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The equilibrium properties of a single quantum particle (qp) interacting with a classical gas for a wide range of
temperatures that explore the system’s behavior in the classical as well as in the quantum regime is investigated.
Both the qp and the atoms are restricted to sites on a one-dimensional lattice. A path integral formalism developed
within the context of the canonical ensemble is utilized, where the qp is represented by a closed, variable-step
random walk on the lattice. Monte Carlo methods are employed to determine the system’s properties. To test the
usefulness of the path integral formalism, the Metropolis algorithm is employed to determine the equilibrium
properties of the qp in the context of a square well potential, forcing the qp to occupy bound states. We consider a
one-dimensional square well potential where all atoms on the lattice are occupied with one atom with an on-site
potential except for a contiguous set of sites of various lengths centered at the middle of the lattice. Comparison
of the potential energy, the energy fluctuations, and the correlation function are made between the results of the
Monte Carlo simulations and the numerical calculations.
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I. INTRODUCTION

This paper explores the physics of one-dimensional systems
in which a single low-mass particle interacts with more
massive atoms arranged in some configuration. The mass of the
single particle is sufficiently low to require the laws of quantum
mechanics, whereas the more massive atoms can be expressed
classically. Electrons, positrons, and positronium are some
examples of such quantum particles. This general problem is
important for studying any situation which can be modeled by
an excess or solvated electron in a classical gas, liquid, or solid.
Examples include electron transport in insulating materials as
well as modeling the nature of weakly ionized plasmas [1].
It is furthermore applicable to lifetime studies of positrons
produced by radioactive sources which have been injected
into various materials [2]. These are examples of an individual
quantum particle (qp) interacting with a configuration of more
massive classical atoms. In the limit of infinite classical particle
mass, we are compelled to consider the idealized geometry
where all particles are fixed in space and both the atoms and
qp are restricted to sites on a regular lattice.

In this study we leverage off the work performed by
O’Callaghan and Miller [3], which we refer to as “Paper
1” from now on, where a general approach was developed
to solve for the equilibrium properties for quenched one-
dimensional systems for any configuration of atoms. This
paper incorporated the tight-binding model combined with
a specially developed imaginary-time path integral Monte
Carlo (PIMC) algorithm to be employed on lattice problems
to solve the system density matrix. As a point of reference,
the foundation of the work in Paper 1 is found in Guo and
Miller [4].

The tight-binding model is essentially a method to calculate
the electronic band structure using an approximate set of
wave functions based upon superposition of wave functions
for isolated atoms located at each occupied site. The term
“tight-binding” refers to the electron being considered tightly
bound to the atom in which it is associated such that it has
limited interaction with the states of neighboring atoms in the
solid [5]. The tight-binding model has been used extensively

in the study of many quantum systems including the study
of ultracold atoms on optical lattices [6], self-trapping of
Bose-Einstein condensates [7], Anderson localization [8], and
several studies of graphene [9].

Paper 1 applied the PIMC algorithm for one-dimensional
lattice problems to solve for the equilibrium properties for a
free qp and for a qp interacting with a potential generated by a
so-called striped atomic configuration where every other lattice
site is occupied by a classical atom and the other lattice sites
are empty. Some of the equilibrium properties considered were
the average kinetic energy, the average potential energy, the
self-correlation or qp-qp correlation function, and the atom-
qp correlation function. These equilibrium properties were
studied across a wide range of inverse temperature β. This
work showed that the solutions to the Schrödinger equation
for the striped case were composed of extended states.

In this same paper a special form of a PIMC algorithm
was developed for the one-dimensional lattice problem. When
one sees PIMC algorithms in the literature, it is most often
for continuous systems. A single qp is replaced by a closed
chain of say p pseudoparticles, each interacting with the host
system through a p-reduced potential. The predictions are
exact in the limit p → ∞ [3]. Path integrals are particularly
useful for describing the quantum mechanics of an equilibrium
system because the canonical distribution for a single particle
in the path integral picture becomes isomorphic with that of a
classical ring polymer of quasiparticles [10]. For a continuous
system a free particle, whose Hamiltonian is simply the kinetic
energy, has a path integral whose integrand is just a product
of Gaussians, and hence the positions of the pseudoparticles
can always be directly sampled. However, it is almost always
the case that when a potential is applied the pseudoparticle
positions cannot be directly sampled. The integral has an
integrand that is generally not a Gaussian. One then solves
the eigenvalue problem for the free particle and constructs
a transformation matrix such that the path integral can be
described in terms of the normal modes where the kinetic
energy Hamiltonian can be directly sampled. The normal
modes solutions is then transformed back to pseudoparticle
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positions and the Metropolis algorithm is then used to accept
or reject the proposed solution based upon the evaluation of
the potential energy [11].

We cannot apply the above form of the PIMC algorithm
in this problem because the systems considered here involve
a qp interacting with a configuration of classical atoms on
a rigid one-dimensional lattice, and the particle positions are
confined to only be on lattice sites because the space is assumed
to be discrete. Thus, the standard assumption of the path
integral does not apply. A discrete formulation of a PIMC
algorithm was developed in Paper 1. In contrast with other
work, here the free particle problem is solved exactly. We
actually calculate the matrix elements analytically, and this is
not done in other papers. Other works for continuous systems
will start with the exact path integral for a free particle, which
is a Gaussian [11]. We have proven rigorously that the analog
of the Gaussian matrix element in continuous systems is the
modified Bessel function in discrete systems. We showed how
to construct exact path integrals as a product of these modified
Bessel functions. This has not been discovered, explored, or
implemented elsewhere in the literature [12].

In this current work, we use the same PIMC algorithm
from Paper 1 but apply it to a one-dimensional square well
configuration where all lattice sites are occupied by an atom
except for a set width of sites focused at the center of the
one-dimensional lattice. Here we study three different square
well configurations which differ only in well width, which we
denote by w, and we focus on the calculations of the same
equilibrium properties as [3].

