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Phase coexistence and spatial correlations in reconstituting k-mer models
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In reconstituting k-mer models, extended objects that occupy several sites on a one-dimensional lattice undergo
directed or undirected diffusion, and reconstitute—when in contact—by transferring a single monomer unit from
one k-mer to the other; the rates depend on the size of participating k-mers. This polydispersed system has two
conserved quantities, the number of k-mers and the packing fraction. We provide a matrix product method to
write the steady state of this model and to calculate the spatial correlation functions analytically. We show that
for a constant reconstitution rate, the spatial correlation exhibits damped oscillations in some density regions
separated, from other regions with exponential decay, by a disorder surface. In a specific limit, this constant-rate
reconstitution model is equivalent to a single dimer model and exhibits a phase coexistence similar to the one
observed earlier in totally asymmetric simple exclusion process on a ring with a defect.
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I. INTRODUCTION

Driven diffusive systems (DDS) evolve under local stochas-
tic dynamics where by some conserved quantity such as
mass, energy, or charge is being driven through the system
[1,2]. Compared to their equilibrium counterparts, these
systems exhibit rich steady-state behavior [3–5], including
phase separation [6,7] and condensation transition [8] in one
dimension, boundary layers [3,9], localized shocks [10] and
have found a wide range of applications such as transport in
super-ionic conductors [11], protein synthesis in prokaryotic
cells [12,13], traffic flow [14], biophysical transport [15,16],
etc. Recently, DDS with two or more species have been studied
[17]; some of these systems with more than one conserved
quantities [18,19] also exhibit phase transition even in one
dimension. It is argued in Ref. [7] that phase separation
transition in DDS is related to the condensation transition in a
corresponding zero-range process (ZRP) [8].

Driven diffusive systems show interesting steady-state
behavior when the constituting objects are extended [20]
in the sense that they occupy more than one lattice site
and move together as a single object called k-mer, obeying
hardcore constraints. In one dimension, a driven system
involving monodispersed k-mers was studied to understand
the physical mechanism of protein synthesis in prokaryotic
cells [12]. For such a system, the time evolution of the
conditional probabilities of the site occupation, starting from
a known initial configuration has been calculated [21], and
phase diagram for such systems has also been reported [13].
Other works on such systems include studying hydrodynamic
equations governing the local density evolution [22] and the
effect of inhomogeneities and defects [23–25]. Microscopic
processes like reconstitution, if present, can generate k-mers
of arbitrary lengths and facilitates the possibility of phase
separation.

In a recent article [26] it was shown that diffusing and recon-
stituting k-mers can be mapped to an interacting box-particle
system with two species of particles. This mapping helps us
in finding the exact phase boundaries of the phase separation
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transition in k-mer dynamics. Depending on the rate of the
reconstitution dynamics, one can obtain a macroscopic long
polymer (which corresponds to condensation of particles). At
the same time, since the motion of k-mers depends on their
size, the system might go to a phase where a large k-mer moves
so slow that it generates a large number of vacancies in front
of it—this would lead to condensation of the holes (0s). Of
course, in special situations, one may encounter simultaneous
condensation of particles and holes. In this article, we aim at
calculating spatial correlation in reconstituting k-mer models.
Spatial correlation functions, up to now, has been calculated for
models with monodispersity, i.e., when all k-mers are of equal
size [13,27,28]. It has been found that steady state of these
models can be written in matrix product form and correlation
function in these models oscillate in both space and time [28].
Interestingly, in the continuum limit, the scaling behavior of
the spatial correlation is found to be the same as that obtained
for a driven tonks gas [20,29]. Various polydispersed models
consisting of k-mers of different sizes and hence as many
conservation laws have also been studied [30–33]. Their phase
behavior in general show strongly broken ergodicity and the
dynamical critical behavior.

The above-mentioned matrix formulation for fixed size
k-mers cannot describe the polydispersed systems where the
k-mers change their lengths dynamically. In a monodispersed
system, where all the k-mers are of equal length, the k-mer
density automatically fixes the packing fraction of the lattice.
In reconstituting k-mer models, however, the density of k-
mers and packing fraction are unrelated and independently
conserved. Thus, configurations on a lattice, though containing
only 1s and 0s, cannot be expressed as before by matrix strings
containing just Ds (for 1s) and Es (for 0s)—an additional
matrix must be introduced to identify each k-mer and to
keep track of the conservation of k-mer density. It turns
out that the additional conservation law plays an important
role in determining the stationary and dynamical properties
of reconstituting k-mer models. In this article we provide a
formalism to write the stationary state of polydispersed k-mers
in matrix product form and calculate the spatial correlation
functions analytically. We show that when reconstitution oc-
curs between k-mers of size k1 and k2 with rate w1(k1)w2(k2),
one can always write an infinite-dimensional representation of
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matrices in terms of the rate functions. However, some specific
cases can be represented by finite-dimensional matrices. One
such example is the constant-rate reconstitution (CRR) model,
where reconstitution occurs with constant rate and monomers
diffuse with a rate different from the other k-mers. We calculate
spatial correlation functions of CRR model explicitly and find
that they show damped oscillations in some parameter regime
and decay exponentially in other regimes. The disorder line
that separates these regimes is also calculated.

