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Optimal performance of heat engines with a finite source or sink and inequalities between means
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Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T+ and
T−(<T+), we inquire, in which case is the optimal work extraction larger: when the reservoir is an infinite source
at T+ and the system is a sink at T−, or, when the reservoir is an infinite sink at T− and the system acts as a source
at T+? It is found that in order to compare the total extracted work, and the corresponding efficiency in the two
cases, we need to consider three regimes as suggested by an inequality, the so-called arithmetic mean-geometric
mean inequality, involving the arithmetic and the geometric means of the two temperature values T+ and T−. In
each of these regimes, the efficiency at total work obeys certain universal bounds, given only in terms of the ratio
of initial temperatures. The general theoretical results are exemplified for thermodynamic systems for which
internal energy and temperature are power laws of the entropy. The conclusions may serve as benchmarks in the
design of heat engines, where we can choose the nature of the finite system, so as to tune the total extractable
work and/or the corresponding efficiency.
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I. INTRODUCTION

Thermodynamics is regarded as a discipline with a formal
simplicity, but still covering a wide domain of applicability.
One of the central problems in thermodynamics is the extent
of heat-to-work conversion, with its focus on maximal work
or power output and the consequent efficiency of the process.
The seminal results of Carnot apply to the case of infinite
reservoirs. However, in recent years, the study of the role
of finite reservoirs has also caught attention [1–7]. This is
motivated by practical considerations such as a limited supply
of fuel (a finite heat source), or the working medium being
in contact with a small environment (sink), which may be the
case in small-scale devices, or even relevant for the design of
modern cities.

On the other hand, algebraic inequalities between the means
hold a kind of poetic fascination. One of the most important
[8] and well-known is the arithmetic mean-geometric mean
(AM-GM) inequality, stated as follows. For two real positive
numbers, a and b, with arithmetic mean A(a,b) = (a + b)/2
and geometric mean G(a,b) = √

ab, we have

a + b

2
≥

√
ab, (1)

with equality only if a = b. Such inequalities are useful
in proving elementary results in many disciplines [9,10].
Especially, in the context of macroscopic thermodynamics, the
second law of increase of entropy may be argued as follows
[11]. Consider n systems with a constant heat capacity C and
initial temperatures, {Ti |i = 1,...,n}. Placed in mutual thermal
contact, these systems come to equilibrium at a common
final temperature, say Tf . From the energy conservation
condition (the first law), we have

∑
i C(Ti − Tf ) = 0, which

implies Tf = ∑
i Ti/n. Now the total entropy change: �S =∑

i

∫ Tf

Ti
(C/T )dT = nC(ln Tf − ln(�iTi)1/n), so by virtue of

the AM-GM inequality [12], we get �S ≥ 0 [13–16]. Thus, in
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the above argument, the manifestation of AM-GM inequality
is specifically tied to the assumption of a particular model
system. By assuming systems other than perfect gases, one
can invoke inequalities between other means.

It is apparent that alternative thermodynamic processes,
such as optimal work-extracting processes, would exhibit
a similar connection between physical models and specific
inequalities between the means. In this paper, our objective
is to compare the work output capacity and efficiency of
two complementary scenarios, involving a finite system and
a reservoir. During this analysis, we will uncover a rather
general role of the AM-GM inequality. In particular, we will
address the following question. Assume a pair of values for
temperature, say T+ and T−(<T+), and a system A with a
finite heat capacity. Also, a heat reservoir is present such that
if the system is at temperature T+, the reservoir is a sink
at T−. Conversely, if the system is at T−, then the reservoir
is a hot source at T+. Which of these two situations (see
Fig. 1) would yield a larger amount of extractable work, due to
temperature difference? We answer this question by assuming
that the process of maximal work extraction is carried out by
some working medium (whose details are not important) via
infinitesimal reversible heat cycles between system A and the
reservoir.

In practical terms, we may consider a toy engine which can
ideally work in a reversible manner, utilizing the temperature
gradient between system A and the environment. Let T+ and
T− be the environment temperatures, say, in summer and in
winter season, respectively. So in summer, we cool the system
A to temperature T−, while in winter, we have to heat up the
system to temperature T+, in order to run the engine. The
engine works till it equilibrates at the specific temperature of
the environment. When will the engine yield a larger amount
of total work, in summer or in winter?

