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We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length £
of each tooth is drawn from a probability distribution displaying power law behavior at large £, P(£) ~ £~0+®)
(o > 0). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive
motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery
curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as
spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time
random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient
is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone
and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our
model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally,
we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion
coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion
equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such
fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion

as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.
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I. INTRODUCTION

Random walks of particles in complex environments play
a central role as models for anomalous transport processes in
physics, biology, and chemistry. In this context, a wealth of
experimental evidence shows that slowing down of particle
diffusion is a common occurrence [1]. In order to set up a
random-walk model tailored for the experimental situation at
hand, one would ideally like to have a detailed knowledge
of the microscopic mechanisms underlying the slowed-down
diffusion. However, this remains a challenging issue, since
typically a number of possible factors responsible for the
onset of subdiffusive regimes coexist and it is often difficult
to identify the dominant effect. Among such factors are strong
geometric constraints associated with fractal, labyrinthine, and
disordered environments, viscoelastic effects, excluded vol-
ume interactions due to obstacles, crowding effects, binding-
unbinding processes of different nature, cage effects due to
electrostatic interactions, etc.

In order to capture the phenomenology leading to subd-
iffusion, three types of models are often invoked, namely
[2] random walks in complex geometries, random walks
with nonindependent increments (resulting in antipersistence
effects), and walks displaying memory effects (aging). Each
model class differs in its statistical properties from the other
two, yet there may be instances in which different models
yield a fairly similar behavior of a specific quantity. This fuels
the debate as to which model class is the most appropriate to
account for the behavior observed in a given experiment, and
the use of hybrid models in this context is not uncommon [3].
However, even if one chooses to work with a model belonging
to a single class, one still has to deal with many challenges.
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Focusing on the category of walks in complex geometries,
attempts to shed light on the relationship between transport
properties and the topological details of the embedding support
often face considerable difficulties. For example, complex
geometries often lead to nontrivial behavior, such as the onset
of crossover regimes between normal diffusion and anomalous
diffusion. In the particular case of branching geometries, such
effects are observed because of the large time needed by the
diffusing walkers to explore the complexity of the environment
in full detail.

In the above context, comb and comblike models [4—10] use
simple, idealized geometries to capture the essential features of
transport in natural branching structures and, more generally,
to mimic transport properties of disordered networks. The
basic idea is to distribute a number of vertical teeth along a one-
dimensional line (the backbone), and to allow random walkers
diffuse throughout the resulting structure, whereby occasional
excursions along the teeth may be viewed as trapping events
which slow down the particles’ motion along the backbone.
The simplest situation corresponds to the regular-comb model
[6], where both the separation between adjacent teeth and
the length of each tooth are constant quantities. In the
general case, the separation and the tooth length are random
variables.

A comprehensive list of examples for which comb and
comblike structures are relevant can be found in Refs. [11]
and [12], including spiny dendrites, diffusion of drugs in
the circulatory system, energy transfer in polymer systems,
etc. Other examples include oxygen exchange in lungs and
water circulation in river networks [13]. While the regular-
comb model was originally devised to study anomalous
transport properties in percolation clusters, more sophisticated
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extensions thereof [11,12,14-26] have been used to make the
phenomenology richer and to account for the presence of
heterogeneities and spatial disorder in real systems.

In the present work, we shall focus on the problem of
diffusion on a comb displaying a random variability in the
lengths of its teeth, a subject that has already been discussed
to some extent in previous works [7,10,16,27-33]. Specifically,
the length ¢ of each tooth is drawn from a distribution whose
large-¢ behavior is given by the asymptotic form P(€) ~
¢~U+%) The characteristic exponent o > 0 can be used to
control the rate at which particles diffuse along the backbone.
On the other hand, the random-comb model can be regarded as
a somewhat raw picture of real-world comblike systems such
as spiny dendrites, which indeed show a variability in the spine
length. At least in some cases, the latter appears to follow a
power-law distribution. For example, Fig. 4 in Ref. [34] shows
that the spine length follows a non-Gaussian distribution which
turns out to be well fitted by a power law in the appropriate
regime.

In an extended version of our model, we shall also
consider the effect of combining particle transport with
binding-unbinding events. In biological comb-like systems
such as spiny dendrites in Purkinje neurons, the mobility of
signaling species such as calcium ions is strongly hindered by
morphological factors leading to signal compartmentalization
in single spines [35], corresponding to comb teeth in the
simplified picture of our model. However, the range of
action of free calcium ions is also severely limited by the
effect of binding proteins. This exemplifies the relevance of
retardation effects associated with binding-unbinding kinetics
in biological systems.

A popular experimental technique for the characterization
of diffusive transport concomitant with binding-unbinding
kinetics is based on so-called FRAP (fluorescence recovery
after photobleaching) experiments. In these experiments, the
diffusing molecules in the system are first fluorescently tagged,
and then those molecules found in a small region (“the
bleached spot”) are photobleached by a brief, intense laser
pulse. The resulting relaxational dynamics leads to a refilling
of the bleached spot and to the recovery of the associated
fluorescent signal, which is monitored with the help of suitable
microscopy techniques [36,37].

Recently, the experimental characterization of FRAP ki-
netics in comblike systems such as spiny dendrites in neurons
has attracted some interest [35,38,39]. Typically, individual
spines are photobleached and the subsequent concentration
recovery is modeled by means of one-dimensional effective
transport equations. Here, we shall consider a more general
setting in which the propagation of unbleached particles takes
place throughout the entire comb geometry, including both the
teeth and the backbone.

Despite the intensive analytical and computational work
performed on FRAP models so far [37,40—44], the theoretical
characterization of FRAP dynamics on comblike structures
does not seem to have been dealt with. In the present work,
we shall address this issue in detail and obtain analytic and
numerical results for concentration recovery curves. As it turns
out, these recovery curves cannot be reproduced exactly by
means of a standard diffusion equation with a suitably chosen
time-dependent diffusion coefficient. However, the resulting
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FIG. 1. Scheme of a random-comb structure with equally spaced
teeth of varying length.

discrepancy appears to be small, suggesting that such models
may be acceptable for certain purposes.

A first step towards the solution of the FRAP problem on
the random comb is the calculation of the diffusion coefficient
of the particles. An early work by Havlin et al. [27] showed
that in the random-comb model a crossover from subdiffusion
to normal diffusion takes place when the decay exponent o
of the power law exceeds the threshold value « = 1. For 0 <
o < 1 thisrandom-comb model was shown to yield anomalous
diffusion with a characteristic exponent y = (1 + «)/2.

Other works focusing on the behavior of the diffusion
exponent in the random-comb model are also found in the
literature [16,31]. However, the behavior of the diffusion
coefficient for the particle motion along the backbone of the
comb is only partially known. For the case of normal diffusion
(o > 1), the diffusion coefficient was computed via different
methods [31,45,46]. In the subdiffusive regime (o« < 1), the
diffusion coefficient of the subset of particles located on the
backbone is known [28,47]. This quantity can be formalized
as follows. Let us take the backbone as the x axis, and let the y
axis denote the vertical direction along which the comb teeth
extend (see Fig. 1). The mean square displacement (MSD) of
the subset of particles on the backbone can then be expressed
as (x?) = [x*G(x,0,t)dx/ [ G(x,0,t)dx, where G(x,y,1) is
the probability density (Green’s function) to find a walker
which started from a given initial condition at position (x,y)
at time ¢. In contrast, the case of interest in the context of
the FRAP relaxation problem addressed in Sec. VI refers to
the diffusion properties of the full set of particles, i.e., those
found on the backbone and on the teeth. In terms of the
Green'’s function, the corresponding MSD of a walker is (x?) =
[ x*G(x,y,t)dxdy. This case was studied in Ref. [31], but
the expression for the associated diffusion coefficient was only
given for the normal diffusion case (¢ > 1).