The article is organized as follows. In Sec. II we in-
troduce the reconstituting k-mer models and develop the
matrix formulation to calculate the steady-state weights of
configurations from representing string of matrices. In Sec. III,
we introduce the CRR model, which has a finite-dimensional
matrix representation, and calculate the spatial correlation
functions and the disorder line explicitly for a given diffusion
rate. Also, in this section we show that the CRR model in
a special limit exhibits phase coexistence similar to the one
observed in asymmetric exclusion process with a single defect.
Finally, we conclude and summarize the results in Sec. IV.

II. THE RECONSTITUTING k-MER MODEL

Let us consider a driven diffusive system of polydispersed
k-mers on a one-dimensional periodic lattice involving the
directed diffusion and reconstitution dynamics. Along with
drift, the k-mers change their size through exchange of
monomer units. It is assumed that the reconstitution dynamics
does not allow complete fusion of monomers and, thus, not
only the mass (the total length of the k-mers) but also the
number of k-mers is conserved.

For completeness, we start with the model studied recently
in Ref. [26]. Let us consider M number of k-mers on a one-
dimensional periodic lattice of L sites labeled by the index i =
1,2,...,L. The k-mers, each having different integer length, are
also labeled sequentially as m = 1,2, . . . ,M.

A k-mer is a hard extended object that occupies k con-
secutive sites on a lattice, and can be denoted by a string
of k consecutive 1s (here represented by 1k). Thus, every
configuration of the system can be represented by a binary
sequence with each site i carrying a variable si = 1 or 0
denoting, respectively, whether the lattice site is occupied
by a k-mer or not. The total number of vacancies (0s) in
the system is N and, thus, the total length of the k-mers is
K = ∑M

m=1 km = L − N (total number of 1s). We define the
free volume (or void density) as ρ0 = N/L and the k-mer
number density as ρ = M

L
. Thus, the packing fraction of

the lattice (fraction of volume occupied by the k-mers) is
η = 1 − ρ0 = K/L.

We consider directed diffusion of k-mers; a k-mer of size
km moves to its right neighbor (if vacant) with rate u(km),

km0
u(km)−−→ 0km ≡ 1km0

u(km)−−→ 01km . (1)

Along with this, reconstitution occurs among neighboring k-
mers where one of the k-mers may release a single unit (or
monomer) which instantly joins the other k-mer (see Fig. 1).
Note that, reconstitution dynamics acts only at the interface
of immobile k-mers, which are expected to remain in contact

FIG. 1. Polydispersed k-mers in one dimension showing drift and
reconstitution. Engine of the k-mers are marked as open circles. The
drift rate u(k) depends on the length of the corresponding k-mers.
Reconstitution occurs only among consecutive immobile k-mers with
a rate w(ki,ki+1), which depends on their lengths. An additional
constraint w(k,k′) = 0 for k < 2, conserves the number of k-mers
in the system.

for long,

(km,km+1)
w(km,km+1)−−−−−−−−−⇀↽−−−−−−−−−

w(km+1+1,km−1)
(km − 1,km+1 + 1). (2)

The reconstitution rate w(km,km+1) depends on the size
of the participating k-mers and constrained by a condition
w(1,y) = 0, which prohibits merging of k-mers and maintains
the conservation of k-mer density ρ. It is evident that Eqs. (1)
and (2) also conserve ρ0.

The dynamics of the model can be mapped exactly to a
two-species generalization of misanthrope process (TMAP)
[34] by considering each k-mer as a box containing κ =
k − 1 particles of one kind (k-particles) and the number
of consecutive vacancies (say n) in front of the k-mer as
the number of particles of other type (0-particles). Thus, in
TMAP, we have M boxes containing K̃ = K − M number of
k-particles and N number of 0-particles.

From a box m containing (nm,κm) number of 0- and
k-particles, respectively, the particles hop to one of the
neighboring boxes m′ = m ± 1 having (nm′ ,κm′ ) particles with
rates u0 and uk (respectively, for 0- and k-particles),

u0(κm) = u(κm + 1)δm′,m−1,

uk(κm,κm′) = w(κm + 1,κm′ + 1)δnm,0δnm′ ,0. (3)

The δ-function in the first equation forces 0-particles to move
toward the left (same as k-mers moving to the right neighbor
on the lattice) and those in the last equation take care of
the restrictions that reconstitution (or exchange of k-particles)
occurs among boxes m and m′ only when they are devoid of
0-particles (equivalently, when k-mers are immobile).

It is well known that misanthrope processes enjoy the luxury
of factorized steady state [35] for hop rates satisfying certain
specific conditions. It is straight forward to derive similar
conditions on hop rates of TMAP so that its steady state has a
factorized form,

P (κi,ni) = 1

QK̃,N

M∏
i=1

f (κi,ni)

× δ

(∑
i

κi − K̃

)
δ

(∑
i

ni − N

)
, (4)
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where the δ functions ensure conservation of K̃,N, the total
number of particles of each species, and QK̃,N is the canonical
partition function. When the reconstitution rate in k-mer model
has a product form w(k,k′) = w1(k)w2(k′), the hop rate of
k-particles in corresponding TMAP [see Eq. (3)] also takes a
product form uk(κ,κ ′) = w1(κ)w2(κ ′). For this simple choice,
the weight function is given by [26]

f (κ,n) = 1

[u0(κ)]n

κ∏
κ ′=1

w2(κ ′ − 1)

w1(κ ′)
. (5)

Once the functional forms of u(.),w1(.),w2(.) are specified, one
can calculate the steady-state properties of the TMAP exactly
from the partition function in grand canonical ensemble (GCE)
using two fugacities x and z for the conservation of K̃ and N ,
respectively,