The paper is organized as follows. In Sec. II, we describe
the framework using two scenarios for work extraction due
to temperature difference between a finite system and a heat
reservoir. In Sec. II A, the total extracted work and the cor-
responding efficiency are compared for the two scenarios. In
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FIG. 1. Schematic of the reversible heat engine between a finite system and a heat reservoir, for a given pair of initial temperatures (T+,T−):
(i) System A is a finite sink at T− and is coupled to an infinite source at T+, via heat engine. Work extraction W+, Eq. (4), is completed when
the temperature of A becomes T+. (ii) System A is a finite source at T+ and is coupled to an infinite sink at T−, via heat engine. Total extracted
work is W−, Eq. (6), when the temperature of A becomes T−.

Sec. III, physical examples are given based on thermodynamic
systems where the temperature and the internal energy are
related to the entropy by power laws. Section IV discusses
the bounds on the efficiency at total work. Finally, Sec. V is
devoted to summary and concluding remarks.

II. WORK FROM A FINITE SYSTEM AND A RESERVOIR

To set up the thermodynamic framework, consider system
A following a certain fundamental relation U = U (S,V,N ).
It has equilibrium states described by energy U+, entropy S+
at temperature T+, and alternatively, by U− and S− at T−,
with some fixed values of volume V and number of moles N .
For simplicity, we consider only systems with a positive heat
capacity (CV > 0). This implies that U+ > U− and S+ > S−.

Now, we first assume that system A acts as a finite heat sink
at temperature T−, relative to a very large hot reservoir (source)
at temperature T+. We couple the two by running infinitesimal
heat cycles, which successively increase the temperature of A,
till A comes in equilibrium with the hot source, see Fig. 1(i).
At an arbitrary intermediate stage, when the temperature of A
is T , the small amount of heat removed from the source dQh is
converted into an amount of work dW with maximal (Carnot)
efficiency η = 1 − T/T+. The heat discarded to the sink is
dQc = CV dT . Then, we can write dW = η(1 − η)−1dQc.
The total extracted work is given by:

W+ =
∫ T+

T−
dW (2)

=
∫ T+

T−

η

1 − η
CV dT (3)

= T+(S+ − S−) − (U+ − U−). (4)

The heat absorbed from the hot source is Q+ = T+(S+ − S−).
Then the efficiency at total work, η+ = W+/Q+, is calculated
to be

η+ = 1 − 1

T+

U+ − U−
S+ − S−

. (5)

Then, we consider the alternative situation in which A acts as
a finite source at temperature T+, relative to an infinite sink
at T−, see Fig. 1(ii). Again, we extract the maximal work by
utilizing the temperature gradient between A and the reservoir,
till A is at temperature T−. Then, after a similar calculation [5]
as above, the total work obtained is

W− = (U+ − U−) − T−(S+ − S−). (6)

This is termed as exergy in the engineering literature [17]. The
heat absorbed from the source is Q− = U+ − U−, while the
efficiency of the process η− = W−/Q− is given by

η− = 1 − T−
S+ − S−
U+ − U−

. (7)

Thus, for the toy engine mentioned in Introduction, W+
and η+ (W− and η−) may refer to the total work and the
corresponding efficiency in summer (winter) season.

A. The Comparison

Now we compare the amounts of extracted work, and the
efficiencies, in these alternative setups. For that purpose, we
recall the classic result in calculus, known as the mean value
theorem. Consider a continuous and differentiable function
U (S) in the domain [S−,S+], with the derivative T (S) =
dU/dS. Let us denote: U (S±) = U±. Following the theorem,
there is a point Sm strictly within this interval (S+ > Sm > S−),
at which the derivative of the function U , i.e., T (Sm) ≡ Tm, is
given by

Tm = U+ − U−
S+ − S−

. (8)

We also assume T (S) to be monotonic increasing function,
or, in other words, U (S) is a convex function. In the context
of thermodynamics, this assumption implies positive heat
capacity (CV ) of the system. Then it follows that T (S+) >

T (Sm) > T (S−), or alternatively, T+ > Tm > T−.
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Now, depending on the nature of the thermodynamic
system, i.e., the form of the function U (S), Tm can take values
relative to A(T+,T−) and G(T+,T−), such that we have the
following situations:

(a) T+ > Tm ≥ T+ + T−
2

>
√

T+T− > T−,

(b) T+ >
T+ + T−

2
> Tm >

√
T+T− > T−, (9)

(c) T+ >
T+ + T−

2
>

√
T+T− ≥ Tm > T−.