The present work aims to fill this gap by providing an ex-
plicit expression for the diffusion coefficient in various regimes
and subsequently validating it by means of extensive Monte
Carlo simulations. To this end, we shall resort to the well-tested
mean-field approach provided by the so-called continuous
time random-walk (CTRW) model [6,16,27,31,47]. In this
approach, particle excursions along the teeth are considered
to be “a waste of time” as far as diffusion along the backbone
is concerned. Since a particle moving randomly along a tooth
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does not experience any change in its horizontal position, the
waiting time between subsequent changes in the x coordinate
will follow a distribution which is directly related to the tooth
length distribution P(£).

The remainder of the present work is organized as follows:
Section II gives a detailed definition of the random-comb
model and shows how it is implemented in our numerical
simulations. Section III presents numerical results for the
time dependence of the MSD along the backbone of the
comb. Section IV deals with the CTRW-based method used
for the analytical computation of the diffusion coefficient.
Section V discusses the role of retardation effects arising from
the combination of transport and binding-unbinding events.
Section VI is devoted to a comprehensive analytical and
numerical treatment of FRAP dynamics in the random-comb
model. The results in this section are based on the well-
known asymptotic equivalence between the CTRW model
and the fractional diffusion equation [48]. Finally, Sec. VII
gives a summary of the main conclusions and outlines some
avenues for future research. Technical details concerning the
calculation of the waiting time probability density function
(PDF) associated with the most general form of the diffusion
coefficient are given in Appendix A. The solution of the
boundary value problem for FRAP dynamics by means of
the Green’s function formalism is given in Appendix B.

II. DEFINITION OF THE MODEL AND SIMULATION
PROCEDURE

In order to address the problem of diffusion on the random
comb, we first introduce the regular-comb model. As already
mentioned, the regular comb consists of a backbone and
equally spaced teeth of a fixed length. A particle diffusing
along the backbone may encounter a tooth and perform an
excursion along it before eventually returning to the backbone.
The case of a regular comb with infinite tooth length £ — oo
was discussed in Ref. [6]. In the appropriate regime, this
model yields subdiffusive behavior with anomalous diffusion
exponent equal to 1/2, that is, (xz) o 112,

In order to come closer to real systems, the next step is to
allow for the possibility of random changes in the tooth length
(see Fig. 1). Let us consider the particular case where the
length ¢ is chosen independently for each tooth by drawing
its value from a distribution whose asymptotic behavior is
P() ~ £~ with « > 0. In this case, one obtains a class
of random-comb models displaying a surprisingly rich phe-
nomenology [7,27]. A constant spacing between consecutive
teeth is hereby assumed (or, more generally, a spacing that
follows a probability distribution with finite variance). In
Refs. [7,27] it was shown that the system exhibits anomalous
subdiffusion along the backbone axis for 0 < @ < 1, i.e., one
has (x2(z)) ~ ¢¥ with y = (1 + «)/2. In contrast, for o > 1
there is a crossover to normal diffusion, that is, (x2(¢)) ~ t.
At the crossover value o = 1 there is a logarithmic correction,
and hence (x?(t)) ~ t/Int. Thus, the decay exponent « of the
tooth length distribution can be used to tune the value of the
diffusion exponent in the range 1/2 < y < 1.

Our first goal will be to discuss the results of extensive
Monte Carlo simulations implemented on the random-comb
structure depicted in Fig. 1. In order to carry out the
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simulations, we discretized the comb geometry as follows.
The unit length (lattice spacing) was chosen to be equal to
the distance between two consecutive teeth, and each tooth
consisted of a randomly chosen integer number of lattice
spacings.

The choice of the discretized tooth length was implemented
as follows. We attached a tooth of integer length £, = [r~%] to
each backbone site k, where r denotes a uniformly distributed
randomnumber(0 <r < 1)and [§] = max{m € Z | m < &}
stands for the floor function. Thus, the probability P(£) that
a randomly chosen tooth had a length of exactly ¢ lattice
spacings is

P ==+ 1D (D

As a result of the above prescription, the tooth length follows
approximately the PDF,

P) = a1, )

This expression becomes increasingly accurate as £ becomes
larger.

A collection of random walkers were then allowed to
perform nearest-neighbor jumps on the discretized system at
regular time intervals (the time unit was taken to be the fixed
waiting time between two consecutive jumps). Specifically, the
walk of each particle on the random comb was implemented
as follows. When a given walker was on a tooth (y > 0), its
motion was restricted to the vertical direction [x(#) = const].
As soon as the walker returned to the backbone (y = 0), it
could either jump back to y = 1 with probability 1 — 6 = 1/2,
or move along the x axis with probability & = 1/2 (to the left
with probability 6 /2 or to the right with probability 6/2). The
general case with arbitrary 0 is discussed in Sec. I'V.

The boundary conditions in x and y directions were
implemented as follows. Since each realization of the comb
geometry could contain a finite number of teeth only, we
introduced periodic boundary conditions along the x direction
in order to preserve the translational invariance of the system.
We thus considered a finite system of N random walkers
in a “periodic box” of M length units, where typically
200 < M < 1600 and 1000 < N < 8000. For sufficiently
large values of M, typical diffusion properties of individual
walkers no longer display a significant size dependence if
the simulation time is not too long, thereby ensuring that the
typical diffusion distance is small with respect to the linear
system size. Thus, the behavior of the finite system is expected
to become indistinguishable from that of the corresponding
infinite system.

Particle jumps in the y direction were limited by the finite
tooth length £. Whenever a given particle would reach the end
of a tooth [y(¢) = £], at the next time step ¢ + At, the particle
would either move back to site £ — 1, or else attempt to perform
a jump beyond the end of the tooth y(¢ + Atr) = £ 4 1. In the
latter case, it was “reflected back,” as a result of which it
remained in the same position [y(t + At) = y(t) = £].

In order to speed up the simulations, several walkers were
randomly scattered along the backbone and then launched
simultaneously. In this case, the Monte Carlo time step was
defined as At = 1/N, where N is the number of walkers
[49]. At each time step, one particle was randomly chosen
and performed a jump (unless it attempted to “exit” a tooth,
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in which case it remained at its upper end). The selection
of the particle was either sequential or random, both choices
leading to similar results in the long-time limit. Thus, a time
unit corresponded to N time steps, that is, to N attempted
movements of the walkers. With the above choice, the time unit
N At = 1 does not depend on the number of particles. Typical
simulation times were ¢ < 108, whereas maximum excursions
along the y axis were of the order of 400 lattice spacings.

III. ONSET OF ANOMALOUS DIFFUSION: NUMERICAL
STUDY OF THE LONG-TIME ASYMPTOTICS AND
TRANSIENT REGIMES

In order to study diffusive transport along the backbone,
we computed the MSD at time ¢ by generating n, independent
realizations of the comb geometry and then letting N nonin-
teracting walkers simultaneously evolve in each of them. The
MSD is given by the formula

ng 1 N

1 s s 2
(1) = » ; 52 [o-x5'oF, 6

J=1

where x(.‘y)(t) denotes the x coordinate of the jth walker
diffusing in the sth realization of the quenched disorder.
Unless otherwise specified, it is understood that all the walkers
were placed at random on the backbone at the beginning of
each run. For specific calculations, the average over quenched
disorder was typically performed over n, = 50 configurations,
corresponding to 50 different landscapes {¢;}.

According to previous work [7,27], the long-time behavior
of the MSD is

(x*()) = Do(a)t”, 4

with y =(¢+1)/2 for O<a <1 and y =1 for o > 1.
The above analytical prediction is corroborated by the results
displayed in Figs. 2(a) and 2(b), where the behavior of (x2)/t”
is plotted for different values of «. In the long-time regime this
quantity typically reaches a well-defined plateau. In contrast,
no plateau is observed when « = 1 (this is precisely the o value
at which a transition between anomalous diffusion and normal
diffusion is observed). In this case, the quantity (x2)/¢¥ =
(x?) /t follows an inverse logarithmic law [see Fig. 2(a)].