Z(x,z) =
∞∑

K̃=0

∞∑
N=0

QK̃,NxK̃zN . (6)

From this partition function, one can further calculate one-
point functions of the k-mer models analytically. However,
spatial correlation functions cannot be calculated straightfor-
wardly. This is because the site variables si = 1,0 on the k-mer
model, which represent whether the site is occupied by a k-mer
or not, are not so simple functions of the occupation numbers
{ni,κi} of TMAP. We have

si = 1 −
M∑

j=1

θ (gj − i)θ (i + 2 + nj − gj );

gj =
j∑

l=1

(1 + nl + κl), (7)

where θ (x) is the Heaviside theta function. Clearly obtaining
spatial correlation functions C(r) = 〈sisi+r〉 − 〈si〉2 would be
difficult (though not impossible) from the TMAP correspon-
dence. In the following, we provide a matrix formulation to
obtain the steady-state weight of any configuration of the
k-mer model from a matrix string that uniquely represents
that configuration.

A. Matrix product steady state

To calculate the spatial correlation functions explicitly and
conveniently, in this section, we provide a matrix formulation
similar to the one obtained earlier for exclusion processes
having ZRP correspondence [36]. In Ref. [36], the authors
showed that steady states of one-dimensional exclusion models
having ZRP correspondence can be written in matrix product
form—they also provided an infinite-dimensional represen-
tation of the matrices that can always be obtained from the
corresponding ZRP weights [37]. In this article we try to obtain
the spatial correlation functions of a polydispersed system
in a similar way, i.e., by writing the steady-state weight of
configuration as the trace of a representative matrix string.

How many matrices do we need? In ZRP, or its equivalent
exclusion process, there was only one conserved quantity,
which is the density or the packing fraction η. Here, we have
an additional and independent conserved quantity ρ, the k-mer
density. Thus, along with matrices D and E, which represent

the occupation status of a site we need another matrix, say
A, that would appear once for every k-mer so that the k-mer
number density is fixed appropriately. It is convenient to assign
this matrix A to the left most site (or an engine) of a k-mer.
In other words, every k-mer (1k on a lattice) is represented by
ADk−1. In summary, in the matrix formulation, all occupied
sites except the engine (A), are represented by matrix Ds, and
the vacant sites are represented by Es. Now, the steady-state
weight of a configuration {ni,ki} can be expressed [using
κi = ki − 1 in Eq. (4)] as

M∏
i=1

f (ki − 1,ni) = Tr

[
M∏
i=1

ADki−1Eni

]
. (8)

We further assume that A can be expressed as an outer product
of two vectors A = |α〉〈β|; the vectors |α〉, 〈β| and matrices
D and E need to be determined from the dynamics. With this
choice, Eq. (8) results in

f (k,n) = 〈β|DkEn|α〉. (9)

This equation is generic as long as the steady state of the TMAP
corresponding to a reconstituting k-mer model has a factorized
steady state. Now, any representation of A = |α〉〈β|,D,E that
satisfy Eq. (9) can provide a matrix product steady state for the
k-mer model. One must, however, remember that any arbitrary
matrix string does not necessarily represent a configuration of
the k-mer model. Since every block of vacant sites (string
of Es) must end with a k-mer represented by ADk−1, all
valid matrix strings must be devoid of ED. This brings in an
additional constraint,

ED = 0, (10)

which must be accounted for while searching a suitable matrix
representation.

We now restrict ourselves to specific k-mer dynamics,
which leads to a factorized steady state, as in Eq. (4). For
the k-mer with hop rate u(k) and reconstitution rate ω(k,k′) =
w1(k)w2(k′), the steady state is given by Eq. (5). A set of
matrices {Ã,D̃,Ẽ} that satisfy Eq. (9),

〈β̃|D̃kẼn|α̃〉 = 1

[u(k + 1)]n

k∏
k′=1

w2(k′ − 1)

w1(k′)
, (11)

is

|α̃〉 =
∞∑
i=1

|i〉; 〈β̃| = 〈1|; D̃ =
∞∑
i=1

w2(i − 1)

w1(i)
|i〉〈i + 1|

Ẽ = |1〉〈1| +
∞∑
i=2

1

u(i − 1)
|i〉〈i|, (12)

where {|i〉} with i = 1,2 . . . are standard basis vectors in
infinite dimension. These matrices, however, do not satisfy
Eq. (10). One option is to discard this representation and look
for a new one that satisfy both Eqs. (10) and (9), which can be
done in certain specific cases (see next section). But Eq. (12)
is a general representation for k-mer models where k-mers
drift with rate u(k) and reconstitute with a rate having product
form w(k,k′) = w1(k)w2(k′). Thus, it would be beneficial to
hold on to these matrices {Ã,D̃,Ẽ} and to construct a new
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representation using them, which satisfy both Eqs. (9) and
(10). In this context, the following representation works:

|α〉 = |α̃〉 ⊗ (|1̃〉 + |2̃〉), 〈β| = 〈β̃| ⊗ 〈2̃|,
D = D̃ ⊗ |2̃〉〈2̃|, E = Ẽ ⊗ (|1̃〉 + |2̃〉)〈1̃|. (13)

Here, {|1̃〉,|2̃〉} are the standard (and complete) basis vectors
in two dimensions. More explicitly, we have

A =
(

0 Ã

0 Ã

)
, D =

(
0 0
0 D̃

)
, E =

(
Ẽ 0
Ẽ 0

)
. (14)

This infinite-dimensional representation provides a matrix
product steady state for drifting and reconstituting k-mers in
one dimension as long as the reconstitution rate has a product
form. In the following, we illustrate a specific case where the
representation is finite-dimensional.