We choose the means A and G to split the interval (T−,T+) into
three regions, because for Tm = (T+ + T−)/2, we have W+ =
W−, and for Tm = √

T+T−, we have η+ = η−. This helps
naturally to compare the magnitudes of work and efficiency.
Thus, if case (a) holds, then applying Tm ≥ (T+ + T−)/2, and
using Eqs. (8), (4), and (6), we obtain W+ ≤ W−. In this case,
due to AM-GM inequality, we also have Tm >

√
T+T−, which

implies η+ < η−, due to Eqs. (8), (5), and (7).
Similarly, if case (b) applies, then we conclude that W+ >

W−, but due to AM-GM inequality, we have η+ < η−. If case
(c) is true, i.e.,

√
T+T− ≥ Tm, it implies η+ ≥ η−. Further, due

to (T+ + T−)/2 > Tm, we also have W+ > W−. The above
three scenarios are summarized in Table I.

Thus we see that the comparison of Tm with A(T+,T−)
decides the relative magnitudes of W+ and W−, whereas the
comparison of Tm with G(T+,T−), serves to compare η+ and
η−. In these comparisons, the AM-GM inequality provides a
sort of background against which Tm takes values depending
on the nature of system A (see examples below). In terms of
practical utility, the goal behind modeling of heat engines is
to characterize their optimal working regimes. In this regard,
if we are given a finite system A and a constraint to run the
engine in one of the two scenarios, denoted as (i) and (ii) in the
above, then a particular choice can be motivated as follows. In
case the system A falls in category (a) of Table I, then choice
(ii) provides a higher total work output and a higher efficiency.
On the other hand, if system A belongs to category (c), then
the choice (i) would provide a higher work output and a higher
efficiency. In case the system belongs to regime (b), we have a
situation with a tradeoff. If we opt for a higher work output then
the efficiency obtained is less, and viceversa. Heuristically, one
may be able to make a choice in this situation as follows. A
focus on a higher efficiency may become important, if the
substance (system A) is in short supply or if the economic
and ecological costs of preparing the system, in the desired
state, are rather high. On the other hand, if such costs are not a
consideration, then one may focus on higher total work, with
the corresponding efficiency being less of a concern.

TABLE I. Comparison of total work, Eqs. (4) and (6), and
efficiency at total work, Eqs. (5) and (7), corresponding to regimes
(a), (b), and (c) in Eq. (9).

(a) (b) (c)

W+ ≤ W− W+ > W− W+ > W−
η+ < η− η+ < η− η+ ≥ η−

III. EXAMPLES

In this section, we illustrate the various cases noted in the
above, by taking examples from different types of physical
systems. Consider a class of thermodynamic systems that obey
U ∝ Sω and T ∝ Sω−1, where ω is a constant real number. For
heat capacity to be positive, we must have ω > 1. So, Tm is
evaluated to be

Tm = 1

ω

T
ω/(ω−1)
+ − T

ω/(ω−1)
−

T
1/(ω−1)
+ − T

1/(ω−1)
−

. (10)

It is convenient to introduce the generalized mean [18,19] of
two real, positive numbers (a,b):

Er (a,b) = r − 1

r

ar − br

ar−1 − br−1
. (11)

In our case, Tm = Er (T+,T−) with r = ω/(ω − 1). For
r = 2 (ω = 2),E2(T+,T−) = (T+ + T−)/2. For r = 1/2 (ω =
−1), E1/2(T+,T−) = √

T+,T−. Since Er (a,b) is increasing
in parameter r [20], it follows that, for r ≥ 2 or ω ≥ 2,
we have Tm = Er (T+,T−) ≥ E2(T+,T−), which implies Tm ≥
(T+ + T−)/2, or case (a). Therefore, for 2 > ω > 1, the system
corresponds to case (b).