In those cases where the simulation time is long enough to
observe a plateau, the asymptotic values of (x?)/¢” obtained
from the simulation data displayed in Figs. 2(a) and 2(b)
can be used to estimate the values of the «-dependent
effective diffusion coefficient Dy(ar) = lim,_, o0 (x2)/¢". In the
approximate range 0.5 < « < 1.5, the simulation time is not
long enough to allow the system to reach a plateau. However,
since (x2(z)) /tV decreases monotonically in time, the smallest
value of this quantity can be used as an upper bound for Dy.
The behavior of Dy is shown in Fig. 3. The diffusion coefficient
is seen to display nonmonotonic behavior; first it decreases and
then it increases with increasing o.

We close this section with a comment on the role of the
initial condition. According to our simulation results, the long-
time value of (x2)/¢” and the corresponding exponent y are
not influenced by the specific initial condition. As an example,
one may consider the case where all the particles are initially
scattered at random along the teeth only, and no particles lie on
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FIG. 2. Double logarithmic plots for the time evolution of (x?)/#”
as obtained from numerical simulations. The anomalous diffusion
exponent is assumed to be given by the theoretical prediction, i.e.,y =
(14+a)/2fora < 1and y =1 for @ > 1. All particles are initially
located on the x axis [y(0) = 0]. The different curves correspond,
from top to bottom, to & = 0.2,0.5,0.6,0.8 and 1 [Fig. 2(a)] and to
a=99.0,2.0,1.7,15,1.2, 1.1, and 1 [Fig. 2(b)]. The additional
dashed curve corresponding to the behavior of 1/ In¢ is seen to match
the asymptotic long-time behavior when « = 1. For @ = 0.5, the data
represented by the curve denoted by “r”” correspond to the case where
the particles are initially distributed at random along the teeth, and
no particles are placed on backbone sites.

the backbone [i.e., y(0) > 0 for all the particles]. The dashed
curve denoted by “r” in Fig. 2(a) corresponds to one such initial
condition implemented for the case @ = 0.5. As expected, the
MSD (x2(¢)) at short times is smaller than for our previous
initial condition with all the particles lying on the backbone
[see the solid curve displayed in Fig. 2(a) for o = 0.5]. The
reason is of course that particles on the teeth must first return
to the backbone in order to be able to contribute to the increase

of (x2(1)).

IV. EVALUATION OF THE ANOMALOUS DIFFUSION
COEFFICIENT VIA THE CTRW MODEL

A. General formalism

As already mentioned, the values of the diffusion coefficient
Dy(x) can be read off the plateaus of Figs. 2(a) and 2(b)
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FIG. 3. Anomalous diffusion coefficient Dy(c) as a function of
«. The dots correspond to simulation results. Those dots marked with
vertical bars correspond to «-values for which the simulation time
is not sufficient for (x2)/¢” to reach a plateau. In such cases, the
dots provide upper bounds for Dy(«). The solid curve corresponds to
the theoretical expression given by Eq. (23) for 0 < @ < 1, and by
Eq. (28) for @ > 1. The dashed horizontal line denotes the asymptotic
value Dy(o — o0) = 1/4, corresponding to a uniform teeth with
¢ =1 everywhere.

for different values of «. We now proceed to compute Dy(r)
analytically by means of the mean-field CTRW approximation
for the random comb. The comb model displays quenched
configurational disorder, implying that the tooth length dis-
tribution does not change in the course of the random walk.
In contrast, the CTRW model can be regarded as an annealed
version of the comb model in which the length of a given tooth
is drawn anew from the corresponding distribution upon each
revisitation of the walker. In line with a number of previous
references, e.g. [28,31], we shall hereafter assume that the
difference between the quenched system and the annealed
system underlying the CTRW approach can be ignored as
far as the leading asymptotic behavior of the diffusive process
is concerned. As we shall see, this hypothesis will a posteriori
find strong support in the agreement between the analytical
results obtained in the present section and the simulations
results displayed in Sec. III.

As far as diffusion along the x axis is concerned, the time
spent by a walker traveling along the y axis can be regarded
as a waiting time between two consecutive steps along the
backbone. Thus, the movement of the walker along the x axis
can be described by means of the CTRW model. In this model,
the waiting time distribution function y(¢) is the key quantity.
Below, we show how to evaluate i(¢) for the random-comb
model.

Our method follows closely the one laid out by Havlin
et al. [27], which is based on the computation of the exact
long-time asymptotic form of i (¢) underlying the analytic
expression for the diffusion coefficient; note, however, that we
found it necessary to include some results which supplement
the original calculation by Havlin et al. We shall begin by
computing the probability 7,(¢) that a random walker starting
at site y = 1 takes at least n steps along a tooth of length ¢
before arriving for the first time at the bottom of the tooth
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(y = 0, intersection with the backbone). For this purpose, the
site y = 0 can be thought of as a perfect trap, implying that
T,(£) can be identified with the survival probability of the
walker up to the nth time step given that its initial position is
y(0) =1.

In order to compute 7, (£), we shall choose for convenience
a boundary condition that is slightly different from the one
employed in the simulations (the latter corresponds to the one
considered by Havlin ef al. [27]). Unless otherwise specified,
throughout the present section we shall assume that a walker
at the end of a tooth (y = £) will always step back to the site
y = £ — 1 immediately below the end site. Note the difference
with respect to the boundary condition implemented in the
simulations, which specifies that the walker either remains at
the end site y = £ (if it attempts to “exit” the tooth) or else
it steps back to site y = £ — 1, whereby each of these two
mutually exclusive events takes place with probability 1/2.

With our choice for the boundary condition, the cumulative
probability 7,,(£) becomes identical with the survival proba-
bility of a walker moving on a one-dimensional lattice with
2¢ sites, whereby both end sites play the role of perfect traps.
For our purposes, the above setting is equivalent to a walker
placed on a ring with 2/ sites, i.e., 2¢ — 1 nonabsorbing sites
and a single perfect trap, whereby the walker’s initial position
is a site contiguous to the trap.

A similar reasoning applies for the boundary condition
chosen by Havlin et al. and implemented in our simulations;
however, the equivalent ring would consist of 2¢ 4 1 rather
than 2¢ sites. While this difference can be disregarded for
large enough ¢, it becomes increasingly relevant in the limit
of short teeth. For 0 < o < 1 it turns out that the statistical
weight of long teeth is very relevant, and so the difference in
the boundary condition is negligible for the computation of the
diffusion coefficient. However, we shall see that this difference
can no longer be neglected in the & > 1 case.

Let p,(y) be the probability that the walker is at position y at
step n whenit starts at y = 1. The boundary conditions then are
Pn(0) = p,(2¢) = 0, and the initial condition is po(y) = i y.
These probabilities satisfy the difference equation

Pr1(¥) = 5 [pa(y — D+ pu(y + DI. (5)
The corresponding solution is
1 2]
Pa(y) =5 Y cos” B sin B sin(B;), ©6)
=1

where B; = mj/2¢ [it should be noted that the solution
reported in Eq. (A4) in Ref. [27] is inconsistent with the
initial condition pgy(y) = 81 ,]. The survival probability is

then given by the expression 7,,(£) = Z%Z:O pn(y). For large £
one can perform the approximations cos” Bj ~ exp[—nﬁf /2]
and sin B; sin(B;y) ~ sin?(mr j/2), which lead to the following
asymptotic approximation for 7, (€):

, 2 —
L0 =5 ) expl-nm’@j + 17/ ()
j=0
The above asymptotic expression does surprisingly well even
if £ is not too large. The agreement with the exact formula for
T, (£) is especially good for large n.
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The next step in our route to an analytic expression for
¥ (t) is the computation of the probability U,(¢) for trapping
to take place exactly at the nth time step. We note that the
absorption probability U, (£) can be regarded as the probability
to reach either of the perfect traps located at y =0 and y =
2¢ after exactly n steps (first-passage probability). Clearly,
U, (£) can be expressed as a difference between two survival
probabilities, namely,

Un(€) = Ty—1(6) — T, (D), ®)

where the initial conditions To(£) = 1 and Uy(¢) = 0 hold.
For even values of n the probability U,(£) must vanish, since
for a walker starting at y = 1 it is impossible to reach either
trap after an even number of steps. Therefore, for any positive
integer m one has T5,_; = T,,, implying that the equality
U,(¢) =T,_» — T, holds for odd-valued n. As a result of
this, the large-n asymptotic expression of U, can be estimated
by regarding the time step n as a continuous variable and
computing the corresponding derivative, i.e.,

asy
Uy = —p 41O

odd. 9
In order to make further progress, we must now find estimates
of the survival probability 7;,(£) and the absorption probability
U,(£) averaged over an ensemble of teeth with different
lengths. To this end, we shall use the approximations T}, (£)
and U,™(¢) as defined above. We shall distinguish two cases,
namely, 0 < @ < 1 and @ > 1. In the former case, the mean
first-passage time to the intersection with the backbone does
not exist, whereas in the latter case it is a finite quantity which
will later prove useful for the computation of the diffusion
coefficient.