III. CONSTANT-RATE RECONSTITUTION (CRR) MODEL

In this section we study a specific example of reconstituting
k-mer model and illustrate the matrix product formulation
presented in the previous section. Let us consider that the
k-mers drift to their right neighbor with rate u(k) = 1 + (v −
1)δk,1, i.e., the monomers (k = 1) move with rate v, whereas
other k-mers move with unit rate. Let the reconstitution rate
be a constant ω, independent of the size of the k-mers.
In this constant-rate reconstitution (CRR) model matrices
{Ã,D̃,Ẽ}, which satisfy only Eq. (9), have two-dimensional
representations,

Ã =
(

1 0
1 0

)
, D̃ = ω

(
0 1
0 1

)
, Ẽ =

(
1
v

0
0 1

)
. (15)

However, since these matrices do not satisfy Eq. (10), we now
construct new matrices {A,D,E}, using Eqs. (13) or (14),

A =
4∑

i=1

|i〉〈3|, D = ω

4∑
i=3

|i〉〈4|,

E =
2∑

i=1

(
1

v
|2i − 1〉〈2i − 1| + |2i〉〈2i|

)
, (16)

which are four-dimensional, and represent, respectively, the
engine of the k-mer, any other unit of the k-mer, and the
vacancies 0s.

To calculate the correlation function and the densities, as
usual, we start with the partition function in GCE, Z = Tr[T L],
where the transfer matrix T = A + xD + zE. The fugacities
z and x together control the densities ρ0 and ρd = 1 − ρ − ρ0,
representing density of Es and Ds, respectively. In fact, in this
problem, the transfer matrix T ≡ T (z,xω,v) does not depend
independently on x and ω, rather it depends on their product.
Thus, any particular value of ω only redefines the fugacity
x → xω and we can set ω = 1 without loss of generality.
Now, the partition function in GCE:

Z(z,x) = Tr(T L);

T = A + xD + zE =
(

zẼ Ã

zẼ xD̃ + Ã

)
. (17)

The characteristic equation for the eigenvalue of T is λf (λ) =
0, with

f (λ) = xz(1 − v − z) + {v + z + x(1 + v)}zλ
−{z + v(1 + x + z)}λ2 + vλ3. (18)

Thus, one of the eigenvalues of T is 0 and the other three,
denoted by the largest eigenvalue λmax, and λ1,2, are roots of
the cubic polynomial f (λ). The partition function in GCE is
then

Z(z,x) = λmax(z,x)L + λ1(z,x)L + λ2(z,x)L

	 λmax(z,x)L, (19)

where in the last step we have taken the thermodynamic limit
L → ∞. The conserved densities of the canonical ensemble
are now

ρd = x
∂

∂x
ln λmax, ρ0 = z

∂

∂z
ln λmax. (20)

This density fugacity relation specify the values of (z,x), which
uniquely correspond to a particular pair of conserved densities
(ρ0,ρd ). Any other observable in GCE, which are functions of
(z,x), can be expressed in terms of the densities (ρ0,ρd ) using
Eq. (20). We must mention that densities can also be obtained
as follows:

ρd = 〈di〉 = x
Tr[DT L−1]

Tr[T L]
;

ρ0 = 〈ei〉 = z
Tr[ET L−1]

Tr[T L]
; (21)

ρ = 〈ai〉 = Tr[AT L−1]

Tr[T L]
.

Here ei,ai,di are site variables that are unity when the site
i is vacant, occupied by an engine, or by other units of a
k-mer, respectively; otherwise, ei,ai,di are 0. In the thermo-
dynamic limit, these definitions of densities are equivalent to
Eq. (20).

A. Correlation functions

Now, we proceed to calculate the two-point correlation
functions. The engine-engine correlation function is

C(r) = 〈aiai+r〉 − 〈ai〉2 = Tr[AT r−1AT L−r−1]

Tr[T L]
− ρ2,

(22)

which, in the thermodynamic limit, can generically be ex-
pressed as

C(r) = p1(z,x; v)

(
λ1

λmax

)r

+ p2(z,x; v)

(
λ2

λmax

)r

, (23)

where p1 and p2 are independent of r. The behavior of the
correlation functions depend on the nature of eigenvalues
λ1,2, which can be determined from the properties of the
characteristic function f (λ), in Eq. (18). When the eigenvalues
λ1,2 are real, ordered as λmax > |λ1| > |λ2|, the system has
two length scales | ln |λ1,2|

λmax
|−1 and the asymptotic form of the
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correlation function is dominated by the largest one, ξ =
| ln |λ1|

λmax
|−1. Correspondingly, the correlation has a monotonic

exponential decay,

C(r) 	 p1(z,x; v)e−r/ξ . (24)

Also, in some parameter zone eigenvalues λ1,2 may become
complex. As they appear as complex conjugates we write
λ1,2 = λ̄e±iθ , with λ̄ < λmax. In this regime, p1,2 defined in
Eq. (23) must be complex conjugates p1,2 = p̄e±iφ so that the
correlation function C(r) is real. Consequently, C(r) shows a
damped oscillation, with a generic functional form