Some examples of physical systems in the above class, for
appropriate values of T+ and T−, are ω = 4/3 (black-body
radiation), ω = 5/3 (degenerate Bose gas), and ω = 2 (ideal
Fermi gas). The case of a perfect-gas system can be discussed
as the limit r → 1, which yields E1(T+,T−) = L(T+,T−),
known as the logarithmic mean [21,22]:

L(T+,T−) = T+ − T−
ln T+ − ln T−

. (12)

Logarithmic mean temperature difference is a useful measure
of the effectiveness with which a heat exchanger can transfer
heat energy [23]. This mean satisfies

T+ + T−
2

> L(T+,T−) >
√

T+T−. (13)

So if Tm = L(T+,T−), then due to the above inequality, we have
an instance of case (b). Thus, with a perfect-gas system, the
finite-sink and infinite-source setup produces more work than
finite-source and infinite-sink setup (W+ > W−), although the
efficiency at total work follows the reverse order (η+ < η−).

As our final model system, let A consist of N non-
interacting, localized spin-1/2 particles [24]. Each particle
can be regarded as a two-level system, with energy levels
(0,ε). The mean energy for this system, in the limit of high
temperatures such that ε � kT , on keeping terms only up
to (ε/kT )2, can be approximated as U ≈ N (ε/2 − ε2/4kT ),
with entropy S ≈ Nk(ln 2 − ε2/8k2T 2). Then from Eq. (8),
we have Tm = 2T+T−/(T+ + T−), which is the well-known
harmonic mean H (T+,T−). This mean is strictly less than
G(T+,T−), and thus our spins-system lies in regime (c).

IV. BOUNDS ON EFFICIENCY

So far, we have noted the comparison between work charac-
teristics for the two given scenarios. In the following, we point
out that within a given scenario, the efficiency at total extracted
work obeys definite bounds, which are specific to each of the
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TABLE II. The bounds obeyed by efficiencies at total extracted
work, η+ and η−, in respective regimes given in Eq. (9), where ηC =
1 − T−/T+ and ηCA = 1 − √

T−/T+.

(a) (b) (c)

0 < η+ ≤ ηC/2 ηC/2 < η+ < ηCA ηCA ≤ η+ < ηC
ηC

2−ηC
≤ η− < ηC ηCA < η− <

ηC

2−ηC
0 < η− ≤ ηCA

regimes (a), (b), and (c). Thus, if Tm ≥ (T+ + T−)/2, then we
get from Eq. (5) η+ ≤ ηC/2, where ηC = 1 − T−/T+ is the
Carnot limit. Also from Eq. (5), we get η− ≥ ηC/(2 − ηC).
Similarly, in regime (c), when Tm ≤ √

T+T−, we get η+ ≥ ηCA

and η− ≤ ηCA, where ηCA = 1 − √
T−/T+ [25,26], which is

popularly known as CA-efficiency, after F. L. Curzon and B.
Ahlborn who rediscovered this formula [27]; see also Ref. [28].
These comparative bounds are summarized in Table II and
depicted in Figs. 2 and 3. Note that the efficiencies ηC/2,ηCA

and ηC/(2 − ηC) are frequently discussed in the context of
maximum power output in finite-time models [25–27,29,30].
But we observe that, here, within a quasistatic framework, ηCA

serves to separate η+ and η− in regimes (b) and (c).
The above bounds are universal as they depend only on

the ratio of the initial temperatures. Note that the actual
expressions, Eqs. (5) and (7), do depend, in general, on
the nature of system A. But close to equilibrium, even the
general expressions for η+ and η− exhibit a universality. Thus,
assuming linear response, we can expand energy up to second
order in the entropy difference δS = S+ − S− [7]:

U (S−) = U (S+) − T+δS + 1

2

dT

dS

∣∣∣∣
S=S+

(δS)2. (14)

Using the above expansion in Eq. (8), and upon simplifying,
we get Tm = (T+ + T−)/2. This implies that W+ = (T+ −
T−)δS/2 = W−. Thus, under linear response, the extracted
work is the same in both cases. However, the efficiency at total
work is approximated as η+ = ηC/2 and η− = ηC/(2 − ηC).
These expressions are consistent with the findings of Ref. [7],
where the lower and the upper bounds for efficiency with
unequal-sized source and sink, obey the same expressions.
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FIG. 2. Bounds on efficiency η+, in the regimes (from bottom to
top) (a), (b), and (c), as given in Table II.
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FIG. 3. Bounds on efficiency η−, in the regimes (from top to
bottom) (a), (b), and (c), as in Table II.