As we stated previously, the striped case paper [3]
demonstrated that the solutions to the Schrödinger equation
are extended states for that configuration. In this current
development, where the atomic configuration is in the form
of a one-dimensional square well, we show that the solutions
are bound as well as extended states.

Like extended-state quantum-mechanical problems, bound-
state quantum-mechanical problems are also a subject of
much interest and research. For instance, a popular interaction
potential for fluid particles is the square well potential. Fluids
modeled in this manner are called “square well fluids.”
Research of dense fluids often models constituent spherical
fluid particles as having a square well interaction [13].
Neutron scattering analyses rely on studying the bound-state
energies from a potential approximated by a square well [14].
Furthermore, the study of two-dimensional quantum wires
bent into various shapes shows transmission and bound-state
energies that are modeled like a square well [15]. Additionally,
the interactions between proteins in aqueous solutions is
modeled as a square well [16]. Furthermore, many studies
of quantum dots model the interacting potential as a square
well [17].

The relevance of the application of the square well potential
to model atomic, nuclear, and protein interactions has led to
researchers performing related in-depth analytical studies. For
instance, a thorough analytical investigation was performed
by Boykin and Klimeck of individual quantum states [18].
In this paper the discretized Schrödinger equation for a
finite square well is analytically solved. They compare and
contrast the solutions to this discrete problem with what
one typically studies in the continuous case found in many

quantum mechanics textbooks. (see, for instance, [19]). They
point out that the fundamentally different physics between the
discrete and continuous cases arises directly from the finite
bandwidth of the discrete model. They argue that a more
complete band structure is realized through the application of
the discrete model. This then leads to a more accurate physical
interpretation, explanation, and description of problems in
solid state physics, like modeling the properties of crystals.
It is noteworthy to mention that in [18], Boykin and Klimeck
stated that only bound states should be found for this square
well problem. But, we found extended states as well as bound
states.

However, as we demonstrate below, studying the square
well potential for a discretized model has relevance to current
physics research. Besides this, we would also like to test the
efficacy of the subject PIMC code. This was also a goal in Paper
1 where an analytical solution for the striped case was derived,
and calculations of some equilibrium properties from the
analytical solution were compared with those generated from
PIMC computations. For this square well study, we likewise
compare the calculations of equilibrium properties derived
analytically with those calculated via running the PIMC
code. These equilibrium properties include the average kinetic
energy, the average potential energy, the qp-qp correlation
function, and the atom-qp correlation function. The striped
case and square well problems can be done numerically.
However, it is important to use the comparison of the PIMC
results with analytical or numerical results in order to establish
the strengths and weaknesses of the PIMC algorithm before we
apply it to cases where an analytical solution is not possible.

The structure of this paper is as follows. In Sec. II we
discuss the description of the one-dimensional tight-binding
lattice model. In Sec. III, we review the major results of the
derivation of equilibrium properties for the free particle on the
one-dimensional lattice as derived in the striped case paper
[3]. The resulting physical expressions include the forms of
the partition function, the average kinetic energy, the average
energy fluctuation, the qp-qp correlation function, and the
conditional probability for selecting step sizes in the random
walk. Also discussed in this section is the atom-qp correlation
function and the concept of Metropolis sampling. Then, in
Sec. IV, we discuss obtaining the allowed energies for this
problem by writing the Schrödinger difference matrix equation
and then solving for the eigenvalues and eigenvectors of that
matrix. We then discuss how to use this information for
calculating system quantities such as the partition function,
the average kinetic energy, the average potential energy, the
density matrix, the qp-qp correlation function, the atom-qp
correlation function and the radius of gyration. We then
follow this with a comparison of numerical calculations and
corresponding results from runs of the PIMC algorithm. The
agreement between numerical and computational results also
demonstrates the power of the Monte Carlo method to make
physical predictions. Section V then gives the conclusion.

II. DESCRIPTION OF THE MODEL

We study a one-dimensional system of a low-mass qp,
like an electron or positron, interacting with a rigid one-
dimensional lattice partially occupied with more massive
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atoms. In this study, the configuration of the atoms is such that
every lattice site will be occupied by one atom except a set of
contiguous sites near the center of the lattice. The purpose of
this setup is to model a one-dimensional square well potential.
We suppose that the temperature is high enough such that the
atoms can be treated classically. The space for the quantum
particle is discrete; i.e., the quantum particle only lies on the
lattice sites. The qp obeys the Schrödinger equation

Ĥ� = E�, (1)

where Ĥ is the Hamiltonian operator, E is the energy
eigenvalue, and |�〉 is the state vector of the qp.

It is convenient to employ second quantization, which
possesses the following form for the Hamiltonian operator,

Ĥ = 2t − t
∑

j

(c†j cj+1 + c
†
j+1cj ) +

∑
j

vj c
†
j cj , (2)

where cj is the annihilation operator, c†j is the creation operator,
and vj is the potential of the qp on lattice site j . In our model,
we simply take

vj = εnj , (3)

where nj is the number of atoms on lattice site j , (nj = 0,1)
and with the choice

t = �
2

2ma2
, (4)

in which m is the mass of the qp and a is the lattice spacing, we
get the discrete approximation of the continuous Hamiltonian.
This happens to be the Hamiltonian from the tight-binding
model. Without loss of generality, we choose units such that
t = 1 in all of the following.

III. PATH INTEGRAL FORMALISM

In this paper we study the bound states for a quantum
particle interacting with atoms on a one-dimensional lattice
where the atoms are arranged in a configuration to form
a square well potential. One can always analytically solve
for the equilibrium properties for the free quantum particle
[3], but in general one can only analytically solve the
Schrödinger equation for very few potentials, including the
square well potential, the harmonic oscillator potential, the
central potential, etc. To solve for equilibrium properties for
a quantum system with a general potential, one must rely
on a numerical algorithm. For quantum systems, a popular
approach is to use a PIMC method.