B. Case0 <a <1

The average value of T,,(¢) with respect to the tooth length
distribution is

(T,) = (T,(0) = ) POT,(0), (10)
=1

where P(£) denotes the probability that a randomly chosen
tooth has a length of exactly ¢ units. For the special case of
the long-tailed distribution described by Eq. (2), the large-n
behavior of the survival probability is well described by the
following approximation:

oo
(T2 (0) = o / dee' " T (). (11)
0
Using Eq. (7) gives
29
Tasy 7)) = sra 7(1#»0()/2’ 12
(L) =15 (12)

where we have set
A 3
l/ja — 2(1+a)/2(20l+1 _ l)ﬂ_a_la l“(%);‘(a + 1) (13)

In the above expression, ¢ (-) stands for the Riemann ¢ function.
Note that the lower limit in the integral appearing in Eq. (11)
has been shifted from 1 to O in order to simplify its analytical
evaluation. This approximation is safe, since for £ values

PHYSICAL REVIEW E 94, 012118 (2016)

T 3

e
1 1
X 0
0
1 1 > Up(£+ 1)
Yu(d) -1

FIG. 4. Graphical representation of the equivalence between
¥,(€) and U,(¢ + 1). The probability 1/2 of the walker jumping
from (x = 0,y = 0) to either (x = +1,y =0)or (x = —1,y =0) in
the left figure is equal to the probability of the walker jumping from
y = 0to y = —1 along the extended tooth shown on the right figure.

between 0 and 1 and large n the integrand becomes vanishingly
small due to the fast decay of T, (£) for sufficiently small
values of ¢ [cf. Eq. (7)]. Using the asymptotic form (12) in
Eq. (9) one finds

<U’zlasy(g)> — 21&& n—(3+a)/2 (14)

for odd-valued n satisfying n > 1.

Let v,,(£) be the probability that a walker having started its
walk at the backbone site (x,y = 0) returns to it after exactly
n — 1 time steps, and then hops to a contiguous backbone site
(x £ 1,y = 0) at the nth time step. Both sites (x = 1,y = 0)
can be regarded as perfect traps, implying that the quantity
¥, (€) can be interpreted as a first-passage probability to either
of the two traps.

Let us recall that the probability 6 for the walker to perform
a transition (x,y = 0) — (x £ 1,y = 0) along the backbone
has been assumed to be the same (6 = 1/2) as the probability
to move upwards (x,y = 0) — (x,y = 1). As a result of this
prescription, one can see, upon a bit of reflection, that the
probability ¥, (£) of absorption at sites (x == 1,y = 0) given
that the walker starts at site (x,y = 0) is equal to the probability
U, (£ + 1) of absorption at y = —1 given that the walker starts
at site y =0 on a one dimensional lattice stretching from
y = —1toy = £ (see Fig. 4). Hence,

Yn(6) = Uy (£ + 1. 15)

When 6 # 1/2 (but still with zero bias along the backbone),
the corresponding probability v, (£,0) differs from v, () =
¥, (£,0 = 1/2). However, in the large-n regime there is a
simple relation between both quantities, namely

0
Vn(£.0) = T2 ¥u (D). (16)

The proof of the above equation is given in Appendix A.
In addition, Eq. (16) is confirmed by the numerical results
displayed in Fig. 5. Recall that the case 8 = 2/3 corresponds
to the situation where the walker has the same probability (1/3)
of jumping to the left, to the right, or upwards.

From the definition of (7, (£)) given by Eq. (12) one can
find the relation (T,™Y(£+ 1)) = (T, ()[1 + O(1/n'/?)]
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FIG. 5. Log-log plot of simulation results for ¥,(£,6) (1 — 6)/0
vs n for £ = 50 (squares), £ = 100 (diamonds), and £ = 200 (circles)
for 6 = 1/2 (open symbols), & = 1/3 (solid symbols), and 6 = 2/3
(crossed symbols) for 10° realizations. Note the excellent collapse of
the simulation results for the three different values of 6 and sufficiently
large n (n > 50, say). The solid curves are the asymptotic values of
¥, (€) obtained by means of Egs. (7), (9), and (15).

straightforwardly. Thus, setting ¥, (£) ~ U, (¢), taking the
average over the tooth length PDF P(¢), and using Eq. (14)
one obtains

(Y) ~ 2 nOT2 > 1, n oodd. (17)

For 6 # 1/2, this formula would be the same, except for the
fact that v, should be replaced with 8/, /(1 — 0) in that case.

We now seek to establish a relation between the above
discrete-time description in terms of the probabilities v, and
the continuous-time description based on the corresponding
waiting time PDF v (¢). To this end, we first average v, over
odd- and even-valued times n, i.e., we take

V(OAL =~ Y1) X 2= (Yn-1) + (¥n). (18)

Equation (15) together with the fact that U, vanishes for even
values of n implies that (1) = 0 for even-valued n. Taking
this into account and making use of Eq. (18) in (17) we find

Y(t) ~ Py 1O,

We are now in the position to perform an explicit computation
of the diffusion coefficient. To this end, we recall that a walker
whose motion is described by the asymptotic long-tailed
waiting time PDF,

t> 1. 19)

)/7:)/ t—l—y’
rd—-y
with 0 < y < 1, displays subdiffusive behavior provided that

its step length distribution has a finite variance X2, implying
that its MSD can be written as follows:

2K,
ra+y)

Y(t) ~ t large, (20)

(%) 7 = Do(y)t”, 1)
where K, = »2/(2t7) and 7 is a characteristic time scale for
the waiting time between jumps [48]. Comparing Eq. (19) with
Eq. 20) one finds y = (1 +«)/2 and 7 =T'(1 — y) ¥/
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Inserting these expressions into Eq. (21) we find
l+o
20 (540 (%)

The above equation can be further simplified by Eq. (13):

Do) = 2 (22)

272 e cog (22)

@22 = DI (4F)¢(a + 1)

If 6 # 1/2, the diffusion coefficient is simply Dy(x,0) =
(1 —0)Dy(x)/6. In our case, Eq. (23) is further simplified
by taking into account that the motion along the backbone
proceeds by transitions between nearest-neighbor sites (oc-
casionally delayed by excursions along the teeth). Thus, one
must take ¥£? = 1. The analytic expression provided by Eq.
(23) turns out to be in excellent agreement with our simulation
data (cf. Fig. 3). We note that changes in the value of ¥ can
be interpreted as a change in the density of teeth along the
backbone, which according to Eq. (23) has an influence on
the diffusion coefficient, but has no effect on the diffusion
exponent y. This differs from the results reported for the
dendritic system studied in Ref. [50].

