminates one degree of freedom. In our model we
reduced the number of independent parameters by following
the constant εδ curve. For general heat engines with multiple
degrees of freedom, if the entropy production rates of two
reservoirs satisfy s1 = F(s2) with a certain parameter ζ , the
efficiency at maximum power at constant ζ is always given by
ηCA. It raises questions on the universality of ηCA and on the
role of such a parameter ζ , which are beyond the scope of the
present study.
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IV. EFFICIENCY FLUCTUATION

The efficiency η is a fluctuating random variable. Recent
studies suggest that it is least probable that a nonequilibrium
heat engine would achieve the Carnot efficiency ηC = 1 −
T2/T1 in the long time limit [36,37]. This result is derived
for an engine that possesses a finite number of microscopic
states and is driven by a time-symmetric protocol. Our engine
is driven by a time-independent protocol that is obviously
time symmetric. However, its phase space is continuous with
infinitely many microscopic states. We will examine whether
the general statement of Refs. [36,37] is also valid in our
model.

For simplicity, we consider the overdamped dynamics.
Hereafter, the time will be rescaled so that the damping
coefficient is taken to be unity. Then the equations of motion
for the position vector x = (x1,x2)T are written as ẋ = f + ξ ,
with the force f = f c + f nc and the thermal noise ξ =
(ξ1,ξ2)T. Our task is to find the probability distribution Pt (η)
for the stochastic efficiency η = W/Q1, where Q1 is the heat
absorbed from the hot reservoir and W is the work done against
the nonconservative force f nc up to time t (we will drop the
subscript in Q1 for notational convenience). We focus on the
large deviation function (LDF)

L(η) ≡ − lim
t→∞

1

t
ln Pt (η). (17)

In order to find Pt (η), one needs to obtain the joint probabil-
ity distribution p(Q,W ; t). It is accessible by considering the
Fokker-Planck equation for the probability distribution p( y; t)
of the four-component vector y = (x1,x2,Q,W )T. This method
was introduced for the heat fluctuation of a one-dimensional
Brownian particle [50]. We extend the method to calculate
the joint distribution for Q and W . The generating function is
defined as

Gt (x1,x2,λQ,λW ) ≡
∫

dQdW e−λQQ−λW Wp( y; t). (18)

After a lengthy algebra, we find that

Gt ∝ exp
[− 1

2 xT · D−1/2JD−1/2 · x + μ(λQ,λW )t
]

(19)

in the large t limit, where J = J(λQ,λW ) is a symmetric 2×2
matrix and

μ(λQ,λW ) = H (λQ + η̄λW ) (20)

with the function

H (�) = K −
√

K2 + ε2T1T2
[
�2

m − (� − �m)2
]
, (21)

with

�m = ηC − η̄

2T2
� 0. (22)

Here η̄ = 〈W 〉/〈Q〉 = 1 − δ/ε is the macroscopic efficiency
derived in the previous section and ηC = 1 − T2/T1 is the
Carnot efficiency. The derivation and the exact expression for
J are presented in the Appendix.

After integrating Gt (x1,x2,λQ,λW ) over x, one obtains
the reduced generating function G̃t (λQ,λW ) for Q and W .
The integration does not introduce an additional t-dependent

term in the exponent as far as J is positive definite. There-
fore, the cumulant generating function (CGF) φ(λQ,λW ) =
limt→∞ 1

t
ln G̃t (λQ,λW ) [37] is given by

φ(λQ,λW ) = μ(λQ,λW )χJ(λQ,λW ), (23)

where the characteristic function χJ(λQ,λW ) is equal to unity if
the matrix J(λQ,λW ) is positive definite and infinity otherwise.

The LDF L(η) is then obtained by using the relation

L(η) = − min
λ

φ(−ηλ,λ), (24)

which was derived in Ref. [37]. To a given value of η, one
need to evaluate the minimum value of the function φ(λQ,λW )
along a straight line lη of slope −η passing through the origin
in the λ = (λW ,λQ) plane. Such a task is achieved by using the
property of the function μ. Recall that μ(λQ,λW ) = H (λQ +
η̄λW ) depends on a single parameter � = λQ + η̄λW . Thus, it
is constant along a straight line of slope −η̄ in the λ plane. The
function H (�) has the minimum value

μm = K −
√

K2 + ε2T1T2�2
m � 0 (25)

at � = �m and increases monotonically as � deviates from
�m. Thus, L(η) is determined by the distance of the line lη and
� = �m inside the domain of χJ = 1.