We follow a PIMC method developed by O’Callaghan and
Miller [3], which again we refer to here as “Paper 1.” This
paper established the framework and method for the PIMC
approach where the free particle is represented by a random
walk on a one-dimensional lattice that is partially occupied
by atoms possessing an on-site potential ε. The path integral
is isomorphic to a ring polymer with p steps and all of the
displacements need to sum to zero to ensure closure. It was
shown that the fundamental probability of a sample walk j =
(j1,j2, . . . ,jp) is simply a product of modified Bessel functions

of the form
p∏

α=1

Ijα−jα+1

(
2βt

p

)
. (5)

From this result, Paper 1 then showed derived formulas for the
classical analog for the partition function, the average kinetic
energy, the mean energy fluctuation, and the qp-qp correlation
function for a free particle using the path integral formalism.
Below we list the relevant quantities derived in Paper 1 that
will be applied to the square well system.

Partition function for a free particle:

Z = Tr[e−βĤ ′
] =

∑
j1

〈j1|e−βĤ ′ |j1〉, (6)

where

Ĥ ′ = Ĥ − 2t (7)

and Ĥ is the Hamiltonian and t is from Eq. (4).
Path integral estimator of the partition function for a free

particle:

Z =
∑
j1

∑
j2

· · ·
∑
jp

p∏
α=1

Ijα−jα+1

(
2βt

p

)
. (8)

Kinetic energy for a free particle:

Ĥ ′ = T̂ ′ = −t
∑

j

(c†j cj+1 + c
†
j+1cj ). (9)

Path integral estimator for the kinetic energy for a free
particle:

τ̂ = 2t − 2t

p

p∑
α=1

I ′
jα−jα+1

( 2βt

p

)
Ijα−jα+1

( 2βt

p

) . (10)

Energy fluctuation for the free particle:

T̂ ′2 = t2

⎡
⎣∑

j

(c†j cj+1 + c
†
j+1cj )

⎤
⎦[∑

l

(c†l cl+1 + c
†
l+1cl)

]
.

(11)
Path integral estimator for the energy fluctuation for a free

particle:

τ2 = 4t2

p

p∑
α=1

I ′′
jα−jα+1

( 2βt

p

)
Ijα−jα+1

( 2βt

p

) − 8t2

p

p∑
α=1

I ′
jα−jα+1

( 2βt

p

)
Ijα−jα+1

( 2βt

p

) + 4t2.

(12)
qp-qp correlation function for a free particle:

Ĝ1(n) =
∑

j

c
†
j cj+n. (13)

Path integral estimator for the qp-qp correlation function
for a free particle:

�1(n) = 1

p

p∑
α=1

Ijα−jα+1−n

( 2βt

p

)
Ijα−jα+1

( 2βt

p

) , (14)

where In(z) is the modified Bessel function [20] given by

In(z) = 1

π

∫ π

0
duez cos u cos (nu) (15)
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and the primes denote differentiation with respect to the inverse
temperature β. In the above equations, the jα represent pseu-
doparticle positions of the classical ring polymer isomorphism
and p is the number of pseudoparticles. Also, the qp-qp
correlation function provides a measure of how spread out
the quantum particle is on the lattice.

In Paper 1 we show that the free particle paths can be
generated from a conditional probability argument that bases
the new step sν+1 on the steps s1,s2, . . . ,sν already determined,
where ν � p. It was shown that the resulting probability can
be expressed in terms of modified Bessel functions indexed by
the steps in the random walk,

P (sν+1|s1,s2, . . . ,sν) =
Isν+1

( 2βt

p

)
Itν+1

(
p−ν−1

p
2βt

)
Itν

(
p−ν

p
2βt

) , (16)

where

tν =
ν∑

α=1

sα, (17)

with the step displacement jα+1 − jα .
A free particle in a continuous system, whose Hamiltonian

is simply the kinetic energy, has a path integral whose integrand
is just a product of Gaussians, and hence the positions of
the pseudoparticles can always be directly sampled. However,
it is almost always the case that when any potential exists
in a quantum system, the pseudoparticle positions cannot be
directly sampled, simply because the path integral is no longer
a product of Gaussians. Under the influence of a potential, the
probability of a specific walk on the lattice is proportional to

exp

(
−βV

p

)[
p∏

α=1

Isα

(
2βt

p

)]



(
p∑

α=1

sα

)
, (18)

where


(x) =
{

1 x = 0,

0 x �= 0.
(19)

All averages must now include the Gibbs factor exp(− βV

p
),

as well as the product of modified Bessel functions [3]. In
contrast with the free particle, for the case of a general
interacting system the presence of this factor in the distribution
function prevents us from being able to directly sample the
probability distribution for the random walk. To deal with this
complication, we employ Metropolis sampling. That is, we
utilize the free particle conditional probability, as expressed
previously, to generate a walk, but we then employ rejection
to produce a sequence of walks which satisfies the correct
distribution. Let q represent the acceptance factor,

q =
∏p

α=1 e−βV ′
jα∏p

α=1 e−βVjα

=
exp

( − β

p

∑p

α=1 V ′
jα

)
exp

( − β

p

∑p

α=1 Vjα

) , (20)

where V ′ is the potential energy of the new walk and V is
the potential energy of the previous walk. Then, according to
the Metropolis criteria, if q > 1, we automatically accept the
new walk, while if q < 1, we only accept the new walk with
probability q. This is determined by drawing a random number
on the unit interval. If the random number is less than q, we

FIG. 1. Diagram depicting a finite square well of depth V0 and
ranging along on the one-dimensional lattice from −j∗ to j∗. The
lattice itself ranges from −N to N .

reject the new walk and we hold on to the previous walk for
the next iteration.