Do) = 22 (23)

C. Casea > 1

Here, it is well known that normal diffusion takes place
regardless of the value of «, i.e., y = 1 [7,27]. The diffusion
coefficient for this case has already been calculated with
a variety of different methods [31,46]. For the sake of
completeness, a simple alternative derivation is given below.
Our derivation exploits the fact that for o > 1 the spatial
average of the mean dwelling time of the random walker inside
a tooth is finite, implying that the diffusion coefficient can be
written as

22 2
K1(0l)=g = Do(d)=7, 24)

where 7 is the (spatially averaged) mean waiting time between
consecutive jumps along the backbone and, in the present
context, X2 is the variance of the distance between consecutive
teeth. Let us now introduce the quantity 7(£) as the average
number of time steps that it takes for a walker initially located
at the bottom of a tooth of £ units to jump along the backbone,
that is, to perform the transition (x,y = 0) — (x £ 1,y = 0).
One then has

T = (@) =Y PU)T(). (25)

=1

Next, let us denote by 7z (£) the average number of time steps
required by a walker initially located at (x,y = 0) to return to
its initial position given that it starts moving vertically along the
tooth. A walker starting at (x,y = 0) canreach (x = 1,y = 0)
after one time step with probability 1 — 6 = 1/2 provided that
it does not enter the tooth, or it may enter the tooth once with
probability & = 1/2, come back to (x,y = 0) after tx(£) time
steps, and then perform the final transition (x,y = 0) - (x £
1,y = 0) with probability 1 — 6 = 1/2, and so on. Summing
up the contributions from trajectories involving a different
number of returns to the intersection with the backbone, one
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finds
() =1 x (1 =6) + (tr(6) + 1 O(1 — 6)
+Qtr(0) + DO —0) + - --

=1=0)) 0"ntr@+ 1) =1+
n=0

— tr(D). (26)

In writing the above equation, we have taken into account that
the time needed for the walker to move by one lattice spacing
[i.e., from (x,y = 0) to either of its two nearest-neighbor sites
(x = x £ 1,y = 0)] had been chosen to be equal to 1. Had this
time been set equal to a different value #,, the expression
ntg(¢)+1 in Eq. (26) should have been replaced with
ntr(£) + tp.

As already mentioned, for the boundary condition used in
the simulations (cf. Secs. II and III), a tooth of length ¢ is
equivalent to a one dimensional periodic lattice with 2¢ 4 1
sites. In that case, 7z (£) can be understood as the mean return
time to the origin of a walker on a ring of length 2¢ 4 1. On
the other hand, it is well known that for a periodic N-site
lattice this return time is precisely identical with the number
of lattice sites N [51, Eq. (4.172a)]. In the above setting, we
have N = 2¢ + 1, leading to tg(£) = 2¢ + 1. From Egs. (26)
and (25) we then find

o0

0 26 14266
= — _— ZEE—,
’ 1—9+1—9;P() 1—0

(27)
in agreement with the results obtained in Refs. [31] and [46]
[see, e.g., Eq. (48) in Ref. [31]]. For the particular case where
P(€) is given by Eq. (1), one finds (£) = ¢(«), leading to the
equation T = 2 + 2¢(«) for & = 1/2. As a result of this, one
has

22
T2+ 2@

Asin the o < 1 case, the agreement of the above results with
the simulation results displayed in Fig. 3 is excellent. Note that
our choice to restrict the displacements along the backbone to
nearest-neighbor jumps between sites separated by one lattice
spacing implies that one must take £? = 1. In the case of
arbitrary 6, Eq. (28) must be replaced with the more general
expression

Do(c) (28)

1-6
1 +20¢(a)

Finally, we can easily extend our results to the case where the
boundary condition is the one used in Sec. IV [recall that in
this case a walker at the end of a tooth (y = ¢) will always
step back to site y = £ — 1]. As already mentioned there, this
boundary condition corresponds to treating a tooth of length £
like a ring with 2¢ sites. Correspondingly, one has tx(£) = 2¢
and T = 1 + 2(£), leading to Dy(x) = 22/[1 + 2¢(a)], or to
Do(ar) = Z2/[1 +26(1 — )~ '¢(a)] for @ # 1/2.

Do(ar) = (29)

D. Caseax =1

For o = 1, the waiting time PDF given by (19) is simply
Y(t) ~ V¥ t72, where ; =1 [or ¥, = 60/(1 — 0)]. For this
specific form of waiting time PDF it is known that the MSD

PHYSICAL REVIEW E 94, 012118 (2016)

behaves as follows [52]:
iy ~ 2 (30)
X e
Y1 In(r)
This result is again confirmed by our numerical simulations
(see the bottom curve in Fig. 2).

It is interesting to note that the form of the diffusion
coefficient Do(o) shown in Fig. 3 is similar to that found
by Korabel et al. [53,54] in a CTRW model for the Pomeau-
Manneville map. The zero value of the diffusion coefficient is
also due to a logarithmic term as the one in Eq. (30).

V. INFLUENCE OF BINDING-UNBINDING KINETICS

Retardation effects associated with binding-unbinding ki-
netics in biological or biomimetic systems have been widely
studied, notably by means of Monte Carlo simulations (see,
e.g., Refs. [55] and [56]). In what follows, we shall study such
effects for the particular case of the random-comb model.

In our simulations, we implemented binding-unbinding
processes as follows. At a given time, walkers at any site
of the comb could be found in either of two states, namely,
“bound” or “unbound.” Our collection of walkers was initially
distributed at random along the x axis, and all of them were
initially unbound. Subsequent transitions between the unbound
state and the bound state proceeded as follows. Whenever
an unbound walker would jump to a nearest-neighbor site, it
would bind to it with probability K, (the time step was taken
to be unity, thereby allowing one to interpret K, as a rate
constant). In turn, walkers in the bound state could unbind
with probability K¢ (rate constant for unbinding processes)
when selected by the simulation algorithm, and they were
subsequently free to jump to a nearest-neighbor site on the
discretized comb.

At this stage, a comment on the physical origin of the
above rate constants is in order. At a mesoscopic level, one
may regard K, and K as effective parameters whose values
are in principle obtainable from experiments. However, one
should bear in mind that a more microscopic picture would
bring molecular potentials between the diffusing molecules
(“the walkers”) and the biological matrix (“the comb”) into
play. The latter approach is beyond the scope of the present
work and will not be further discussed here.

The fraction of bound particles £ = N,/N can be inter-
preted as the normalized “binding energy” E of the system.
From the analysis of the corresponding kinetic equations
this fraction is expected to be E ~ Kq,/(Kon + Kofr) in the
long-time limit. As a result of this, the energy should follow
the law E = «/(1 + k), where k = Ko,/ Kofr 1s the ratio of
rate constants. This is in full agreement with the simulation
data displayed in Fig. 6 (see dots). Note that the value of E is
independent of the exponent «.

We now proceed to quantify the impact of the delay intro-
duced by binding-unbinding events on the diffusion coefficient
for the walker motion along the backbone. The MSD in the
long-time regime (x2(t)) = D, (x)t” defines the xk-dependent
diffusion coefficient. Numerical results for the normalized
effective diffusion coefficient D, /Dy are shown in Fig. 7.
Here, the effective diffusion coefficient Dy = Dy(«) is the
one defined previously for the case where binding-unbinding

012118-8



ANOMALOUS DIFFUSION AND DYNAMICS OF ...

0 0.2 0.4 0.6 0.8 1
1/x

FIG. 6. Average fraction of bound particles £ = N,/N as a
function of «.

events are absent. As expected, the diffusion coefficient is
seen to decrease with increasing «, i.e., with increasing Kop,.
This can be explained as follows. A walker arriving at a new
location either remains in the unbound state with probability
1 — Koy (and is thus free to jump to a nearest-neighbor site),
or else it becomes bound with probability K,,. In the first
case, the time required by the walker to move to a neighboring
site is 1 (in our units), whereas in the latter case the average
waiting time due to binding is K + 1 (i.e., K time units
to escape the binding state and one additional time unit
to perform the nearest-neighbor jump). The average time
between consecutive nearest-neighbor jumps then becomes
(1 —Kon) + Kon(Ko_ff' + 1) = 1 4+ k. Therefore, for the case
with binding, the time required to perform a transition between
neighboring sites is increased by the factor (1 + «) with respect
to the case without binding. Hence, the MSD (x?(¢)) = Dyt”
along the backbone becomes (x2(t)) = Dylt/(1 + «)]” in the
presence of binding, and consequently,

D, 1 (E)y
Il e 31D
Dy (1 +x) K

0 0.2 0.4 0.6 0.8 1
1/x

FIG. 7. Normalized diffusion coefficient D, /Dy vs k [Dy is
the diffusion coefficient for K,, = 0]. The dashed curves represent
the theoretical prediction given by Eq. (31), whereas the symbols
represent simulation results.
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InFig. 7, the plots of the analytical expression given by Eq. (31)
(dashed curves) can be seen to be in excellent agreement with
numerical data from MC simulations results.

