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Isothermal Langevin dynamics in systems with power-law spatially dependent friction
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We study the dynamics of Brownian particles in a heterogeneous one-dimensional medium with a spatially
dependent diffusion coefficient of the form D(x) ∼ |x|c, at constant temperature. The particle’s probability
distribution function (PDF) is calculated both analytically, by solving Fick’s diffusion equation, and from
numerical simulations of the underdamped Langevin equation. At long times, the PDFs calculated by both
approaches yield identical results, corresponding to subdiffusion for c < 0 and superdiffusion for 0 < c < 1.
For c > 1, the diffusion equation predicts that the particles accelerate. Here we show that this phenomenon,
previously considered in several works as an illustration for the possible dramatic effects of spatially dependent
thermal noise, is unphysical. We argue that in an isothermal medium, the motion cannot exceed the ballistic limit
(〈x2〉 ∼ t2). The ballistic limit is reached when the friction coefficient drops sufficiently fast at large distances
from the origin and is correctly captured by Langevin’s equation.
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I. INTRODUCTION

Brownian motion was first observed by the botanist Brown
while examining, under a microscope, the motion of pollen
grains and noticing their random jitter in water [1]. Years later,
an explanation for this observation was given by Einstein,
who traced it to the random collisions between the grains and
the water molecules [2]. These collisions cause the Brownian
particle to exhibit a random walk in space, a phenomenon also
known as single-particle diffusion. Brownian motion can be
described by the diffusion equation for the particle’s probabil-
ity distribution function (PDF), which in one dimension reads

∂P (x,t)

∂t
= D

∂2P (x,t)

∂x2
, (1)

where x and t denote, respectively, the coordinate and time, and
D is the diffusion coefficient. Assuming a Dirac δ-function ini-
tial condition P (x,0) = δ(x), the solution of Eq. (1) is given by
the normal distribution P (x,t) = (4πDt)−0.5 exp(−x2/4Dt).
The mean displacement of the Brownian particle 〈�x〉 = 0,
while the mean-square displacement (MSD) grows linearly
with time: 〈�x2〉 = 2Dt .

An alternative route for describing the motion of a Brownian
particle is the Langevin equation [3]

m
dv

dt
= −αv + β(t), (2)

where m and v denote, respectively, the mass and velocity
of the particle. In this description, the impact of the random
collisions on the Brownian particle is realized through the
action of two forces, represented by the terms on the right-
hand side (rhs) of the equation. The first is a friction force
representing the statistical average of the collision forces,
while the second is a random Gaussian white noise accounting
for the force distribution around the mean value. Since the
magnitude of the collision forces depends on the characteristic
thermal velocity of the molecules of the embedding fluid,
the friction coefficient α in Langevin’s equation (2) must

depend on the temperature T . It should also be related to
the diffusion coefficient D appearing in Eq. (1). The relation
α = kBT /D (where kB is Boltzmann’s constant) is known as
Einstein’s relation, which is closely related to the more general
fluctuation-dissipation theorem [4]. In order for the latter to
be satisfied, one must also assume that the Gaussian white
noise term in Langevin’s equation has the following statistical
properties [5]: 〈β(t)〉 = 0 and 〈β(t)β(t ′)〉 = 2αkBT δ(t − t ′),
where 〈· · · 〉 denotes the average over all possible realizations
of the noise force β(t).

Two comments regarding Langevin’s equation (2) should
be made. First, the equation describes Brownian diffusive
dynamics only over long time scales. On short time scales,
the Langevin dynamics is ballistic (inertial). The crossover
between the ballistic and diffusive regimes occurs at τ ∼ m/α.
Second, the equation neglects the influence of the motion
of the Brownian particle on the embedding fluid. The fluid
acts as an ideal heat bath whose properties remain unaffected
by the presence of the moving Brownian particle. This latter
assumption is justified when the number of fluid molecules is
macroscopically large and when the momentum and energy
are locally transferred to the bulk fluid much faster than any
other relevant time scale of the dynamics.