C(r) = p̄e−r/ξ cos(θr + φ), (25)

where ξ−1 = | ln λ̄
λmax

|.
It is interesting to note that a damped oscillation of the

radial distribution function is a typical feature of a system
in liquid phase, in contrast to the exponential decay of the
same in the vapor phase. Naively one would think that
such a change is a direct consequence of an underlying
liquid-vapor phase transition. However, this is not the scenario
in CRR model; possibility of a phase transition is ruled out
here as the largest eigenvalue λmax is nondegenerate for any
x,v,z and the corresponding free energy ln λmax would not
be nonanalytic anywhere. This phenomena, a macroscopic
change in the nature of correlation function in the absence of
any phase transition, has been known for a while in literature,
in different contexts, under the name of disorder points (or
lines). In a broad sense, the disorder points separate the
regions in parameter space showing qualitatively different pair
correlation functions and were first introduced by Stephenson
[39]. For Ising chains with ferromagnetic nearest-neighbor
and antiferromagnetic next-nearest-neighbor interaction, the
spin-spin correlation function in the disordered paramagnetic
phase (T > Tc) shows damped oscillations when T is larger
than TD (the disorder point), whereas it decays exponentially
for Tc < T < TD [40]. There are several other lattice spin
models [41,42] that exhibit disorder lines. In context of
fluids, a similar behavior has been observed in the decay
of density profiles and the radial distribution functions—
here the disorder lines that separate different regimes are
conventionally termed as Fisher-Widom lines [43,44]. Recent
studies also indicate existence of disorder lines in phenomeno-
logical models of QCD at finite temperature and density
[45].

In CRR model, there are three parameters—the monomer
diffusion rate v and the fugacities x,z (or alternatively the
densities ρ,η). Thus, we have a two-dimensional disorder
surface that separates the regimes of exponential decay from
that of the damped oscillatory correlation functions in the
(x,v,z) space. To identify the disorder surface we study the
generic features of the characteristic function λf (λ) taking
help of the Descartes’s sign rule. Since all the parameters x,v,z

are positive, Descartes’s sign rule indicates that there is exactly
one negative root when z + v < 1 irrespective of the value of
x. In this regime, the root other than λmax must be real, as
complex roots are generated pairwise. In the region z + v > 1,

we have at most three positive roots: one positive and two
complex or all positive; the disorder surface that separates
these regimes in (x,v,z) space is shown in Fig. 2. In the

FIG. 2. Disorder surface separating regions where pair correla-
tion function C(r) decays exponentially (all three eigenvalues are real)
from regions having damped oscillations (where the subdominant
eigenvalues are complex).

region where the subdominant eigenvalues are “complex,” i.e.,
λ1,2 = λ̄e±iθ with λ̄ < λmax, the correlation function exhibits
damped oscillations.

The exact analytic expression of eigenvalues, densities, and
the two-point correlation functions are rather lengthy. For the
purpose of illustration, we provide the details in the next
section, for the CRR model only with v = 2, which lead to
both decaying and oscillating correlation functions in different
density regimes separated by a disorder line.

B. CRR model with v = 2

In this subsection we focus on the CRR model for a special
case v = 2. We have already set the reconstitution rate ω = 1,

thus the grand canonical partition function depends only on
two parameters z and x, which fix the densities ρ0 and ρd. The
packing fraction, which is defined as the fraction of the lattice
occupied by k-mers, is now η = ρ + ρd = 1 − ρ0. For v = 2,

the eigenvalues are given by

{λmax,λ1,λ2} = {g(1),g(�),g(�2)}, (26)

where g(y) = a + sy − p

s
y2 and � = eiπ/3. The other param-

eters are a = 3z + 2x + 2, p = 4(1 + x)2 + 3z(z − 2x), q =
8(1 + x)3 + 9z(z − 2x)(x − 2z), and s3 = q + 1

2

√
4q2 − p3.

The k-mer number density ρ = 1 − ρ0 − ρd and the packing
fraction η = 1 − ρ0 are now calculated from Eq. (20),

ρ = (2λmax − z)(λmax − z)(λmax − x)

λmax
(
6λ2

max − 2λmax(3z + 2x + 2) + z2 + 2z + 3xz
)

η = λmax(2λmax − z)(λmax − z) + xz

λmax
(
6λ2

max − 2λmax(3z + 2x + 2) + z2 + 2z + 3xz
) .

(27)

In Fig. 3 we have plotted η and ρ as a function of z, for
different x = 0.01, 0.1, 1, and 10, respectively, in Figs. 3(a)
and 3(b).

As expected, for z = 0, the packing fraction is η = 1,

independent of the fugacity x. On the other hand, in the
limit x → 0, it appears that both η and ρ might become
discontinuous at z = 2 leading to a possibility of phase
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η
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0.5

1

ρ

(a) (b)

FIG. 3. Densities: (a) packing fraction η and (b) k-mer density ρ,
as a function of z for x = 0.01, 0.1, 1, 10.

coexistence. In fact, this seems to be the case for any v > 1,
and we discuss this possibility separately in the next section
in details.