It should be noted that Eq. (31) can be understood as the
extension to the anomalous diffusion case of the computation
for the effective diffusion coefficient in the presence of
binding-unbinding processes that can be found in the literature
for the standard diffusion case; see, e.g., Eq. (31) in Ref.
[41], which is recovered from Eq. (31) when y = 1. The
effective diffusion regime mentioned in Ref. [41] turns out
to be dominant in comblike systems with o < 1, since it
corresponds to the case where the binding-unbinding reactions
occur on a much shorter time scale than transport along the
backbone.

Finally, we also note that from the formula (31) one finds
k = (Do/D,)"” — 1, implying that in the subdiffusive regime
0 < a < 1 knowledge of the normalized diffusion coefficient
is not enough to infer the ratio of rate constants characterizing
the binding-unbinding processes (to calculate x, one must
additionally know the value of «). This is a key difference
with respect to the normal diffusion regime with o > 1.

Conversely, in experiments where the parameters for the
binding-unbinding processes do not change, the value of the
exponent « characterizing the comb geometry can only be
determined if y < 1. In such cases, knowledge of D,/Dy
would still be insufficient, since the value of « is also needed.

VI. FRAP DYNAMICS ON THE RANDOM COMB

Both the diffusion coefficient Dy(«) calculated in Sec. IV
and its corrected value in the presence of binding-unbinding
events are expected to be useful for quantitative studies
aiming at the characterization of diffusive transport in comb-
like biological structures, and notably in spiny dendrites
[35,39,50,57,58]. The ultimate goal is the comparison with
experiments where representative quantities depending on
transport properties are monitored.

In the above context, FRAP experiments are a widely
used technique to explore binding interactions of membrane
proteins in cells. For a comprehensive, up-to-date review
on FRAP and other microscopy techniques the reader is
referred to [59]. As already mentioned in the Introduction,
in FRAP experiments particles are stained with a fluorescent
dye and then those in a small region (the “bleached spot”)
are photobleached with a laser pulse. Following this, one
measures the fluorescent signal recovery as the bleached spot
is progressively filled with particles diffusing from the region
outside the spot.

FRAP techniques are especially well suited when transport
processes are very slow and, when a significant portion
of molecules is immobile, they appear to be more robust
than other fluorescence-based techniques [59]. Nowadays,
FRAP experiments are widely used to characterize in vivo
protein motion [60], diffusion-controlled drug delivery [61],
and morphogen transport [62]. In these systems, diffusing
proteins in the cell nucleus bind reversibly to the immobile
nuclear structure. The cell nucleus may be considered to
be a “crowded” environment causing the proteins to move
subdiffusively on sufficiently long time scales.

012118-9



S.B. YUSTE, E. ABAD, AND A. BAUMGAERTNER

From a theoretical point of view, a method aimed at
reproducing FRAP recovery curves by means of coupled
reaction-diffusion equations was developed in Ref. [41] and
subsequently generalized in follow-up works [36,37]. In
Ref. [44], the solutions corresponding to a two-dimensional
geometry and a circular bleached spot were extended to the
case where the diffusing particles perform a subdiffusive
CTRW rather than standard Markovian walks. Interestingly,
experimental recovery curves previously described by a
normal diffusion model were found to be equally well fitted by
a fractional diffusion equation arising from the CTRW model.

In the present section, we shall study the FRAP phe-
nomenology in the random-comb model. To this end, we
initially placed a collection of particles on the backbone,
eliminated those of them within a segment of the backbone
(the bleached spot), and subsequently let the remaining
ones perform random walks according to the simulation
procedure described below. The time evolution of the number
of unbleached particles inside the bleached spot and the
associated concentration recovery curves were computed
numerically and shown to be reproducible by means of
fractional diffusion equations underlying the corresponding
one-dimensional CTRW model. The mathematical treatment
of the latter is similar to the one used in Ref. [44] for the
two-dimensional case.

A. Simulation procedure

The simulations for the numerical computation of FRAP
recovery curves were performed as follows. We first defined
a discretized comb with randomly distributed tooth length in
the y direction and a backbone in the x direction consisting
of M lattice sites subject to periodic boundary conditions,
whereby the lattice spacing in the x and y directions was
chosen to be the same. Notice that in our case these boundary
conditions are equivalent to zero flux boundary conditions,
i.e., fully reflecting boundaries. This corresponds to a standard
assumption in FRAP experiments where the boundary is the
nuclear membrane, since one usually assumes that the latter
remains impermeable during the time scale of FRAP signal
recovery [63].

Following this, N noninteracting walkers were randomly
scattered along the backbone, and all the walkers found within
a segment of length L < M lattice sites were then “bleached,”
i.e., removed from the system. We subsequently let the
walkers perform nearest-neighbor jumps and thereby spread
throughout the entire comb structure. We then monitored the
time evolution of the average number of walkers Ny (#) found
within a spot of size L or, more conveniently, the normalized
average number of walkers Cy () dwelling inside the spot at
time ¢:

CL(t) = M. (32)

(Nspor(00))

The normalizing quantity (Ngpo(00)) was easily obtained by
taking into account that the mean number of particles per unit
length in the final homogeneous state is the same as imme-
diately after the photobleaching, that is, (N — (Ny))/M =
(Nspot(00)) /L, where Np; is the number of bleached particles.
Thus, one finds (Ngpo(00)) = (N — (Ny))(L/M).
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B. Analytical and numerical results

The time evolution of Cy (¢) can be studied both analytically
and numerically. Our subsequent analysis relies on the CTRW
approach used in Sec. IV to successfully analyze diffusion on
the random comb. We have shown that particle spread along
the backbone can be effectively described by one-dimensional
diffusion of walkers with a waiting time density 1 (#) given
by Eq. (19) or, equivalently, by Eq. (20). On the other hand,
it is well known that in the long-time limit the evolution of
the concentration c(x,?) of such walkers obeys the following
fractional diffusion equation [48]:

D ety = Ky oDl 7 ety (33)
8tcx, =K, oD, szcx’ ,
where thl 77 stands for the so-called Riemann-Liouville
fractional derivative.

Let us denote by ¢y the value of the concentration c(x,#)
before the bleaching. In what follows we assume that our
comb system extends from x = —M /2 to x = M /2, whereby
the bleached spot extends from x = —L/2 to x = L/2. We
consider the case of perfect bleaching described by the initial
condition [41]

oy | IS LR (34)
T Neo, LJ2 < x| < MJ2.

In the simulations, periodic boundary conditions are taken,
i.e., c(x,t) = c(x + M,t). The solution to the boundary value
problem posed by Eqs. (33) and (34) and the periodic boundary
condition is easily found by means of the Green’s function
method (see Appendix B). One finally obtains

qy [M—(L/2)] _ ,qy L/2
Srs) = @ cosh(g,x), x| < L/2,
c(x,s) = fq inh L\ e * ety M=) L9
@[l —sinh (q, %) “=5—=—1]. Ix| > L/2,
(35)

where g, = ,/s7/K,,.

The Laplace transform of the spatial average of ¢ over the
bleached spot is

2 L/2
€y = —/ c(x,s)dx. (36)
L Jo
This gives
co | +etM — etrl — o0y (M=L)
@) = = (37)

s (et™ —1)q, L

Let ¢* = c(x,00) be the final particle concentration. Since
(Ngpot(1)) = {c)L and (Ngpot(00)) = ¢*L, the normalized num-
ber of particles inside the bleached spot Cy(¢) as defined by
Eq. (32) can be rewritten as Cp(¢) = (c)/c*. It is clear that
c¢*=co(M — L)/M, and hence

M 1+ eirM — etk — oty M=L)

CL(s) = 38
L(s) ML @M — s q,L (38)
1. Infinite system
In the limit M — oo, Eq. (38) becomes
~ 1 —e otk
Cr(s) = , (39)
sqy, L
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which can be inverted analytically to obtain

&ML
=50 a0 (K, )12

(=1.1)

(1,7/2) ]

(40)
fory <1(.e.,for0O <a < 1)and

2(K,17)\?