The difference between the diffusion equation approach
to Brownian dynamics and the Langevin equation formalism
becomes more significant when one deals with diffusion
in a medium with a position-dependent friction coefficient
α(x). These types of dynamics are often associated with the
Itô-Stratonovich dilemma [6]. In this paper we study specific
examples of such dynamics occurring in systems with power-
law diffusion coefficients D(x) ∼ |x|c. Model systems with
spatially dependent diffusivity have been receiving renewed
interest recently due to their relevance to single-particle
experiments involving femto-Newton force measurements
[7,8]. The dilemma itself is not the main topic of this paper,
and we refer the reader to textbooks on stochastic dynamics,
e.g., [9,10], for more details. Here we summarize only the
highlights relevant to this work.
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(i) The generalization of Eq. (1) corresponding to the
dynamics of Brownian particles, at constant temperature,
in one-dimensional (1D) systems with spatially dependent
friction coefficients, is [11]

∂P (x,t)

∂t
= ∂

∂x

(
D(x)

∂P (x,t)

∂x

)
. (3)

This is Fick’s second law ∂tP = −∂xJ , with the flux J (x,t) =
−D(x)∂xP (x,t).

(ii) The corresponding Langevin equation reads [12]

m
dv

dt
= −α(x)v + β(x(t)), (4)

with α(x) = kBT /D(x), which is a natural generalization of
Einstein’s relation [13].

(iii) A dilemma arises when the Langevin equation (4)
is integrated over time in order to calculate the trajectory
of the particle [14]. Since the particle moves during the
infinitesimal time step dt , the value of α(x) also changes and
the Langevin equation of motion must be supplemented with
a convention (rule) for choosing the value of α(x). The name
“Itô-Stratonovich dilemma” assigned to the ambiguity about
the choice of interpretation is after the two most commonly
used conventions: the one of Itô, which uses the value of α at
the beginning of the time step, and the one of Stratonovich,
which takes the average of the friction function at the initial
and the end points.

(iv) In the overdamped limit, i.e., when the inertial term
on the left-hand side (lhs) of Eq. (4) is set identically to
zero, different conventions lead to trajectories with different
statistical properties, even for dt → 0 [15]. For Brownian
dynamics at constant temperature, the correct convention that
generates the PDF solving Eq. (3) is neither Itô’s nor that of
Stratonovich, but rather Hänggi’s interpretation (also known
as the isothermal convention) [16,17], which uses α at the end
of the time step [11,12].

(v) In the case of underdamped Langevin dynamics [i.e.,
Eq. (4) with the lhs not assumed to be vanishingly small], all
(reasonable) conventions converge to the correct PDF in the
limit dt → 0. This difference between underdamped dynamics
and its overdamped limiting case [see item (iv) above] stems
from the fact that in the latter, the velocity is physically ill
defined (since it is proportional to the white noise β), while
in the former, it remains finite and follows the equilibrium
Maxwell-Boltzmann distribution. Formally (mathematically)
speaking, there is no dilemma in the second-order (in x)
equation (4). However, the rate of convergence of numerical
simulation results toward the theoretical PDF [i.e., the solution
of Eq. (3)] greatly depends on the chosen convention and
the numerical integrator. This issue has considerable practical
importance in numerical simulations where the time step dt is
not infinitesimal. The results in the work are based on Langevin
dynamics simulations employing the Grønbech-Jensen &
Farago (G-JF) integrator [18,19] with a recently proposed
inertial convention [12,13] (see details in Sec. II B). This
combination produces excellent results even for relatively large
integration time steps.

With the above in mind, we now turn to examine the
behavior of a Brownian particle moving, at constant temper-
ature, in a 1D system with a power-law diffusion function

D(x) = D0|x/l|c. In the following section we calculate the
PDF of the particle by solving the diffusion equation (3) and by
numerically integrating the Langevin equation of motion (4).
As we will observe, these two approaches do not necessarily
yield similar results.