V. CONCLUDING REMARKS

We close this investigation by making a few remarks.
Apart from an entropy-conserving process, we may analyze an
energy-conserving process. The initial and final situations are
the same as (i) and (ii) in Fig. 1. Specifically, for situation (i),
an amount of heat energy U+ − U− is removed quasistatically
from the reservoir and deposited in the same manner with
the cold system. The change in entropy of system A is
(S+ − S−) > 0. The change in entropy of the reservoir is
−(U+ − U−)/T+. Thus, the total change in the entropy of
the universe is

�S+ = (S+ − S−) − U+ − U−
T+

. (15)

Similarly, if we consider situation (ii), we can conclude that the
total entropy change of the universe, in an energy-conserving
process, would be

�S− = −(S+ − S−) + U+ − U−
T−

. (16)

Now, if we wish to compare the entropy production in the
above two cases, then we are led to consider the following
situations:

(a′) T+ > Tm ≥ 2T+T−
T+ + T−

> T−,

(17)
(b′) T+ >

2T+T−
T+ + T−

> Tm > T−.

It is easy to see that if case (a′) is true, then �S− ≥ �S+.
The inverse inequality is valid, if case (b′) holds. Thus, for an
energy-conserving process, we see that the inequality between
generalized mean Tm, and H (T+,T−), quantifies the relative
magnitudes of �S− and �S+.

Finally, we consider an interesting meaning of Tm, given
by Eq. (8), in the sense of an effective temperature. Take two
heat reservoirs with temperatures Tm and T−(< Tm). Let Qm =
U+ − U− be the heat extracted by the working medium from
the hot reservoir in a reversible cycle. Here, U± refers to the
energies of the working medium. Then the change in entropy
of the hot reservoir is TmQm = S+ − S−. The total extractable
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work in a reversible cycle is then (Tm − T−)(S+ − S−), which
is the same as W+ in Eq. (6). The Carnot efficiency of
this process is ηm = 1 − T−/Tm, which is Eq. (7). A similar
conclusion follows for the other scenario, when we consider
two heat reservoirs at temperatures T+ and Tm(< T+). Thus,
Tm serves as the effective temperature of one of the two heat
reservoirs in an equivalent reversible cycle, which extracts the
same amount of work and with the same (Carnot) efficiency.

Concluding, the main focus of this paper was the com-
parison of performance of a reversible heat engine operating
between a finite system and an infinite reservoir, by switching
the role of the source and the sink. We compared the total
extracted work in the two cases, and the corresponding effi-
ciency of the engine at those values of the work. Interestingly,
we find that the conditions for comparison are determined
by basic mathematical inequalities between the means, in
particular the AM-GM inequality. The present instance of this
inequality does not depend specifically on the nature of the
system as was the case in earlier studies. The efficiency at
total work is naturally split into three regimes, based on this
inequality. The bounds separating these regimes are variously
given as ηC/2, ηCA, and ηC/(2 − ηC). This highlights a new
significance of these expressions for efficiency, which are
usually discussed in regard to power output optimization in
finite-time models. The utility of our conclusions may also be
discussed in the context of the toy engine mentioned in the
Introduction. Thus, for a given pair of temperatures (T+,T−),

we can characterize system A, or our device, based on the
regime (a), (b), or (c), to which it corresponds. This determines
how W+ and W− compare with each other, which further
guides whether η+ will be greater, or lesser, relative to η−.
Moreover, in a particular regime, we know from Table II, the
bounds within which the efficiency at total work is located.
Thus, given a choice of system A, the efficiency at total
work is restricted within a certain range. Although derived for
quasistatic processes, these bounds may serve as benchmarks
for tuning the performance of real devices, and can be a useful
element in their design.

One of the limitations of our analysis may be that we
have considered idealized quasistatic processes. In practical
cases, the engines and other thermodynamic machines work
in finite cycle-times. Thus, an extension of our analysis within
an irreversible framework [5] may help to see how the above
conclusions are retained or modified in finite-time models,
at least under linear response or beyond that [7]. Another
interesting line of enquiry seems to be the connection of
the bounds on efficiency with the principles of inductive
inference [31,32]. Finally, it is hard to ignore the aesthetic
motivation in revealing other inequalities, possibly new, with
these investigations. But, this is left for future work.
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