In Fig. 4 we explain a graphical method to construct L(η).
This method gives information on the shape of L(η): L(η =
η̄) = 0, where L(η) increases monotonically as η deviates from
η̄ in the region ηL < η < ηR and remains constant L(η) =
−μm � 0 elsewhere. The boundaries ηL (�η̄) and ηR (�η̄)
vary with the model parameters.

In Fig. 5 we show the plot of L(η) obtained from the analytic
method using the parameters K = 1, T1 = 2, T2 = 1, ε = 1/2,
and δ = 3/8 with the macroscopic efficiency η̄ = 1 − δ/ε =
1/4. The LDF takes the minimum value 0 at η = η̄ and a
constant value −μm = (

√
17 − 4)/4 in the regions with η �

ηL  0.098 and η � ηR  0.278.
We also performed numerical simulations to confirm the

analytic result. Starting from the fixed initial configuration
x1 = x2 = 0, we integrated the time-discretized overdamped
Langevin equation numerically by using the Heun method
[51] with �t = 0.01. We measured the work and the heat
up to time t = 512, 1024, and 2048 and constructed the
probability distribution for the efficiency Pt (η) by repeating the
simulations for Ns = 3×225 ≈ 108 times. The LDF L(η) can
be estimated by fitting − 1

t
ln Pt (η) to the function A(η)/t +

B(η) ln t/t + L(η) at each value of η [52,53]. The LDF thus
obtained is presented in Fig. 5. The numerical result is in good
agreement with the analytic result: L(η) is minimum at η = η̄

and monotonically increases as η deviates from η̄ to reach its
maximum, although statistical uncertainty becomes noticeable
for large |η − η̄|.

Also shown in Fig. 5 is the LDF obtained from the steady-
state initial condition where x1 and x2 at t = 0 are drawn from
the steady-state distribution. Interestingly, the LDF is different
from the LDF obtained from the fixed initial condition. The
LDF of nonequilibrium fluctuations may be affected by the
initial condition due to the everlasting initial memory effect
[54]. Our results exemplify the initial-condition-dependent
behavior of the LDF (see also the Appendix).
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FIG. 4. In the λ = (λW ,λQ) plane, we draw schematically the
boundary C of the χJ = 1 domain. The dotted straight line of slope
−η̄ passing through the origin corresponds to the line � = 0, while
the dashed straight line of slope −η̄ corresponds to the line � = �m,
where � = λQ + η̄λW . The intersections between the line � = 0
(�m) and the curve C are marked with closed circles and labeled
as a and c (b and d). The gray arrows indicate that the cumulant
generating function φ in (23) is minimum along the line � = �m and
increases as one moves away from it. To a given value of η, L(η) is
obtained from the minimum value of μ(λQ,λW ) along the segment
of the straight line lη passing through the origin O with slope −η

inside the boundary C. When η = η̄, the line lη coincides with the
line � = 0 where μ = 0. Hence, L(η̄) = 0. (i) When ηL � η < η̄,
the right intersection point e (open circle) of lη and C lies on a
segment between a and b. Thus, the LDF is determined by the �

value at e, L(η) = −H (�e). The left intersection point is irrelevant
since it is farther from the line � = �m than e. The territory ηL

is determined by the condition that the point e coincides with b.
(ii) When η < ηL, the line lη intersects with the line � = �m within C

at point f (open circle). Hence, L(η) = −μm. (iii) When η̄ < η � ηR ,
the left intersection point g (open circle) lies on a segment between
c and d . Thus, the LDF is given by L(η) = −H (�g). The territory
ηR is determined by the condition that g coincides with d . (iv) When
η > ηR , the line lη intersects with the line � = �m at point h (open
circle) and L(η) = −μm.

The LDF of our model system does not follow the universal
behavior, suggested in Refs. [36,37], that the Carnot efficiency
is the sole maximum point of the LDF. We briefly review
the theory in Refs. [36,37], where the least likeliness of the
Carnot efficiency was shown for systems possessing a finite
number �sys of microscopic states. The finiteness of �sys plays
a crucial role. The total entropy production of the engine
and two heat baths is given by �Stot = −Q1

T1
− Q2

T2
+ �Ssys

with the Shannon entropy change �Ssys of the system.
The energy conservation requires that �E = Q1 + Q2 − W ,
where �E denotes the change in the internal energy of the
engine. Eliminating Q2, the total entropy production is given
by �Stot = ηC