_ —L*/@K, 1)
YeY3 1—e vt

L
CL(t) = erfc(Z(KytV)W)

(41)

for y =1 (ie., for @ > 1). In Eq. (40), Hlllo stands for a
particular class of Fox’s H function [48,64]. In passing, we
note that the solution for the anomalous diffusion case given by
Eq. (40) is related to the solution (41) for the normal diffusive
case by means of the subordination principle for the underlying
CTRW process [43].

Let us now examine the early-time behavior of Cp(¢). To
this end, one can either look up the relevant series expansion
of the Fox function or take the limit s — 00 (g, — 00) in
Eq. (39). We choose the second option. To leading order one
finds

_ 1 K2
Crls) ~ = ——s 7V (42)
sqy L L
leading to the short-time behavior
K;/ZIV/Z
CLt) ~ =~ (43)
r(1+%)L
In the opposite small-s limit (s,g,, — 0) one has
~ 1 q,L q}%L2
C =_-|1=- 2= — ...
L(s) p ( ) + 6
L L?
=5 —me ! . (44)
2K, 6K,
leading to the long-time behavior
Cit)=1 L + L
T ar(1—p)k)Per T 6N — K p
45

Thus, to leading order one finds

[—CLn)] ' = 2r(1 — %)L‘ll{;/zt”z, = co. (46)

2. Finite system

Next, we turn to the study of finite size effects. For finite
M and L/M < 1, the scaling behavior of C,(t) versus the
rescaled time (Dgt?)!'/?/L is represented in Figs. 8 and 9 for
the cases x = 0 and k > 0, respectively. As can be seen from
Fig. 8, finite size effects are important in both cases. Both
the exponent « and the typical lengths M and L determine
the initial slope of the recovery curves. For a given « and a
given finite size ratio L /M, recovery curves corresponding to
different values of L collapse approximately to a single curve
(see Fig. 8). As shown below, this short-time behavior can also
be recovered analytically.
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FIG. 8. Concentration C/(¢) of particles in the bleached spot as
a function of the rescaled time for k = O for different ratios L/ M
obtained by fixing the value of L and using three different values
of M. The L values were set to 20, 40, and 80. Curves for different
values of L but for the same value of L/M are seen to collapse into
a single curve. The L/M values corresponding to collapsing data
sets are, from top to bottom, 0.2,0.1 and 0.05. The dotted recovery
curve corresponds to the case of an infinite system [Eq. (40)]. The
inset shows a zoom-in of the data in the region where changes in the
time derivative of the recovery curve are largest (different symbols
are used to distinguish different data sets corresponding to the same
value of L). The solid curves are plots obtained from the numerical
inversion of Eq. (38).

For early times we take the s — oo limit of Eq. (38) and
find

12
Gy~ (M) L o (M VR v
M—L)sqL  \M-L) L ’

47)
i.e.,
M K, il
Cp(t) ~ . 48
A (M-L)r(1+§)L (*9)
1 -
0.8
0=0.5
CL() 06 k=1.0; 0.1
0.4 t
L=20, 40, 80
02} L/M=0.1
O L L L L L
0 1 2 3 4 5 6
D, "2 /L

FIG. 9. Concentration C,(¢) of particles in the bleached spot as
a function of the rescaled time in the ¥ > 0 case. The collapse of
data sets corresponding to different values of « is due to the fact that
the recovery curves are plotted in terms of the x-dependent rescaled
time. The solid curve again corresponds to the inversion of Eq. (38).
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In the opposite limit of long times (s — 0), the pertinent
expansion yields

~ LM —L
CL@q::s*I—--ﬁ—TE——2K54sV*1+»0c¥V*U. (49)
In direct space this yields
LM —L) 5
Ci)=1—-————— 4+ 0™, 50
L(®) 12F(I_V)KVWL ) (50)
implying that
12I'(1 — y)K, 17
[1—Cdnr1=——i—JQ4L—+oa”> (51)

LM —1L)

Thus, a log-log plot of the simulation curves for the inverse of
the difference between the average normalized concentration
and its final value (here normalized to 1) as a function of
time should yield linear behavior with a slope equal to y.
Note the difference in behavior with respect to the infinite
system [Eq. (46)], where the growth of [1 — CL,C,O(I)]’1 is
proportional to t¥/2. This means that the limits M — oo and
t — oo do not commute.

C. Nonreproducibility of concentration recovery curves
with an approach based on scaled Brownian motion

Diffusion equations with a time-dependent diffusion co-
efficient (so-called scaled Brownian motion (SBM) in the
language of Ref. [2]) are often used to fit in a rather
successful way recovery curves recorded in FRAP experiments
[40,43,65]. The idea underlying this “ad hoc” procedure is
to replace the diffusion coefficient D = K in the standard
diffusion equation by a time-dependent expression D't” !,
whereby D’ and y are used as fitting parameters. In Ref. [66],
a word of caution is given against the use of such approaches
without the corresponding justification at a microscopic level
of description. Even though SBM seems to work well in the
specific case of FRAP recovery curves, the lack of more
detailed information on the elementary transport processes
might lead to wrong results if one attempts to compute other
quantities.

How well does SBM work for our comb model? Since our
CTRW-based exact solution is valid for arbitrary values of
y, we can answer this question easily. In Fig. 10 we show a
semilog plot of C; as a function of (K, t¥)"/?/L fory = 1/2
and also for the normal diffusion case y = 1. One can see
that is not possible to fully match the recovery curve obtained
from the CTRW model simply by shifting horizontally the
solution for the normal diffusion case, implying that a simple
substitution of the form D — D’t”~! in Eq. (41) cannot be
used to reproduce the behavior of this quantity in the CTRW
case. For example, for values of C; larger than 1/2, say,
it would be possible to fit the anomalous diffusion curves
reasonably well by a proper shift of the normal diffusion curve.
However, this would worsen the agreement for C; < 1/2,1i.e.,
the regime corresponding to relatively short times. One can
nevertheless see from the figure that the overall agreement is
not too bad. This could provide an empirical justification for a
heuristic “fitting” procedure of recovery curves based on SBM,
especially for experimental comblike systems characterized by
an effective value of y close to 1.
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FIG. 10. Semi-logarithmic plot representing C.(f) Vs.
log,o(K,17)"2/L for the two extreme cases of a comb model
with an infinitely long backbone (M — o0), namely, (i) the case
where all the teeth are infinite, i.e., the case with @ = 0 (implying
y = 1/2, see solid curve), and (ii) the case where all the teeth are
finite, i.e., the case of normal diffusion with @ > 1 (implying y =1,
see dashed curve) and K| = D.

VII. SUMMARY AND OUTLOOK

In the present work we obtained an explicit analytical
expression for the diffusion coefficient of a particle moving
on a comb with randomly varying tooth lengths drawn from a
power-law distribution (random-comb model). This was done
by exploiting the well-known correspondence of the comb
model with the CTRW model, whereby the waiting time of
the walker was set identical with the time needed by a particle
diffusing on a tooth to reach the intersection with the backbone
and then move along it. The influence of binding-unbinding
processes on the diffusion coefficient was also studied, and
a scaling law in terms of the ratio of rate constants for both
processes was found. Transport properties are directly related
to the specific geometry of the substrate and to the strength
and persistence of the binding interactions and could thus
provide relevant information about these properties. Hence, we
expect the above results to be useful for quantitative studies
of diffusional transport in comblike systems such as spiny
dendrites. In order to mimic these systems in a more realistic
way, one could incorporate further sources of spatial disorder
into the system, e.g., spatial fluctuations in the separation
distance between consecutive teeth. Work in this direction is
underway.