II. HETEROGENEOUS MEDIA WITH POWER-LAW
FRICTION FUNCTION

A. Fick’s second law

For D(x) = D0|x/l|c, the solution of Eq. (3) is

P (x,t) = [(2 − c)cD0t]1/(c−2)

2	( 1
2−c

)
exp

[ −|x|2−c

(2 − c)2(D0t)

]
, (5)

where 	 is the Gamma function and for brevity we set l = 1.
This solution satisfies the condition that the particle’s motion
starts at the origin: P (x,0) = δ(x). From the requirement that
P (x,t) vanishes for x → ±∞, which is necessary (but not
sufficient) to ensure that

∫ ∞
−∞ P (x,t)dx = 1, we infer that

the solution can be physical only for c < 2. From symmetry
considerations, the ensemble average 〈x〉 = 0, while the MSD

〈x2〉 =
∫ ∞

−∞
x2P (x,t)dx = 	( 3

2−c
)

	( 1
2−c

)
[(2 − c)2D0t]

2/(2−c). (6)

Thus, for c < 0 we observe subdiffusion and for 0 < c < 1
we find superdiffusion. For c = 0 we have 〈x2〉 = 2D0t ,
i.e., normal diffusion, and for c = 1 the particle’s motion is
ballistic. For c > 1, Eq. (6) predicts dynamics that are faster
than ballistic (for instance, c = 1.5 corresponds to dynamics
at constant acceleration). This is an unphysical result, and in
what follows we demonstrate that for any c � 1 the motion
remains ballistic.

B. Langevin dynamics simulations

The PDF can be obtained from an ensemble of trajectories
of particles starting at the origin x0 = 0 with initial velocities
v0 drawn from an equilibrium Maxwell-Boltzmann distribu-
tion. The trajectories are computed by numerically integrating
Langevin’s equation of motion (4). Denoting, respectively, by
xn and vn the position and velocity of a particle at time tn,
the integration is conducted using the G-JF algorithm that
advances the system by one time step to tn+1 = tn + dt , using
the following set of discrete-time equations [18,19]:

xn+1 = xn + bdtvn + bdt2

2m
f n + bdt

2m
βn+1, (7)

vn+1 = avn + dt

2m
(af n + f n+1) + b

m
βn+1, (8)

where f n = f (xn) is the deterministic force acting on the
particle, βn+1 is a Gaussian random number with

〈βn〉 = 0, 〈βnβl〉 = 2αkBT dtδn,l, (9)

and the damping coefficients of the algorithm are

b = [1 + (αdt/2m)]−1, a = [1 − (αdt/2m)]b. (10)

We set f n = 0 since we consider the case when the particle
experiences no forces other than random collisions with the
fluid molecules.
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Since the friction coefficient varies in space, the above
equations (7) and (8) must be complemented with a convention
for choosing the value of α to be used in Eqs. (9) and (10) at
each time step. Here we use the recently proposed inertial
convention that assigns to α the value of the spatial average
of the friction function along the inertial trajectory from xn to

FIG. 1. (a) The PDF at t = 1000 obtained from the numerical
integration (open circles) vs. the PDF given by Eq. (5) (solid line),
which solves Fick’s diffusion equation for c = −0.5. (b) Same as (a)
but for c = 0.5. (c) The MSD 〈x2〉 of the particle as a function of
time for c = −0.5,0.25,0.5,0.75 (markers) vs. the expected 〈x2〉 for
c = −0.5,0.25,0.5,0.75 according to Eq. (6) (lines).

x̃n+1 = xn + vndt [12,13]:∫ x̃n+1

xn α(x)dx

x̃n+1 − xn
= A(x̃n+1) − A(xn)

x̃n+1 − xn
, (11)

where A(x) is the primitive function of α(x). We have
previously demonstrated that the combination of the G-JF
algorithm with the inertial convention produces excellent
agreement between the computed and theoretical PDFs, even
for relatively large integration time steps.

Figure 1 depicts our results for the PDF for systems
with a power-law friction function α(x) = kBT /D(x) =
(kBT /D0)|x/l|−c for c = −0.5 [Fig. 1(a)] and c = 0.5 [Fig.
1(b)]. For convenience, we set m = 1, D0 = 1, kBT = 1,
and l = 1. The results have been obtained from simulations
of 2.5 × 105 trajectories with integration time step dt =
10−3. The open circles in Figs. 1(a) and 1(b) represent our
numerical results for the PDF at t = 1000 for c = −0.5
and 0.5, respectively. The numerical results exhibit excellent
agreements with the corresponding analytical predictions of
Eq. (5), which are plotted with the solid curves.