T2
Q1 − 1

T2
W + (− 1

T2
�E + �Ssys). Note that the

mean value of Q1 and W increases linearly in t . On the
other hand, when �sys is finite, |�E| is bounded above by
|Emax − Emin| with the maximum (minimum) energy Emax

(Emin) among the �sys states and |�Ssys| by ln �sys. Then
�Stot may be approximated as �Stot  ηC

T2
Q1 − 1

T2
W in the

large t limit. If the total entropy production is written in the
additive form of Q1 and W , the joint probability distribution

FIG. 5. The LDF for efficiency with the set of parameters K = 1,
T1 = 2, T2 = 1, ε = 1/2, and δ = 3/8. The solid line represents the
analytic result obtained from Eq. (24), while closed circles represent
the numerical results from the fixed initial condition. The numerical
results are obtained by extrapolating − 1

t
ln Pt (η) at t = 512 (dashed

line), 1024 (dotted line), and 2048 (dash-dotted line). Details for the
simulations are explained in the text. We also present the numerical
results (open circles) that are obtained from the steady-state initial
condition.

of them would satisfy the fluctuation theorem [55–58]

P (Q1,W )

P (−Q1,−W )
 e�Stot . (26)

It implies that the CGF φ(λQ,λW ) should have the symmetry
property

φ(λQ,λW ) = φ
(
2λs

Q − λQ,2λs
W − λW

)
, (27)

with the symmetric point (λs
Q,λs

W ) = ( ηC

2T2
, − 1

2T2
). If the CGF

has a unique minimum point, (27) means that φ takes its global
minimum at (λs

Q,λs
W ). Thus, by using (24), one would find

that L(η) � −φ(λs
Q,λs

W ) = L(ηC) for all η. Namely, the least
likeliness of the Carnot efficiency is the direct consequence
of the fluctuation theorem and the nondegenerate minimum of
the CGF [36,37].

In our model, the fluctuation theorem for P (Q1,W ) is
not valid and the CGF φ(λQ,λW ) in (23) does not have the
symmetry property of (27). Although the averages of �Ssys

and internal energy change �E are zero in the steady state,
stochastic fluctuations may generate rare events accompanied
by �Ssys and �E comparable with Qi and W [59]. Such
fluctuations are non-negligible and invalidate the fluctuation
theorem [57,58,60].

Despite the breakdown of the fluctuation theorem, the CGF
φ(λQ,λW ) = μ(λQ,λW )χJ(λQ,λW ) in (23) has an interesting
property. The function μ(λQ,λW ) depends only on the single
parameter � = λQ + η̄λW and enjoys the symmetry prop-
erty μ(λQ,λW ) = μ(2λs

Q − λQ,2λs
W − λW ). At the symmetric

point (λs
Q,λs

W ), � is equal to �m and μ(λs
Q,λs

W ) = μm. It is the
characteristic function χJ(λQ,λW ) that breaks the symmetry
of (27). As shown in the previous paragraphs, the plateau in
L(η) originates from the fact that φ(λQ,λW ) depends only on
� within the domain of χJ = 1.

We note that the similar results were reported in
Refs. [61,62]. These papers consider the Gaussian fluctuations
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of the work and heat using the linear response theory. In the
tight coupling limit, Q1 and W becomes δ-function correlated
and the CGF φ(λQ,λW ) depends only on a single parameter
�, a linear combination of λQ and λW , in the whole (λQ,λW )
space. Consequently, the LDF L(η) takes a positive constant
value at all values of η except at η = η̄, where L(η̄) = 0 [61].
The Carnot efficiency ηC is not least unlikely but equally
unlikely as all the values of η other than the macroscopic
efficiency η̄. The plateau in L(η) in our model has the same
origin as the tight coupling model.

The breakdown of the fluctuation theorem is reflected
in the characteristic function χJ. It makes the LDF L(η)
vary continuously within the interval ηL � η � ηR , where
ηL and ηR are determined by the boundary C of the χJ = 1
domain. The reversible efficiency ηC belongs to the plateau
if the symmetry point (λs

Q,λs
W ) is located inside C. We have

examined several different parameter values and found that ηC

belongs to the plateau for the fixed initial condition case. When
one compares the numerical data in Fig. 5, the deviation from
the fluctuation theorem gets stronger and the interval ηL � η �
ηR becomes broader under the steady-state initial condition.
One can imagine a situation where the χJ = 1 domain shrinks
so that the symmetric point (λs

Q,λs
W ) is located outside the

domain boundary C. In such a case, the reversible efficiency
ηC will belong to the interval ηL � η � ηR , becoming more
likely than other efficiencies. In fact, in a simple model of heat
conduction through a Brownian particle in thermal contact
with two heat baths, the symmetry for the CGF for the heat
imposed by the fluctuation theorem is shown to be broken
not only globally but also locally around the symmetric point
when the steady-state initial condition is adopted [50]. This
example suggests the possibility that ηL < ηC < ηR under
the steady-state initial condition. An analytic expression for
the CGF under the steady-state initial condition is not available
yet. Further work is necessary to investigate whether the
breakdown of the fluctuation theorem affects the fluctuations
of the efficiency, especially near the reversible efficiency ηC .