The expressions for the kinetic energy operator and the
qp-qp correlation function G1 in the classical isomorphism
remain the same in the interacting system as that for the free
particle. Paper 1 also derived a so-called atom-qp correlation
function to study the effect of the presence of atoms on the
lattice on the spread of the quantum particle. The atom-qp
correlation function G2 was defined in Paper 1 as

Ĝ2(n) =
∑

j

nj c
†
j+ncj+n (21)

and its path integral estimator was determined to be

�2(n) = 1

p

p∑
α=1

njα−n
, (22)

where, for a particular jα , njα
= (0,1).

IV. PRESENCE OF ATOMS ON THE LATTICE IN A FIXED
SQUARE WELL CONFIGURATION

A. Numerical solution for the square well configuration

Quantum mechanics textbooks, for instance Eisberg and
Resnick [19], often consider the square well problem as one
of the most basic and simple examples of demonstrating a
solution to the Schrödinger equation having bound quantum
states. In solving the square well problem for a continuous
system, as they do, one has to consider the full set of possible
energies E > V0 and E < V0, where V0 is the depth of
the potential well. Figure 1 shows a typical diagram for a
one-dimensional square well configuration. For continuous
systems, for E > V0 the solutions to the Schrödinger equation
turn out to be everywhere sinusoidal. The interacting quantum
particle will be unbound in this region of energy. However, for
E < V0, it is found that the quantum particle will be trapped
in the well and it will be confined to possess a set of discrete
energies. The solutions for a particle in the well are complex
exponentials and the solutions in the forbidden region, or the
region outside the well, are real exponentials.

In this paper, we numerically solve the Schrödinger equa-
tion for a one-dimensional square well configuration for a
discrete system, i.e., one where the locations of the qp and the
classical atoms are confined to be on sites of a one-dimensional
regular lattice. Let us set up the Schrödinger equation for this
system. Because this is a discrete problem, we employ the
Schrödinger difference equation. The difference form of the
Schrödinger equation can be expressed compactly in the form

012120-4



PATH INTEGRAL MONTE CARLO . . . . II. BOUND STATES PHYSICAL REVIEW E 94, 012120 (2016)

of a (2N + 1) × (2N + 1) matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + a −1 0 0 0 0 0 0 0 0 0 0 −1
−1 2 + a −1 0 0 0 0 0 0 0 0 0 0
0 −1 2 + a −1 0 0 0 0 0 0 0 0 0

. . .
0 0 0 −1 2 + a −1 0 0 0 0 0 0 0
0 0 0 0 −1 2 + b −1 0 0 0 0 0 0
0 0 0 0 0 −1 2 + b −1 0 0 0 0 0

. . .
0 0 0 0 0 0 0 −1 2 + b −1 0 0 0
0 0 0 0 0 0 0 0 −1 2 + b −1 0 0
0 0 0 0 0 0 0 0 0 −1 2 + a −1 0

. . .
−1 0 0 0 0 0 0 0 0 0 0 −1 2 + a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us define the range of j such that −N � j � N . Also,
we can write

Mii = 2 + b, − j ∗ � j � j ∗, (23)

Mii = 2 + a, − N � j < −j ∗, and j ∗ < j � N,

(24)

where the extent of the square well is from −j ∗ to j ∗ inclusive.
In this problem it is assumed that a > b.

Using Mathematica we solved for the eigenvalues and
corresponding eigenvectors of the above matrix. We find
that in general there are w energies in a lower band
bound by the values b � E � b + 4.0 and the remaining
2N + 1 − w energies are confined in a band bound by
a � E � a + 4.0.

B. Analytical statistical mechanics of the square well

Knowing the set of allowed discrete energies from solving
for the eigenvalues of the above matrix, we can then directly
employ the fundamental equations of statistical mechan-
ics in the canonical ensemble to determine the values of
some major equilibrium quantities for given inverse tem-
perature β. The following are some of these fundamental
formulas.

1. Partition function

Z =
∑

ν

e−βEν . (25)

2. Average energy

〈E〉 =
∑

ν Eνe
−βEν

Z
. (26)

3. Average potential energy

In the canonical ensemble, the probability that the system
is in a state ν is given by

Pν = e−βEν

Z
. (27)

The average potential energy in a state ν is given by

〈V 〉ν =
∑

j �j
∗V �j∑

j |�j |2 . (28)

In this paper, the potential configuration for both the numerical
calculations and the PIMC computations is as follows:

V =
{

0.0 −j ∗ � j � j ∗,

10.0 −N � j < −j ∗ and j ∗ < j � N.
(29)

In processing Eqs (28) and (29) with the numerically
determined eigenfunctions, we find that, except for low inverse
temperature β, the average potential energy is

〈V 〉 ≈ 0.0. (30)

Physically, this indicates that the qp is almost entirely within
the square well, since the floor energy within the well was set
to a value of 0.0 in all numerical calculations in this paper. The
Monte Carlo solution closely matched the numerical solution
across all β, which provides yet another demonstration for the
power of this PIMC method.

4. Density matrix

In quantum statistical mechanics, one is typically interested
in calculating the density matrix [21]. The density matrix
describes a quantum system in a mixed state, as opposed to one
in a pure state, which would simply be described by a single
state vector. The density matrix is a quantum-mechanical
analog to the phase-space probability in classical statistical
mechanics. Explicitly, suppose that a given state |ψ〉 may be
found in state |ψ1〉 with probability p1, in state |ψ2〉 with
probability p2, . . ., and in state |ψn〉 with probability pn. The
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density operator for this system is then [21]

ρ̂ =
∑

i

pi |ψi〉〈ψi |. (31)

By choosing a basis |um〉, which does not even need to be
orthogonal, one may resolve the density operator into a density
matrix, which has the matrix elements

ρmn =
∑

i

pi〈um |ψi〉〈ψi |un〉. (32)

Then, for a given operator Â, the expectation value 〈A〉 is given
by

〈A〉 =
∑

i

pi〈ψi |Â|ψi〉 =
∑

n

〈un|ρ̂Â|un〉 = Tr(ρ̂Â). (33)

The expectation value of A for the mixed state is the sum of
the expectation values of each of the pure states |ψi〉 weighted
by probabilities pi .