The symbols in Fig. 1(c) represent the numerical results
for the MSD for c = −0.5,0.25,0.5,0.75. We observe that
the power-law behavior 〈x2〉 ∼ t2/(2−c) [see Eq. (6)], which
is depicted by the lines in the figure, is indeed recovered
at long times. The same power law (6) was previously
derived in Ref. [20], where instead of Fick’s law (3), a
different diffusion equation ∂tP = ∂x{

√
D(x)∂x[

√
D(x)P ]}

was considered. The latter form of the diffusion equation
corresponds to the Stratonovich interpretation of the over-
damped Langevin equation. The reader is reminded (see Sec. I)
that for overdamped Langevin dynamics, different conventions
lead to different PDFs. Indeed, although both equations yield
the same power law for the MSD, the PDFs solving these
equations look markedly different. Specifically, the PDFs of
the Stratonovich diffusion equation diverge at the origin for
c > 0 and assume a bimodal form for c < 0, with a vanishing
value at the origin [20]. In contrast, the PDFs of Fick’s law
of diffusion (which corresponds to Hänggi’s interpretation)
attain a maximum at the origin. Our Langevin dynamics
simulations, which at long times reproduce PDFs that agree
with Eq. (5), serve as yet another demonstration for the
appropriateness of Hänggi interpretation and Fick’s second
law for diffusion at constant temperature. This is because
the simulations follow the underdamped (inertial) Langevin
dynamics of the particle. As noted above, for the inertial
Langevin equation, all interpretations converge to the correct
solution in the limit of small integration time steps.

III. BALLISTIC MOTION

A. The case c � 1

Integrating Eq. (4) from the initial time to t and taking
the ensemble average over all noise realizations yields the
relationship

〈m�v〉 = −〈�A(x)〉 (12)

between the momentum change (force impulse) and displace-
ment of the particle. Equation (12), which was previously
derived in Ref. [13], involves A(x), the primitive function of
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α(x) [see Eq. (11)]. This implies that α(x) must be an integrable
function. For α(x) ∼ x−c with c � 1, the friction function is
nonintegrable at x = 0. This feature makes it impossible to
start the simulations when the particle is at the origin due to
the inability to define the friction coefficient for the initial
step. If the particle is placed on one side of the system, it will
never cross to the other side. This is because no matter how
close the particle approaches the origin, its ballistic distance
(the characteristic distance that it travels before changing its
direction) will always be shorter than the distance to the
origin. In other words, for c � 1, the dissipation near the
origin diverges so rapidly that the singularity acts like a wall
that stops the particle and bounces it back. This scenario,
however, is unphysical and it stems from the unphysical nature
of Langevin’s equation, which only considers the influence of
the medium on the particle but ignores the impact of the particle
on the medium. From momentum conservation we know that
any change in the momentum of the Brownian particle must
be countered by an opposite change in the momentum of the
molecules of the medium. This implies that when the particle
is reflected from the origin, it exerts a force on the friction
singularity and this force will cause changes in the medium
that would not allow the singularity to be long lived.

Apart from the divergence of A(x) at the origin, it is also
interesting to consider the ramifications of the rapid drop
in α(x) in the limits x → ±∞. For c > 1, the integral over
α(x) from x0 > 0 (x0 < 0) to +∞ (−∞) is finite, implying
that the particle’s ballistic distance may diverge. This can be
inferred from Eq. (12), which suggests that it is unlikely for
a particle to change its direction of motion if it reaches x0

with velocity v0 > [A(∞) − A(x0)]/m. In other words, as the
particle travels further away from the origin, it experiences a
vanishingly small friction force and therefore its motion would
ultimately become ballistic. The crossover from diffusive to
ballistic dynamics is further explored in the following section.

B. Crossover to ballistic motion

We now consider dynamics in a one-dimensional system
with the spatially dependent diffusion coefficient

D(x) = D0

[
1 +

(
x

l

)2
]
. (13)

For this choice, D(x) ∼ xc with c = 2 for x/l 	 1, but
unlike the power-law form discussed in Sec. III A above, the
friction coefficient α(x) = kBT /D(x) does not diverge at the
origin. A special reason for choosing the specific form (13)
is that it has been given in Ref. [11] as an example of a
spatially dependent diffusion coefficient causing increasing
acceleration. This result is obtained by multiplying by x2 both
sides of the diffusion equation (for D0 = 1 and l = 1)

∂P (x,t)

∂t
= ∂

∂x

[
(1 + x2)

∂P (x,t)

∂x

]
(14)

and integrating with respect to x, which yields the equation

∂〈x2〉
∂t

= 2 + 6〈x2〉, (15)

which has the solution

〈x2〉 = [exp(6t) − 1]/3. (16)

FIG. 2. The PDF at (a) t = 10 and (b) t = 1000 of a Brownian
particle starting at the origin and moving in a medium where α(x) =
1/(1 + x2).