We now proceed to calculate the two-point correlation
functions, first the engine-engine correlation function C(r)
defined in Eq. (22). If we formally write the densities in
Eq. (27) as functions of z,x and λmax, as ρ ≡ ρ̂(z,x; λmax)
and η ≡ η̂(z,x; λmax), the engine-engine correlation function,
calculated using Eq. (22), can be written as

C(r) = 〈aiai+r〉 − ρ2

= ρ

[
ρ̂(z,x; λ1)

(
λ1

λmax

)r

+ ρ̂(z,x; λ2)

(
λ2

λmax

)r]
. (28)

Also, the density-density correlation function 〈sisi+r〉 − η2

takes a form similar to the right-hand side of the above
equation with ρ → η and ρ̂(.) → η̂(.). Clearly, C(r) will
exhibit damped oscillations when λ1,2 = λ̄e±iθ are complex.
Whether such a regime, separated from the usual exponential
decay by a disorder line, exists for v = 2, can be determined
from the characteristic polynomial λf (λ). The discriminant of
the f (λ) vanishes for x = z/2, which is the disorder line for
v = 2 [as shown in Fig. 4(a)]; correspondingly, the disorder

0 2 4
0

1

2

3

w

10 ρ0

1

η

0 10 20

0.01

0.02

0 10 20
-0.04

0.04

z

r r

Complex
Complex 

Real  λ1,λ2

Real  λ1,λ2

(a) (b)

(d)(c)

C
(r

)e
 r

/ ξ

C
(r

)e
 r

/ ξ

Complex  λ1,λ2 Real  λ1,λ2

FIG. 4. Correlation functions: (a) For v = 2, complex roots
appear for x > z/2, (b) the corresponding line in ρ-η plane,
(c) engine-engine correlation function C(r) for z = 1

2 ,1, 3
2 , and

(d) z = 5
2 , 3, 7

2 . For (c) and (d), we use x = 1, and the symbols used
here for different z are also marked in (a) and (b).

line in η-ρ plane [shown in Fig. 4(b)] is

η = ρ(ρ2 + 3)

(ρ + 1)2
. (29)

Thus, for η >
ρ(ρ2+3)
(ρ+1)2 the correlation functions are expected

to have damped oscillatory behavior, whereas in the other
regions the correlation functions must decay exponentially as
a function of r.

To illustrate this, we take x = 1, which indicates that the
correlation functions must be oscillatory for any z < 2. In
Figs. 4(c) and 4(d) we have plotted C(r)er/ξ as a function of
r for z = 1

2 , 1, 3
2 and z = 5

2 , 3, 7
2 , respectively. All these (z,x)

values are shown as symbols in Fig. 4(a). The corresponding
densities are are shown in η-ρ plane, marked as same symbols
[in Fig. 4(b)]. Clearly, C(r)er/ξ shows oscillations when z <

2, whereas it asymptotically approaches to a constant when
z > 2. It appears that existence of disorder lines is a generic
feature in extended systems; this may be a consequence of
the hardcore restriction among k-mers, which mimics a short-
range repulsion existing in model fluids.

We close this section with the following interesting
remarks.

Remark 1. The four-dimensional representation in CRR
model leads to a transfer matrix T with Det[T ] = 0. This in
turn means that one of the eigenvalues λ = 0, indicating that
there might be a three-dimensional representation that satisfies
the matrix algebra Eqs. (9) and (10). We are able to find one
such representation,

A =

⎛
⎜⎝

1 0 1

1 0 1

0 0 0

⎞
⎟⎠, D =

⎛
⎜⎝

0 0 0

0 0 0

0 ω ω

⎞
⎟⎠,

E =

⎛
⎜⎝

1
v

0 0

0 1 0

0 0 0

⎞
⎟⎠. (30)

It is easy to check that T = A + xD + zE gives the same
characteristic polynomial f (λ) as in Eq. (18).

Remark 2. For CRR model with v = 2, the line x = z/2,

which separates regions having damped oscillations from
regions with exponentially decaying correlations, is very spe-
cial. On this line the engine-engine correlation function C(r)
vanishes, whereas the density-density correlation function
remains finite. This can be verified from directly calculating
the eigenvalues on this line, which are λmax = 1 + 2x and
λ1 = x = λ2. This makes the coefficients ρ̂(z,x; λ1,2) = 0 in
Eq. (28).

Remark 3. This formulation is inadequate to calculate
spatial correlation functions of k-mer models when recon-
stitution is absent. Naively one may think, setting ω = 0 could
work. But ω = 0 would impose a condition 〈β|DkEn|α〉 = 0
for all k,n, which forces the weight of every configuration
Tr[...ADkEnA...] to vanish. In fact, when ω = 0, diffusion
of k-mers (of different size) is the only dynamics on the
lattice, which keeps the initial ordering of their size invariant.
Now the configuration space has infinitely many disconnected
ordering-conserving sectors, and one must write partition
sums separately for each sector.
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Remark 4. In contrast to constant-rate reconstitution model,
one may define a constant-rate diffusion model considering
u(k) = v, a constant. Now, let us consider a reconstitution rate
ω(k,k′) = 1 + (ω − 1)δk,2δk′,1, where dimers reconstitute with
monomers at rate ω where as any other two k-mers reconstitute
with unit rate. In this constant-rate diffusion model we have a
simple two-dimensional representation:

A =
(

1 1
0 0

)
, D =

(
0 0
w 1

)
, E =

(
1
v

0
0 0

)
. (31)

In a two-dimensional representation both eigenvalues of T =
A + xD + zE (which is a positive matrix) are real and hence
possibility of oscillatory feature in spatial correlation functions
is ruled out.