For any atomic configuration, the density matrix is an
important mathematical object to calculate. In the case of
a configuration of atoms on a one-dimensional lattice, the
density matrix can be employed to provide a correlation
function for the quantum particle. First we compute the density
matrix for the square well configuration.

We write

ρ = 〈φ∗(x)φ(x′)〉 =
∑

ν φ∗
ν (x)φν(x′)e−βEν

Z
.

Expressing this relation in the formalism of the lattice, we
write

〈φ∗(j )φ(j ′)〉 =
∑

ν(states) φ
∗
ν,jφν,j ′e−βEν

Z
.

For the subject square well problem, the density matrix can
explicitly be written as

Djj ′ =
∑

ν �∗
ν,j�ν,j ′e−βEν∑

ν e−βEν
, (34)

where the �ν,j are the numerically determined eigenfunctions
of the Schrödinger difference equation indexed by ν.

5. qp-qp correlation function

The qp-qp correlation function is a function of atomic
spacing n for any atomic configuration on a lattice and can
be computed from the density matrix Djj ′ as

G1(n) =
N∑

j=−N

Dj,j+n. (35)

The purpose of G1 is to provide a measure for the spread
of the quantum particle on the lattice. Computationally, the
wraparound restriction is enforced by subtracting 2N − 1 from
j + n if j + n � N .

6. Atom-qp correlation function

The atom-qp correlation function is a function of atomic
spacing n for any atomic configuration on a lattice and can be

FIG. 2. Energy level diagram as determined by finding the
eigenvalues of the matrix M for the Schrödinger difference equation
for a well of width w = 31. In this case, j ∗ = 15, a = 10.0, and
b = 0.0.

computed from the density matrix Djj ′ as

G2(n) =
N∑

j=−N

njDj+n,j+n. (36)

The factor nj is 1 if site j is occupied by an atom and 0
otherwise.

7. Radius of gyration

In general, in polymer physics, the radius of gyration is a
measure of the spatial extent of a polymer chain. The path
integral is isomorphic to a ring polymer, so the radius of
gyration gives the effective radius of such a polymer. By
definition, the radius of gyration is given by [22]

R =
√√√√ 1

p

p∑
j=1

(rj − r)2, (37)

where p is the number of steps in the polymer chain and
rj − r is the distance from the j th bead on the chain and the
center-of-mass position of the polymer.

C. Comparison of numerical calculations and computational
results for square well configuration

Figures 2 through 4 are the energy level diagrams for the
square well configuration for well widths w = 31, w = 71,
and w = 201, respectively, as determined by solving the
eigenvalues of the matrix M for the Schrödinger difference
equation displayed previously. For each configuration, param-
eters a and b were 10.0 and 0.0, respectively, thus making
the on-site potential ε = 10.0 throughout, since a = b + ε. To
accomplish a well width of w = 31, we set j ∗ to 15, since
the well ranges from −j ∗ to j ∗, including j = 0. Likewise, to

012120-6



PATH INTEGRAL MONTE CARLO . . . . II. BOUND STATES PHYSICAL REVIEW E 94, 012120 (2016)

FIG. 3. Energy level diagram as determined by finding the
eigenvalues of the matrix M for the Schrödinger difference equation
for a well of width w = 71. In this case, j ∗ = 35, a = 10.0, and
b = 0.0.

attain a well width of w = 71, we set j ∗ to 35, and to attain a
well width of w = 201, we set j ∗ to 100. It turns out that the
energy levels occur in two bands, one in b � E � b + 4.0 and
one in a � E � a + 4.0. So, for the values of parameters a

and b selected, the energy levels occur between 0.0 � E � 4.0
and 10.0 � E � 14.0. We also observe that the number of
energy levels in the lower band is w, and the number in the
upper energy band is 2N + 1 − w, where the total number

FIG. 4. Energy level diagram as determined by finding the
eigenvalues of the matrix M for the Schrödinger difference equation
for a well of width w = 201. In this case, j ∗ = 100, a = 10.0, and
b = 0.0.
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FIG. 5. Average potential energy versus inverse temperature, β,
for a quantum particle moving on a one-dimensional lattice with
a square well configuration of width w = 31, depth ε = 10.0, and
centered at the midpoint of the lattice. The numerical curve is a plot
of the theoretical results. The other curves represent the Monte Carlo
simulations for p = 10, p = 100, and p = 200. The agreement is
strong. Error bars are too small to be seen on this scale.

of lattice sites is 2N + 1, which is 501 for this paper. For
instance, the number of energy levels in the lower band for
the well of width 31 is 31, while the number in the upper
band is 501 − 31 = 470. We see that the wider the well, the
more energy levels one observes in the lower band. We next
primarily discuss well width w = 31 in detail and compare
corresponding w = 71 and w = 201 results along the way.
We show plots of the average potential energy vs β, the radius
of gyration vs β, the qp-qp correlation function G1 vs spacing
n for a wide range of β, and the atom-qp correlation function
G2 vs spacing n for the same wide range of β. Each of these
plots will compare computational graphs for number of steps
p = 10, 100, and 200. Furthermore, each of these plots except
the radius of gyration has a numerical curve for comparison.