V. CONCLUSION

In this paper we introduced a model for a heat engine
that operates between two heat baths and is driven by a
nonconservative force. The model is described by an Ornstein-
Uhlenbeck process and most of the properties are analytically
tractable. First, we showed that the efficiency at maximum
power is given by the so-called Curzon-Ahlborn efficiency
ηMP = ηCA = 1 − √

T2/T1. This is a surprising result because
ηCA has been believed to be the property of the endoreversible
engine, while our engine is not endoreversible. Instead, we
showed that ηCA is a consequence of the relation s1 = F(s2)
between the entropy loss s1 of the hot bath and the entropy
gain s2 of the cold bath with the universal function given
in (13).

Second, we derived the analytic expression for the LDF
L(η) of the efficiency fluctuation. The shape of L(η) is shown
in Fig. 5: It is minimum at η = η̄ and displays plateaus far
from η̄. Our result shows that L(η) does not have a peak at
the Carnot efficiency ηC . We also found that the LDF of the
efficiency depends on the initial condition, which stresses the
initial memory effect of nonequilibrium systems [54].

The linear solvable model has provided a great deal of
information on the properties of the heat engines. It also
suggests interesting theoretical questions. It is shown that the
Curzon-Ahlborn efficiency at maximum power is guaranteed
by the relation s1 = F(s2) with the universal function F(x)
given in (13). On the other hand, the Curzon-Ahlborn effi-
ciency was investigated in terms of symmetry in Refs. [33–35].
It would be interesting to pursue the implication of the relation
s1 = F(s2) on underlying symmetry of engine dynamics.
The LDF L(η) for the system under the steady-state initial
condition requires all the eigenstates of the Fokker-Planck
operator, which are not available yet. We leave those tasks for
future work.
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APPENDIX: DERIVATION OF L(η) AND DISCUSSION
OF THE INITIAL CONDITION DEPENDENCE

In the overdamped limit, the infinitesimal heat and work
in (4) during the time interval dt are given by, respectively,
d-Q1 = −f1 ◦ dx1 = −f 2

1 dt − f1 ◦ d�1 and d-W = − f nc ◦
dx =−( f nc · f )dt−fnc,1 ◦ d�1−fnc,2 ◦ d�2 (γ is set to 1).
We use · for the inner product of a vector with another
vector or a matrix. Hence, y = (x1,x2,Q = Q1,W )T follows
a stochastic differential equation

ẏ = d + N · ζ , (A1)

where the drift vector d = (f1,f2, − f 2
1 , − f · f nc)T, the 4×2

noise matrix N is given by

N =

⎛
⎜⎜⎜⎝

√
2T1 0

0
√

2T2

−√
2T1f1 0

−√
2T1fnc,1 −√

2T2fnc,2

⎞
⎟⎟⎟⎠, (A2)

and the components of the noise vector ζ (t) = (ζ1(t),ζ2(t))T

are independent Gaussian random variables of zero mean and
unit variance. The total force f = f c + f nc is linear in x,
hence it is written as f = −F · x with the force matrix F.

The differential equation is nonlinear and involves the
multiplicative noises implemented with the Stratonovich inter-
pretation. Following the standard recipe [43], one can derive
the Fokker-Planck equation for the probability distribution
p( y; t):

∂p

∂t
= Lp, (A3)

where the Fokker-Planck operator is given by

L = −∇T · d + 1
2 (∇T · N) · (∇T · N)T, (A4)

with the differential operator ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂Q

, ∂
∂W

)T.
For G(x1,x2,λQ,λW ; t) defined in (18), the time evolution

operator Lλ is obtained by replacing ∂/∂Q and ∂/∂W in L
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with λQ and λW , respectively. The resulting operator becomes
bilinear in x and the gradient operator ∇x = ( ∂