C. Phase coexistence in CRR model in x → 0 limit

In this section we investigate the CRR model in x → 0
limit. We have seen in the previous section that for v = 2,
the k-mer density ρ shows a sharp drop at z = 2. In fact, this
feature is quite generic for all v > 1. When the fugacity x

associated with Ds approaches 0, we expect a microscopic
number of Ds in the system. In other words, most k-mers are
only monomers. Thus, the best case scenario that represents
x → 0 limit is a system with one single D. Since this D must
be associated with an engine A, we have exactly one dimer
in the system that diffuses in the system with unit rate, and
all other k mers are monomers diffusing with rate v. Thus,
the dimer can be considered as a defect particle in the system.
The reconstitution can occur only between this dimer and an
adjacent monomer (when both are immobile) with rate ω = 1.

In this case, the reconstitution is equivalent to exchange of a
monomer and a dimer.

Representing the single dimer as 2 and the monomers as 1s,
and vacancies as 0s, the dynamics of the system can be written
as

10
v−→ 01; 20

1−→ 02; 211
1
�
1

121. (32)

Since this dynamics is only a special case of the CRR
model, we can proceed with the 4 × 4 representation given in
Eq. (16). However, in this case there is a valid two-dimensional
representation, because the weight of every configuration of
the system can be written here as Tr[AD

∏L−2
j=1 Xi], with Xi

being either E or A. Clearly, these matrix strings do not contain
ED and one need not bother about the constraint ED = 0
in Eq. (10) and can work with the 2 × 2 matrices {Ã,D̃,Ẽ}.
In other words, the dimer, monomer, and vacancy are now
represented by D2 = ÃD̃, D1 = Ã, and Ẽ, respectively. In
GCE, the partition function is now

Z = Tr[D2T
L−2]; T = zẼ + D1 =

(
1 + z/v 0

1 z

)
. (33)

The eigenvalues of T are {z,1 + z
v
} and thus, for v > 1 the

maximum eigenvalue changes from being λmax = 1 + z
v

to
λmax = z at a critical fugacity zc = v

v−1 . So, the partition

0 50 100 150i
0

0.2

0.4

0.6

ρ 
(i)

0 0.4 0.8 1i/L

v=2, z=1.9

L=1000

L=50
z=1.99

z=1

v=2, L=200

(a) (b)

z=1.9

z=1.5

z=1.8

FIG. 5. (a) The density profile ρ(i): (a) for L = 200, v = 2, and
different z = 1, 1.5, 1.8, 1.9, 1.99. For small z, ρ(i) saturates to the
macroscopic bulk density v/(v + z). For large z near zc, such a
saturation can be seen by increasing the system size L—this is shown
in (b). The profile for z = 1.9 (marked as dashed line) as a function
of i/L shows saturation as L increased.

function in the thermodynamic system Z ∼ λL
max is nonan-

alytic at z = zc, indicating a phase transition.
First we calculate the density profile, as seen from the

defect, which can be expressed as

ρ(r) = Tr[D2T
rD1T

L−3−r ]

Tr[D2T L−2]
= γ

z

zγ r − zc

zγ L−2 − zc

, (34)

where r is distance from the defect site (or the dimer) and
γ = vz

v+z
the ratio of eigenvalues. Thus, when z < zc or γ < 1,

the profile ρ(r) has a boundary layer in front of the defect
site, which extends over a length scale 1/| ln γ | and for large
r � L, it saturates to a value ρs = γ /z = v/(v + z). Thus,
for a thermodynamically large system, the bulk of the system
has a density v/(v + z), which is the same as the expected
monomer density in the thermodynamic limit,

ρ = 1 − z
d

dz
ln λmax = v

v + z
.

In Fig. 5(a) we have plotted ρ(r) for different z considering
v = 2 (corresponding bulk densities are ρs = 2/(2 + z). It
is evident that for a small system (here L = 200) the
boundary layer invades into the bulk as z approaches the
critical value zc. However, for any z � zc, the boundary
layer shrinks to r = 0 in the thermodynamic limit L → ∞.

This is shown in Fig. 5(b) for z = 1.9 (here zc = 2) and
L = 50, 100, 200, 400, 700, 1000.)

The fugacity z associated with the vacancies can tune
the density of the monomers in the regime z < zc, which
corresponds to a density regime ρc < ρ < 1, where ρc =
1 − 1/v. In the canonical ensemble, if the conserved density
is fixed at some value ρ < ρc, the system is expected to show
phase coexistence. Since the allowed macroscopic densities
are ρc and 0, and the average density has to be ρ, the system
would allow a local density ρc in δ = ρ/ρc fraction of the
lattice and keep 1 − δ fraction vacant.

The single dimer problem we discussed here is very similar
to the single defect in totally asymmetric simple exclusion
process (TASEP) studied earlier in Refs. [46,47]. This TASEP
model comprises a single defect particle (denoted by 2) and
L − 1 normal particles (1s) on a ring of size L, following a
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hopping dynamics,

10
1−→ 01; 20

α−→ 02; 21
β−→ 12. (35)

A special case of the model α = 1 = β [48] corresponds to a
scenario where the defect 2 is a second-class particle, which
helps in locating the shocks, if any. The model defined by the
above dynamics can be solved using matrix product ansatz
[5,46], but the matrices {E,D,A} corresponding to {0,1,2}
have an infinite-dimensional representation, closely related to
the matrices {E,D} in TASEP [4]. A novel feature that arises in
this model is the phase coexistence—for β < ρ < 1 − α, the
system shows a coexistence between a region of low-density β

in front of the defect and a high-density 1 − α behind it. Thus,
a localized shock is formed at the site j = δN, such that the
conserved density ρ = βδ + (1 − α)(1 − δ). In the following,
we compare the phase coexistence scenario of this model with
the single dimer model studied here.