Figures 5 and 6, 9 through 15, and 18 through 24 show
direct comparisons between the numerical calculations and
the Monte Carlo simulations for the square well configuration
for well width w = 31. As can be seen in these plots, there
was generally good agreement between the numerical and
computational results. Monte Carlo runs were performed for
the cases of the number of steps in the random walk being 10,
100, and 200. For all cases, the size of the one-dimensional
lattice was 501 sites, where the central 31 sites represent the
square well itself and have a floor energy of 0.0 in the units
of this problem, whereas the other sites are ε = 10.0 higher
with an on-site potential of 10.0. The central 31 sites are
not occupied by classical atoms, whereas the other sites are
occupied by one classical atom. The inverse temperature β was
varied extensively from 0.01 to 20.0 in the appropriate units.
Furthermore, all computational plots are the result of running
the PIMC code for 106 iterations. This number of iterations was
selected based on keeping track of the evolution of the average
kinetic energy across the range of inverse temperatures and
ensuring that the average kinetic energy converged to within
at least three decimal places.
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FIG. 6. Radius of gyration versus inverse temperature, β, for a
quantum particle moving on a one-dimensional lattice with a square
well configuration of width w = 31, depth ε = 10.0, and centered
at the midpoint of the lattice. The curves represent the Monte Carlo
simulations for p = 10, p = 100, and p = 200. Error bars are too
small to be seen on this scale.

Figure 5 is a plot of the average potential energy 〈V 〉
as a function of the inverse temperature β, where β ranges
from β = 0.01 through β = 20.0. This plot shows the graphs
of the numerical average potential energy as well as the
computational average potential energy for p = 10, p = 100,
and p = 200, where all of these graphs are in the context of
the square well potential configuration with w = 31. Equation
(30) predicts that the average numerical potential energy has a
theoretical value of 0.0 for β > 0.10. Figure 5 shows excellent
agreement of the computational results with this numerical
prediction once the inverse temperature β was high enough
for the PIMC code to work effectively. This plot is further
confirmation that the qp is almost entirely within the square
well, since its potential energy is consistently close to the floor
energy within the well. For well widths w = 71 and w = 201,
the numerical and computational plots of the average potential
energy versus β (not included) look almost identical to Fig. 5.

Figure 6 is a plot of the radius of gyration versus inverse
temperature β for w = 31. Recall that the radius of gyration is
a measure of the extent of the random walk on the lattice. The
radius of gyration gradually increases with inverse temperature
β and it is near zero when β is near zero and it grows to
be approximately 4 for β ≈ 20.0. So, even at large β, the
random walk is very localized. This relatively small radius of
gyration indicates that the extent of the random walk is much
smaller than the dimension of the lattice as a whole, and, in
particular, the square well portion of the potential configuration
for any of the well widths considered. Also, with such a small
radius of gyration for any β considered, we furthermore expect
relatively narrow qp-qp correlation functions. Additionally, the
corresponding plots for the radius of gyration for well widths
w = 71 and w = 201 (not included) are almost identical to
Fig. 6. The radius of gyration appears to be insensitive to the
well width chosen.

Figure 7 is a plot of a sample density matrix for β = 0.10
and w = 31. This density matrix plot is displayed such that
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Density Matrix, β = 0.10, Width = 31
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FIG. 7. 2D plot of a sample density matrix, which is for a well of
width w = 31 and for β = 0.10. Note that the entire density matrix is
practically zero except a line representing the diagonal elements, with
particular concentration of relatively higher values near the center of
the well.

j and j ′ range from 0 to 500, when in the calculations they
actually range from −250 to 250. As can be clearly seen,
most of the density matrix elements have values near zero.
The only density matrix elements that possess substantial
values are along a line representing the main diagonal with
the highest values concentrated near the center of the well.
Figure 8 shows the same plot but for a higher value of β,
namely β = 5.0. We can see that for higher β, the raised line
in the density matrix plot along the main diagonal disappeared,
and the concentration of higher values of D[j ][j ′] occurring
near the center of the well took on relatively larger values.

Figures 9 through 15 show the qp-qp correlation function
for increasing inverse temperature β for the square well
configuration for w = 31, including β = 0.01, β = 0.05,
β = 0.10, β = 0.50, β = 1.0, β = 5.0, and β = 10.0. As
the inverse temperature increases, i.e., as the temperature
decreases, the qp-qp correlation function gets wider and wider.
The qp-qp correlation function is a measure of the spread of
the random walk in configuration space. For small β, like
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FIG. 8. 2D plot of a sample density matrix for a well of width
w = 31 and for β = 5.0, which is a significantly higher value of
β than that for Fig. 7. This density matrix for higher β is showing
practically the entire matrix to be zero except for a small region near
the center of the well.
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FIG. 9. The numerical and computational self-correlation (or qp-
qp correlation) function G1(n) of the qp on the lattice with the subject
square well configuration for a well of width w = 31 and for β =
0.01. The computational G1(n) is for p = 10, p = 100, and p = 200.

β = 0.01 and β = 0.05, the qp-qp correlation function is
very narrow, indicating that the qp has mostly step sizes of
0 and 1 and nothing greater than these values. As β increases,
the occurrence of larger step sizes becomes more frequent.
Recall that the selection of step sizes is based on the condi-
tional probability equation, Eq. (16), which directly depends
on β.

Equation (16) also depends on the number of steps in the
random walk, p. Unlike the average potential energy which
seems to be independent of p, the qp-qp correlation function
strongly depends on p. Across Figs. 9 through 15, we see that
agreement of the computational qp-qp correlation graphs and
the corresponding numerical graph is inversely proportional
to p. This behavior is also determined by the conditional
probability equation, Eq. (16), but it is not clear as to why this
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FIG. 10. The numerical and computational self-correlation (or
qp-qp correlation) function G1(n) of the qp on the lattice with the
subject square well configuration for a well of width w = 31 and
for β = 0.05. The computational G1(n) is for p = 10, p = 100, and
p = 200.
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FIG. 11. The numerical and computational self-correlation (or
qp-qp correlation) function G1(n) of the qp on the lattice with the
subject square well configuration for a well of width w = 31 and
for β = 0.10. The computational G1(n) is for p = 10, p = 100, and
p = 200.

trend is true. This tendency is counterintuitive with experience
with the path integral in other problems where improvement in
calculating a parameter occurs for larger values of the number
of steps [21]. We do not yet have a definitive answer as to why
lowering the number of steps in the random walk improves the
qp-qp correlation function for the square well problem.