However, the prediction of Eq. (16) that the MSD grows
exponentially with t is unphysical since it implies the
emergence of two opposite currents of particles with ever-
increasing velocities. One should wonder about the energy
source of the exponential growth in the kinetic energy of
the Brownian particles. The particles are immersed in a
medium of uniform temperature serving as a heat bath and
experience no force other than random collisions with the
molecules of the medium. It is impossible that through random
collisions the Brownian particles would consistently gain
energy, allowing them to reach exponentially large speeds,
especially at large distances where the friction coefficient
vanishes, which means that the rate of collisions with the heat
bath becomes increasingly small.

The erroneous Eq. (16) is derived from the diffusion
equation (14). The latter, however, does not correctly depict
the dynamics of the particles in the system because is applies
only to time scales much longer than the ballistic time of the
motion. As noted at the end of Sec. III A, the ballistic distance
diverges when the friction function drops faster than x−1 at
large distances. When this occurs, the velocity of the particle
saturates to some finite value and the dynamics becomes
ballistic. In other words, the ballistic time diverges and the
dynamics never reaches the diffusive regime of Eq. (14).

In contrast to the diffusion equation (3), the Langevin
equation (4) applies to both the ballistic and diffusive regimes.
Figure 2 presents our results for the PDF of the particles at
t = 10 [Fig. 2(a)] and t = 1000 [Fig. 2(b)]. The results, which
are based on numerical integration of 3.25 × 105 trajectories
starting at the origin (with velocities drawn from the standard
Gaussian equilibrium distribution), demonstrate that as the
time increases, the PDF becomes increasingly bimodal. This
indicates the emergence of two opposite particle currents
propagating away from the origin. Figure 3(a) shows the
velocity probability distribution function (VPDF) at t = 1000
(circles), which is also bimodal and thus does not coincide with
the initial equilibrium distribution (depicted by the dashed line
in the figure). The VPDF at t = 2000 (not shown) is essentially
identical to the VPDF in Fig. 3(a), which proves that this VPDF
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FIG. 3. (a) Circles show the bimodal VPDF at t = 1000.
The dashed line depicts the initial Gaussian equilibrium VPDF.
(b) Computed MSD of the particle (circles) vs. the asymptotic
power-law form 〈x2〉 = 2.41t2 (solid line).

represents the steady state of the velocity distribution. From
the steady-state VPDF, we find that the steady-state squared
velocity 〈v2〉 
 2.41 (in units of kBT /m) and therefore at long
times the position MSD 〈x2〉 = 〈v2〉t2 = 2.41t2. This result,
which is fully corroborated by the numerical data in Fig. 3(b),
demonstrates that the particles end up moving inertially with
velocities drawn from the steady-state VPDF.

C. Fluctuation-dissipation relationship

Integrating Eq. (4) with respect to time, squaring the
equation, and taking the ensemble average over noise realiza-
tions yields the generalized form of the fluctuation-dissipation
relationship for systems with spatially varying friction [13],
which reads

〈(m�v)2 + 2m�v�A + (�A)2〉 =
∫ t

0
2〈α(t ′)〉kBT dt ′.

(17)

If at long times the dynamics enters the diffusive regime, the
first two terms on the lhs become negligible compared to the
third one. Moreover, for a constant α, the third term on the lhs is
equal to α2〈(�x)2〉, while the integral on the rhs gives 2αkBT t .
Thus, for constant friction, expression (17) reduces (at long
times) to the well-known form of the fluctuation-dissipation
relationship 〈(�x)2〉 = 2(kBT /α)t = 2Dt .

FIG. 4. (a) Ensemble averages of (m�v)2 [first term on the lhs of
Eq. (17), thin solid line], 2m�v�A (second term, thick solid line),
and (�A)2 (third term, dashed line), as a function of time t . (b) Sum
of the three averages shown in (a) (dashed line) vs. the average of
2αkBT integrated over time [rhs of Eq. (17), solid line], as a function
of t .