The dynamics of the single dimer model, Eq. (32), is
equivalent to

10
1−→ 01; 20

1/v−→ 02; 211
1/v
�
1/v

121. (36)

However, in contrast to Eq. (35) there are two major differences
in Eq. (36). First, the dimer occupies two lattice sites, whereas
the defect particle 2 in exclusion processes occupies only one
lattice site—this difference is not crucial in the thermodynamic
limit. Second, in comparison to the defect dynamics in
Eq. (35), (i) the dimer can exchange with a monomer in
both directions, and (ii) the exchange occurs only when the
immediate right neighbor of the exchanging sites is occupied.

If we overlook these differences, the models are similar
when α = 1/v = β. Thus, one may speculate that a phase
coexistence may occur when 1

v
< ρ < 1 − 1

v
. In reality, how-

ever, for dynamics Eq. (32), phase coexistence occurs when
0 < ρ < ρc = 1 − 1

v
. This similarity is striking—particularly

when the matrix representation for Eq. (35) is infinite-
dimensional, whereas the same for Eq. (32) is much simpler,
2 × 2 matrices.

IV. CONCLUSION

In this article we provide a general formulation to write
the steady-state weights of reconstituting k-mer models in
matrix product form. In the matrix formulation, we represent
a vacancy by a matrix E, the engine of a k-mer (leading
monomer unit from the left) by A and rest of the monomer
units by Ds. In these models, the k-mers, which are extended
objects of different sizes, move to neighboring vacant sites
with a rate that depends on their size. Reconstitution can occur
among a pair of k-mers, when they are in contact, with a rate
that depends on size of participating objects. Reconstitution
usually means transfer of a monomer from one k-mer to the
other one; we restrict such a transfer if length of the k-mer
transferring a monomer is unity. This keeps the number of
k-mers conserved. These models cannot be solved exactly for
any arbitrary diffusion and reconstitution rates. Some of them
can be solved, under quite general conditions, using a mapping
of k-mer models to a two-species misanthrope process. These
exactly solvable models, though simple, capture the different
phases of the system and possible transitions among them

[26,49] quite well. However, calculating spatial correlation
functions through this mapping is usually a formidable task,
as the mapping does not keep track of the site-indices and the
notion of distance. Thus, rewriting the steady-state weights in
terms of a matrix product form is greatly useful.

If k-mers are monodispersed, i.e., each one has a fixed
length k, the matrix product form is relatively simple [28].
This is because the density of k-mers ρ dictates the packing
fraction η = ρk, and one can get away with two matrices
D and E representing whether the site is occupied or not.
The fact that polydispersed systems studied here have two
independent conserved quantities ρ and η brings in additional
complications. First, to write the steady state in matrix product
form, we need an additional matrix A (along with D,E) to
identify the k-mers and to keep track of the conserved k-mer
number. Next, additional care must be taken to ensure that
every block of vacancies must end with A—in other words, all
configurations must be devoid of ED.

In summary, the reconstituting k-mer models for which the
steady-state weights can be obtained exactly through a two-
species misanthrope process, we devise a matrix formulation to
calculate spatial correlation functions explicitly. The required
matrix algebra, and a generic representation that satisfies
this algebra, are also provided. Specifically, we demonstrate
the formulation for the constant-rate reconstitution (CRR)
model, where reconstitution occurs with a constant rate ω,

and all k-mers except the monomer move to its right neighbor
(if vacant) with unit rate; the rate for monomers is v �= 1.

The two-point spatial correlation functions of CRR model
show interesting behavior when k-mer density ρ and packing
fraction η are tuned. In some density regime the spatial
correlation functions show damped oscillation, whereas in
other regimes they decay exponentially. The boundary that
separates these regimes in ρ-η plane, conventionally known as
the disorder line, is calculated analytically.

A special limit η → ρ of the CRR model is best repre-
sented by a system of monomers and a single dimer. The
reconstitution process in this single dimer model is equivalent
to exchange of a monomer with the dimer, when in contact.
Effectively, the dimer behaves like a defect in the system
and exhibits a phase coexistence, similar to the one observed
in asymmetric exclusion processes with a single defect. We
must mention that, though both models capture the phase
separation scenario, the single dimer model is represented by
a set of simpler 2 × 2 matrices in contrast to the infinite-
dimensional representation in exclusion processes with a
defect.

In this article we have considered directed diffusion of k-
mers. This provides a natural interpretation that reconstitution
occurs among immobile k-mers. However, the steady state
and thus physical properties of the model are invariant if
we use a symmetric diffusion of k-mers, and a reconstitution
process that does not allow two particles of different species
(in corresponding two species misanthrope process) to move
out of a box simultaneously.

In this article we provide matrix product steady states for
a class of k-mer models, by mapping them to a two-species
misanthrope process. In fact, any two species misanthrope
process can be mapped to a lattice containing extended
objects—the steady state of such systems can always be
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written in matrix product form. We believe that the matrix
formulation developed here can be useful, in general, to

explore spatial correlation functions in extended systems in
one dimension.
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