Despite the approximations implied by the CTRW model,
our analytic results for the diffusion coefficient are in remark-
able agreement with Monte Carlo simulations. The analytic
expression for the diffusion coefficient was subsequently used
to study the behavior of relaxation curves for FRAP processes
implemented on the random comb. The agreement was also
excellent in this case in spite of the complete absence of free
parameters. The situation studied corresponds to the case in
which all the particles were initially placed on the backbone
and then some of them were photobleached, as opposed to
typical experiments in spiny dendrites, where some particles
are still found in the spines after photobleaching. However, no
matters of principle prevent one from implementing our initial
condition in real experiments.
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We also characterized the delay introduced by binding-
unbinding processes in terms of a scaling law involving both
the ratio of rate constants ¥ and the exponent characterizing
the statistical properties of the random-comb geometry «.
Binding-unbinding effects have no influence on the diffusion
exponent, but they do change the diffusion coefficient. Sim-
ilarly, changes in « only have an influence on the diffusion
coefficient. In contrast, for 0 <o < 1 small changes in
o influence both the diffusion exponent and the diffusion
coefficient.

As a result of the above, we conclude that the effect of
binding-unbinding processes can be mimicked by a change
in the comb geometry only when « > 1. To this end, one
needs to find a proper value of the decay exponent «’ so that
Dy(a') = D, (a), where both o,a’ > 1. In contrast, when 0 <
a < 1, this is no longer possible, since the diffusion exponent
is also affected, i.e., ¥’ = (1 + «')/2 # (1 + «)/2 = y.Inthis
regime, changes in the geometry have a more profound effect
than changes in the binding properties of the system. In the
first case, the long time dependence of the MSD is affected,
and this should be clearly distinguishable in experiments.

Finally, we saw that one should be careful when using
results based on standard diffusion equations to deal with
anomalous diffusion problems. In our case, it was not possible
to generate FRAP dynamics on a random comb as given
by the CTRW approach by simply replacing the diffusion
coefficient with a time-dependent one in the standard diffusion
equation, albeit differences appeared to be small in general.
This emphasizes the need of dealing with anomalous diffusion
problems by means of bottom-up approaches relying on a solid
basis at a microscopic level of description. In this context,
our CTRW approach can be straightforwardly extrapolated
to study other problems with different initial conditions,
boundary conditions, and dimensionality.
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APPENDIX A: FIRST PASSAGE PROBABILITY
FOR ARBITRARY ¢

In our route to the analytic expression for the first-passage
probability v,,(£,0) introduced in Sec. IV B, we shall invoke
some results obtained in the framework of the continuous-time
formalism developed in Ref. [31]. We shall formulate the
problem in continuous time by first introducing the probability
densities ¥ (t) = ¥ (¢,£) and U(t) = U(t,£). The passage to a
formulation in discrete time can be performed via the rela-
tions lime_.o [ y(1)dt = ¥,(¢) and lim._o ["° U(r)dt =
U,(£).
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Let us denote by ¢(¢) the PDF for the waiting time between
consecutive jumps. In the main text we consider the case of
jumps taking place at regular time intervals [¢(z) = 8(t — 1)]
but the results given below remain valid for an arbitrary PDF
provided that its first moment is finite. A walker placed on the
backbone, at (x = 0,y = 0), say, can reach either the left or the
right nearest-neighbor site (x = £1,y = 0) in many different
ways: either directly by means of a single step (an event which
takes place with probability 1 — 0), or else the walker first
jumps upwards to site (x = 0,y = 1) with probability 6, then
returns to (x = 0,y = 0) after n — 2 steps (with probability
U,_»), and finally jumps to (x = %1,y = 0) with probability
1 —0; or else it first jumps to site (x =0,y = 1) with
probability 6, then returns to site (x = 0,y = 0) after n; steps,
then jumps back again to site (x = 0,y = 1), then returns to
site (x = 0,y = 0) aftern — 3 — n; steps, and finally performs
the transition to a nearest-neighbor site (x = 1,y = 0); and
so on. A detailed bookkeeping of all these possibilities leads
to the following equation [31]:

w6 = (1 — 0)p(r) + / dis / Cdnd o)
0 0

x Uty — 1)1 = 0)p(t — 12)

t 171 3 15}
+/ dl4/ dt3/ dlz/ dt19<p(t1)
0 0 0 0

x Uty —1)0¢(t3 — 1)U (s — 13)

x(1—0)p(t —ta) +--- . (A1)

The multiple convolution structure of the terms on the right-
hand side suggests that switching to Laplace space may be
a convenient strategy; indeed, the Laplace transform of the
above equation takes a remarkably simple form, namely,
U(s) = (1 —0)@(s)/[1 —0@(s)U(s)]. Correspondingly, the
Laplace transform of the so-called survival probability V() =
ftoo Y(t)dt,i.e., the probability that the waiting time between
two consecutive jumps along the backbone be longer than ¢,
takes the form

0@(s)[1 — U(s)]
1 —0@(s)U(s)

Using the fact that U (s) = cosh(£ + 1/2)&/ cosh(£ + 3/2)&,
with cosh &y = 1/@(s) [31], and taking into account that & =
O(s'7?), Eq. (A2) yields the following asymptotic behavior:
\IJ(S) - 0 EO sinh Efo ’
1 — 6 2scosh{&
One thus sees that, for a given 6 # 1/2, the probability W(z)
is 8/(1 — @) times its counterpart for the case & = 1/2. The
same is true for the PDF 1/ (¢) because of the relation W(¢) =
ftoo ¥ (t)dt, whence Eq. (16) for the corresponding discrete-
time probabilities follows.

- 1
Vi) =< (A2)

s — 0. (A3)

APPENDIX B: SOLUTION OF THE FRAP PROBLEM
IN LAPLACE SPACE

Since the initial condition (34) is symmetric with re-
spect to the origin, the imposed periodic boundary condi-
tions are equivalent to zero-flux boundary conditions, j(x =
+M/2,t) = 0, whereby the flux of the mobile species (whose
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divergence is given by the time derivative of the concentration)
takes the form

. -y ac(-x 3t)
Jx,1) ==Ky oD, . (BD)
ax
Hence, zero-flux boundary conditions imply "C(x ) [ n=

0. Given the symmetry of the problem with respect tox =0,
one has c(x,t) = c(—x,t), and then it is simpler to solve the
equivalent problem in the halfinterval 0 < x < M/2, whereby
the zero-flux boundary condition at x = —M /2 is replaced
with the same boundary condition at x = 0, i.e.,

dc(x,t de(x,t
Dl _g apg 2€&D
0x  |,_o ox

—0. (B2
x=M/2

‘We now introduce the auxiliary quantity u(x,t) = co — c(x,1).
The Laplace transform #(x,s) obeys the equation

d*u 9~ uo(x)
E - qyl/l = _—Kys1*1’ s (B3)

where g, = /57 /K, . In our specific case the initial condition
u(x,0) = ug is

cy, x < L/2,
0= (B4)
0, L/2<x<M/2,
whereas the boundary conditions are
ou ou
2 =0 ad = = 0. (B5)
9% 19 0% [y —m/2

Let us now rescale the length variables with ¢, that is,
we define £ = g, x, L= q,L, and M= g, M. Further, let
us introduce #io(X) = uo(£/q,); the problem described by
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Egs. (B3)—(B5) can then be written as follows:

d2u(x,s) e
aCES)  gips) = 2B (B6)
dx? s
with
X c, *<L)2,
fo(X) = R N (B7)
0, L/2<2<M)2,
and
i i
M —0 and X —0. (B8)
9% 520 3)‘ =M/2

The Green’s function G(x,n; s) for the above Sturm-Liouville
problem fulfils the equation

PG(&,n;5) . .
oz G(X.ns) =68(& — ), (B9)
x
as well as the requirements
GE — n .m;8) = G — n*,ms9), (B10)
IG(X,n; G (%, m;
(xAn s) B (xAn s) 1 B1D)
0% -~ ax £—nt

The solution of the above problem can be computed by
standard techniques [67]. The final result is

. :2(6”+e’” et +e /(1 —eM), <,
G(X,m;8) =
(@ 4 e e + e N1 —eM), £
(B12)

The solution of the original problem in terms of rescaled
variable can then be expressed as follows:

- 1 M/2 A .
u(x,s) = —;/ G(&,n;8)io(n) dn. (B13)
0

Performing the integration and undoing the length rescaling,
one is finally left with Eq. (35).
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