∂x1
, ∂
∂x2

)T, i.e.,

Lλ = ∇T
x · D · ∇x + 2xT · BT · ∇x + xT · A · x + K + TrB,

(A5)

where A and D = diag(T1,T2) are the 2×2 symmetric matrices,
B is the 2×2 nonsymmetric matrix, and TrX denotes the
trace of a matrix X. The matrix elements for A and B
are readily obtained from (A4). Explicitly, they are given
by A = CTDC + 1

2 FTC + 1
2 CTF and B = DC + 1

2 F with an
auxiliary matrix

C =
(

KλQ −ε(λQ + λW )

−δλW 0

)
. (A6)

We now rescale the coordinates to define x̂ = (x̂1,x̂2)T ≡
D−1/2 · x. Then the time evolution operator is rewritten in
terms of x̂ as

Lλ = ∇2
x̂ + 2x̂T · B̂T · ∇ x̂ + x̂T · DÂ · x̂ + K + TrB, (A7)

where ∇ x̂ = ( ∂
∂x̂1

, ∂
∂x̂2

)T and X̂ = D−1/2 · X · D1/2 for any
matrix X. It looks similar to the Hamiltonian of the two-
dimensional harmonic oscillator except for the second term.
Finally, we make a transformation

L̃λ ≡ e(1/2)x̂T·J·x̂Lλe
−(1/2)x̂T·J·x̂, (A8)

with a certain symmetric matrix J, which will be determined
later. It acts as the time evolution operator for the mod-
ified generating function e(1/2)xT·D−1/2JD−1/2·xG(x,λQ,λW ; t).
This transformation replaces the gradient operator ∇ x̂ with
∇ x̂ − J · x̂, which leads to

L̃λ = ∇2
x̂ − 2x̂T · MT · ∇ x̂ + x̂T · Q · x̂ + μ, (A9)

where

M = J − B̂,

Q = MTM + DÂ − B̂TB̂ = MTM − 1
4 F̂TF̂,

μ = K − TrM.

(A10)

The operator L̃λ is simplified if one chooses J or M suitably
so that Q = 0. It is accomplished by choosing

J = B̂ + 1
2 OF̂, (A11)

with an orthogonal matrix

O =
(

cos θ − sin θ

sin θ cos θ

)
. (A12)

The angle variable θ has to be determined by requiring that J
should be a symmetric matrix. Then the time evolution opera-

tor L̃λ has the constant eigenfunction with the corresponding
eigenvalue μ. As a result, in the large t limit, the generating
function G has the asymptotic form in (19).

We find that the symmetry condition J12 = J21 is satisfied
if

θ = α ± β, (A13)

where cos α = F̂12−F̂21
R

, sin α = − F̂11+F̂22
R

, cos β = 2(B̂21−B̂12)
R

,

and sin β =
√

1 − cos2 β with

R =
√

(F̂12 − F̂21)2 + (F̂11 + F̂22)2. (A14)

There are two different solutions for J due to the sign ambiguity
in (A13). To select the proper solution, we impose the condition
that the generating function G(x,λQ,λW ; t) in the infinite t

limit should converge to the steady-state distribution when
λQ = λW = 0. The steady-state probability distribution of a
linear system is known exactly [39]. Comparing the two
solutions with the steady-state probability distribution, we
find that the matrix J is indeed given by J = B̂ + 1

2 OF̂ with
θ = α + β. The eigenvalue is given by

μ(λQ,λW ) = K − R

2
sin β, (A15)

which yields the result in (20).
We add a remark on the initial condition dependence.

As for the effect of the initial condition, Visco studied a
similar problem, a Brownian particle in one dimension in
contact with two heat baths [50]. One can apply the same
method in Ref. [50] to study the initial condition dependence.
Suppose that initial state x0 of the system at time t = 0 is
distributed according to a probability distribution p0(x0). Then
the moment generating function Gt in (19) should be integrated
over the initial position x0 after being multiplied with the
additional factor r(x0,λQ,λW ) that is determined by the initial
distribution and the leading eigenstate of the Fokker-Planck
operator L̃λ. Just as the integration over x introduces the
branch cut represented by the curve C in Fig. 4, the integration
over x0 can also introduces a branch cut. When the additional
branch cut shrinks the analytic domain in Fig. 4, the efficiency
LDF L(η) becomes broader. We do not have the analytic
expression for the eigenfunction of the Fokker-Planck operator
yet. Instead, we investigate the initial condition dependence
numerically. In Fig. 5 we compare the LDFs from the fixed
initial condition and from the steady-state initial condition.
One finds that the LDF from the latter displays a broader
distribution on the η � η̄ side.
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