For the dynamics discussed in Sec. III B, the motion is not
diffusive, but rather becomes ballistic at long times. However,
the relationship (17) holds for any time t , regardless of the
character of the dynamics. This is nicely demonstrated in
Fig. 4(a), where we plot the ensemble averages of the three
terms on the lhs of Eq. (17). As can be seen, all three terms grow
rapidly at short times, which include the very initial ballistic
segment and the following interval of diffusive motion. At
t � 100, all three terms saturate, which indicates the crossover
from diffusive to ballistic motion. In Fig. 4(b) we plot the sum
of the averages of these three terms (dashed line) vs. the value
of the rhs of Eq. (17), which is the ensemble average of α(x(t ′))
integrated from the beginning of the dynamics until time t

(solid line). The lines overlap each other (the relative difference
between them is smaller than 1%), which demonstrates that the
equality between the two sides of Eq. (17) holds at all times.

IV. SUMMARY AND DISCUSSION

In this work we used computer simulations to study the
Langevin dynamics of Brownian particles in a 1D system with
a friction coefficient that varies as a power law of the distance
from the origin α(x) ∼ |x|−c. It has been demonstrated that
for c < 1, the particle diffuses anomalously with the MSD
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〈x2〉 ∼ t2/(2−c). This result can also be derived by solving the
corresponding diffusion equation (3) with diffusion coefficient
D(x) = kBT /α(x).

The diffusion equation can be formally solved for c < 2.
For 1 < c < 2, the solution incorrectly predicts that the MSD
grows faster than the MSD of ballistic motion. This result
stems from the diffusion equation, which cannot be physically
justified for time scales smaller than the ballistic time of the
motion. For constant friction coefficient α, a crossover from
ballistic to diffusive motion occurs on time scales τ � m/α. In
the case when α(x) ∼ |x|−c with c > 1, the friction vanishes
rapidly at a large distance and an opposite crossover, from
diffusive back to ballistic motion, takes place. When this
happens, the diffusion equation can no longer be used if
the ballistic time diverges, in which case the motion remains
ballistic (as the particle escapes to infinity).

In the example discussed in Sec. III B, the divergence of
the friction at the origin is removed, while at large distances
α(x) ∼ |x|−2. Even if the friction never vanishes completely,
it drops at such a fast rate that it quickly becomes irrelevant.
Thus, this example resembles the dynamics of a Brownian
particle in a finite fluid drop held at constant temperature T .
When the particle reaches the surface of the drop it escapes
and its velocity no longer changes. At the moment of escape
the particle has to have a velocity component directed outward
from the drop and, therefore, the velocity distribution function
outside the drop differs from the equilibrium Gaussian equi-
librium velocity distribution at temperature T [see Fig. 3(a)].

Noticeably, the mean kinetic energy of the escaping particle
is higher than the corresponding equilibrium value dkBT /2
(where d is the dimensionality of the system). The fact that,
on average, the escaping particle takes away an amount of
kinetic energy larger than the equilibrium value implies that
the molecules of the fluid drop are left with an average kinetic
energy smaller than the equilibrium value. The drop cools
down slightly and in order to maintain the temperature at T it
must be connected to a true heat reservoir that would supply the
missing energy. This consideration is missing in the framework
of Langevin’s equation that completely neglects the influences
of the Brownian particle on the surrounding medium.

Finally, we note that, within the framework of Langevin
dynamics, a generalized form of the fluctuation-dissipation
relation has been previously derived [Eq. (17)]. This form
holds for dynamics in media with spatially varying friction, at
all times (i.e., within both the ballistic and diffusive regimes of
the dynamics). If α(x) is bound between two positive values,
the motion at long times becomes diffusive. In such a case,
the lhs of Eq. (17) becomes dominated by the third term and
both sides of the equation grow linearly with t . Anomalous
diffusion is observed when at large distances α(x) ∼ |x|−c with
c < 1. In this case, the third term still dominates the other two
terms on the lhs; however, the long time behavior scales like
x2(1−c) ∼ t2(1−c)/(2−c). For c � 1, the motion becomes ballistic
at long times. In this case, all terms on the lhs are equally
important and, like the rhs of the equation, relax to constant
asymptotic values.
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