One other comment applies to the plots of the qp-qp
correlation function for the square well configuration for
w = 31. For the correlation plots for the highest inverse
temperature β considered, β = 5.0 and β = 10.0, Figs. 14
and 15, we see that there are some stray data points near the
shoulders of the correlation graphs for p = 100 and p = 200.
Again, the qp-qp correlation graphs for p = 10 always agree
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FIG. 12. The numerical and computational self-correlation (or
qp-qp correlation) function G1(n) of the qp on the lattice with the
subject square well configuration for a well of width w = 31 and
for β = 0.50. The computational G1(n) is for p = 10, p = 100, and
p = 200.
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FIG. 13. The numerical and computational self-correlation (or
qp-qp correlation) function G1(n) of the qp on the lattice with the
subject square well configuration for a well of width w = 31 and
for β = 1.0. The computational G1(n) is for p = 10, p = 100, and
p = 200.

with the numerical solution the best, but the plots for the larger
p for higher β are showing these additional errors.

For well widths w = 71 and w = 201, for all β, the widths
of the central peak for the numerical, p = 10, p = 100,
and p = 200 graphs were comparable with their w = 31
counterparts. As usual, the numerical and p = 10 plots were
consistently wider than the p = 100 and p = 200 plots. Also,
for the high-β plots, i.e., β = 5.0 and β = 10.0, the p = 100
and p = 200 plots for w = 71 and w = 201 exhibited the
same extraneous points near the shoulders as did their w = 31
counterparts. It is furthermore interesting that the widths of
the central peaks do not seem to depend on the well widths
chosen, and this makes sense because these well widths are
significantly larger than the radii of gyration for the random
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FIG. 14. The numerical and computational self-correlation (or
qp-qp correlation) function G1(n) of the qp on the lattice with the
subject square well configuration for a well of width w = 31 and
for β = 5.0. The computational G1(n) is for p = 10, p = 100, and
p = 200.
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FIG. 15. The numerical and computational self-correlation (or
qp-qp correlation) function G1(n) of the qp on the lattice with the
subject square well configuration for a well of width w = 31 and
for β = 10.0. The computational G1(n) is for p = 10, p = 100, and
p = 200.

walk in this problem. Figures 16 and 17 are the plots for the
numerical and computational qp-qp correlation function for
β = 10.0 and for w = 71 and w = 201, respectively. Like the
other qp-qp correlation plots for w = 71 and w = 201, they
very closely agree with their w = 31 counterparts. Because of
the errors in the shoulders of the plots being most dramatic
for β = 10.0, we include these plots just to show their slight
differences.

Figures 18 through 24 show the numerical atom-qp corre-
lation graph along with the computational graphs for p = 10,
p = 100, and p = 200 for the square well with w = 31 for the
same values of the inverse temperature β as was considered
for studying the qp-qp correlation function. As expected, these
plots plateau for a spacing equal to the well width, which is
31 in this case. It is interesting to note that for smaller β,
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FIG. 16. The numerical and computational qp-qp correlation
function G1(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 71 and for β = 10.0. The
computational G1(n) is for p = 10, p = 100, and p = 200.
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FIG. 17. The numerical and computational qp-qp correlation
function G1(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 201 and for β = 10.0. The
computational G1(n) is for p = 10, p = 100, and p = 200.

like β � 0.10, the plateau is slightly below G2 = 1.0, but for
higher β the plateau is firmly set at G2 = 1.0 and the numerical
atom-qp correlation graph does not seem to be affected by
temperature at all. The numerical atom-qp correlation graph
appears invariant across the range of β > 0.10 considered,
as can be seen by comparing Figs. 21 through 24 with each
other. This is best understood by knowing the properties of the
density matrix. First, the sum of all diagonal elements equals
1. Equation (36) gives the form of the atom-qp correlation
function G2(n). As can be seen, each term in the sum is a
diagonal element of the density matrix, where each element
is multiplied by nj = 1 if an atom exists at its corresponding
location j ; otherwise, it is multiplied by nj = 0. This result
can be understood as the product of two functions. The first is
nj as a function of j . This is a step function where its value
is 0 for −j ∗ � j � j ∗ and 1 otherwise. For each term in the
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FIG. 18. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 31 and for β = 0.01. The
computational G2(n) is for p = 10, p = 100, and p = 200.
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FIG. 19. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 31 and for β = 0.05. The
computational G2(n) is for p = 10, p = 100, and p = 200.

nth sum G2(n), this step function is multiplied by Dj+n,j+n.
As can be seen in Fig. 8, even though the sum of the diagonal
elements of the density matrix is 1, all of the substantial values
for Dj,j ′ are in the vicinity of the well, i.e., near the center
of the plane shown in Fig. 8. If n = 0, the j th value of nj

corresponds to the j th value of Dj,j . Hence, for G2(0), the
substantial elements in Dj,j are all multiplied by 0, and so
G2(0) ≈ 0.0. As n increases, there begins to be a misalignment
between nj and Dj+n,j+n, so that substantial elements near
the center of the density matrix are then multiplied by nj = 1.
When n � 2j ∗ + 1, there is complete misalignment and all
of the substantial elements of Dj+n,j+n are multiplied by
nj = 1, and since these substantial elements sum to 1, this
is why the G2 plot plateaus to 1 for any n � 2j ∗ + 1, the
well width. For lower β, we see the same behavior of G2, but
the plateau is at a value less than 1.0. If one studies Fig. 7,
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FIG. 20. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 31 and for β = 0.10. The
computational G2(n) is for p = 10, p = 100, and p = 200.
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FIG. 21. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 31 and for β = 0.50. The
computational G2(n) is for p = 10, p = 100, and p = 200.

one sees that the substantial values of G2 are still along the
main diagonal and still sum to 1.0; however these substantial
values of G2 are spread along the main diagonal with a lower
primary concentration near the center of the well. Therefore,
even when the above-discussed misalignment is complete, the
G2 will sum to a value that is less than 1. Additionally, as in
the case for the average potential energy, there appears to be an
independence of the computational atom-qp correlation plot on
the choice of p. In general, we see excellent agreement among
all computational G2 plots and the corresponding numerical
G2 plot across the entire range of inverse temperature β.

For well widths w = 71 and w = 201, the plots of the
atom-qp correlation function versus spacing n are similar to
their w = 31 counterpart. The only difference in the w = 71
and w = 201 atom-qp correlation plots is that their respective
plateaus occur at n = 71 and n = 201. Figures 25 and 26 are
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FIG. 22. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 31 and for β = 1.0. The
computational G2(n) is for p = 10, p = 100, and p = 200.
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FIG. 23. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 31 and for β = 5.0. The
computational G2(n) is for p = 10, p = 100, and p = 200.

plots for the atom-qp correlation function for β = 10.0 and
for w = 71 and w = 201, respectively, and these plots have
Fig. 24 as their w = 31 counterpart. Figures 25 and 26 were
included just to show the general shape of the w = 71 and
w = 201 atom-qp correlation functions with their different
plateaus, which are equal to the corresponding well widths.

V. SUMMARY AND CONCLUSIONS

In this work we applied path integral Monte Carlo to the
case of the bound and extended states of an equilibrated qp
on a one-dimensional lattice. The qp experiences the periodic
potential resulting from a quenched distribution of atoms. We
study the particular case of a low-mass qp interacting with a set
configuration of classical atoms on a one-dimensional lattice
arranged such that all sites on the lattice are occupied by a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250

G 2

spacing n

Analytical
p = 10

p = 100
p = 200

FIG. 24. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 31 and for β = 10.0. The
computational G2(n) is for p = 10, p = 100, and p = 200.
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FIG. 25. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 71 and for β = 10.0. The
computational G2(n) is for p = 10, p = 100, and p = 200.

single atom except for a set expanse of sites about the center of
the lattice which are unoccupied. This configuration produces a
finite square well potential in one dimension, and the extent of
this expanse is the well width. To be able to perform this study,
we utilized a path integral Monte Carlo algorithm developed
in O’Callaghan and Miller [3] specifically for this problem of
a qp being confined to occupy lattice sites, as opposed to other
path integral algorithms for continuous systems, and this same
paper established a connection between the quantum trace and
the weighted sum of variable-step-sized random walks on the
lattice. This isomorphism was used to establish a method for
carrying out Monte Carlo calculations of the thermal average
of physical observables such as the partition function, kinetic
energy, energy fluctuation, and self-correlation of the qp.

Using the same path integral Monte Carlo algorithm with
Metropolis sampling, the system properties can be solved for a
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FIG. 26. The numerical and computational atom-qp correlation
function G2(n) of the qp on the lattice with the subject square well
configuration for a well of width w = 201 and for β = 10.0. The
computational G2(n) is for p = 10, p = 100, and p = 200.

variety of atomic configurations. However, it is only possible
to obtain an analytical solution to the Schrödinger equation
for very few potentials. Our goal was to construct a nontrivial
atomic configuration that could be input into the Monte Carlo
code and also be solved numerically. Numerical computations
were compared with corresponding Monte Carlo simulations
and the agreement for the potential energy was within 1%
across all β considered.

The success of the PIMC algorithm to calculate the potential
energy was independent of the number of steps in the random
walk, p. The corresponding agreement for the qp-qp corre-
lation functions show that the numerical and computational
results follow one another; however, the error is significantly
more than what is observed for the potential energy. The
discrepancy between the numerical and computational qp-qp
correlation plots was least for β � 0.10 and it grew to be
greatest for higher β. For β � 0.10, the error between the
numerical and computational qp-qp correlation plots was
within 1% for all p. However, as β increased, while the p = 10
plot continued to follow the numerical plot, the p = 100 and
p = 200 plots began deviating significantly. For the highest
β considered, i.e., β = 10.0, the p = 10 plot agreed with the
numerical plot within 20%. On the other hand, for higher β,
the p = 100 and p = 200 qp-qp correlation plots fared much
worse, and in fact, they even exhibited extraneous high points
in the shoulders of the central peak. This same disagreement in
the qp-qp correlation function was also seen in Paper 1. Hence,
we are seeing parallel behavior of the Monte Carlo algorithm
for two totally different potentials, a one-dimensional square
well in this paper and a one-dimensional striped configuration
in Paper 1. It is important to see the general behavior of the
PIMC algorithm for problems that can be solved analytically
or numerically so that we can have expectation of behavior
for future problems that cannot be solved analytically or
numerically.

Finally, the agreement between the numerical and computa-
tional results for the atom-qp correlation function was within
1% for β � 0.05. We see some oscillatory behavior for the
computational G2 plots for β = 0.01. We also observed that
the accuracy of the computational atom-qp correlation plots
appeared to be independent of the number of steps in the
random walk p.

In general, the PIMC approach seems to do very well
for predictions of energy and atom-qp correlation and only
fairly well for qp-qp correlation. Based on the success of
the approach demonstrated here, we are planning to employ
the path integral method to investigate additional quenched
and annealed equilibrium ensembles. In particular, we plan
to investigate situations where either Anderson localization or
self-trapping of the qp plays the dominant role.
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