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Pressure-induced recovery of Fourier’s law in one-dimensional momentum-conserving systems
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We report the two typical models of normal heat conduction in one-dimensional momentum-conserving
systems. They show the Arrhenius and the non-Arrhenius temperature dependence. We construct the two
corresponding phenomenologies, transition-state theory of thermally activated dissociation and the pressure-
induced crossover between two fixed points in fluctuating hydrodynamics. Compressibility yields the ballistic
fixed point, whose scaling is observed in Fermi-Pasta-Ulam (FPU) β lattices.
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I. INTRODUCTION

The microscopic root of macroscopic linear irreversible
processes [1] has been closely studied through the research
of heat conduction [2–4], where the processes are reduced to
Fourier’s law,

J = −κ∇T , κ ∝ N0. (1)

Here J, ∇T , κ , and N express energy currents, temperature
gradients, heat conductivity, and the size of systems. The
early works examined the connection between the relation
that temperature gradient becomes the thermodynamic force
(J ∝ ∇T ) and the nonintegrability corresponding to phonon
scattering [5–7]. Dimensionality is considered as an intrinsic
factor for the intensive property of heat conductivity, e.g.,
phonon localization [8–10] and anomalous heat conduction
[11]. The verification is still progressing [2,12–14].

Particularly, a universal breakdown of Fourier’s law in
one-dimensional momentum-conserving systems is supported
by theories [11,15], numerical simulations [2,16–19], and
experiments [20]. This systematic breakdown of the intensive
property is called anomalous heat conduction and heat
conductivity in these systems grows with the power of N ,

κ ∝ Nα, 0 < α < 1. (2)

This universality is described by a semimacroscopic contin-
uum theory, fluctuating hydrodynamic equations [21], and the
recent research [15,22–24] discovered its nontrivial relation
with KPZ class, a broad class of dynamical critical phenomena
[25]. The prediction of the theory and simulations clarified that
α takes the universal value [11,15,17,19,22],

α = 1/3. (3)

The recent research also has deeply studied the scaling
property of fluctuations and revealed the undoubted evidence
of the connection that some scalings in these systems can be
described by the KPZ equation [4,15,23,24,26]. Anomalous
heat conduction forms the unique class connecting with
KPZ class. Heat conductivity in one-dimensional momentum-
conserving systems is considered to show the divergence in
the thermodynamic limit.

The divergence of transport coefficients is considered as a
general property of low dimensional momentum-conserving
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systems and as the universal behavior of a fixed point in
the fluctuating hydrodynamics [11,27–30]. If systems do not
conserve momentum, they do not show such an anomaly
[31–33]. As the ordinary understanding of anomalous heat
conduction, the correlation function of spatially integrated
energy currents Ĵ has the long time tails,

1

N
〈Ĵ (0)Ĵ (t)〉eq

T ,P ∼ tα−1, (4)

in tm � t < cN (tm: microscopic characteristic time scale;
c: sound velocity) [11,17,22,34], and it corresponds to the
anomalous scaling. We used 〈〉eq

T , P as the isothermal isobaric
equilibrium average. Equilibrium fluctuations of total energy
currents Ĵ and heat conductivity are associated with a Green
Kubo formula [35]

κ(T ; P ) = lim
N→∞

1

NT 2

∫ ∞

0
dt〈Ĵ (0)Ĵ (t)〉eq

T ,P . (5)

Recent research [15,24] clarified that the correlation of the heat
mode, one of the plane waves in perfect fluids, contributes to
the anomaly. The heat-mode autocorrelator Sh(x,t) takes the
asymptotic scaling form

Sh(x,t) ∼ t−1/zfI (x/t1/z). (6)

fI is the Levy distribution function. The exponent is another
characterization of the fixed point,

z = 3/2. (7)

Two exponents are connected with the dimension d(� 2),
e.g., through the renormalization-group approach [11] as
[z = 1 + d/2,α = 1 − d/z(+0)]. Even in the solids, the coef-
ficient shows the divergence because of momentum conserva-
tion and dimensionality [20,30]. The anomaly has been studied
mostly with the theory of fluids, but the mechanism is quite
robust against such additional orders.

However, in spite of the completeness, the breakdown
of this universality has been reported with recent detailed
molecular dynamics [36–46]. The findings began with a model
of polystable interaction potential energy, the coupled rotator
model [36,37]. This model shows the convergence of heat
conductivity at large sizes and has been studied to settle the uni-
fied sight between the anomaly and the recovery of Fourier’s
law [38]. Following it, the subsequent research has reported
the abundant systems of the recovery [39–41]. The detailed
investigation continues [42–46]. Some cases [39,40] were
pointed out their finite size effects [42], but as the worst for the
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universality class, another report of the research [46] revealed
that the diatomic hard-core systems can show the recovery in
spite of the well-known feature as a paradigm of anomalous
heat conduction. On the other hand, some authors [43] reported
the possibility of the convergence caused by the quasistable
dissociation. They also referred to the contributions of higher
loop orders in fluctuating hydrodynamics, which was not
studied in the previous analytical works. In the kinetic theory,
the first foundation of the anomaly [27], such effects come
from the deviation of the interactions from the description of
the stochastic two body interactions (Boltzmann equations). So
we may need the careful study of such many-body interactions,
though they are thought to be the source of the anomaly.
Actually, the quite recent research reported that the systems
of multiparticle collisions showed the normal heat conduction
[45]. One-dimensional momentum-conserving systems may
form another class from the anomalous heat conduction. The
unified view between the class of normal heat conduction and
the ordinary anomalous class is far from established.

In this paper, we report the two different possibilities of the
origin, thermally activated dissociation [43] and the increase
of pressure. We first present the two typical models of normal
heat conduction in one-dimensional momentum-conserving
systems through the simulations of steady heat conduction.
One shows the Arrhenius temperature dependence consistent
with the previous work [43]. The other one shows the non-
Arrhenius behavior. The latter suggests another mechanism
of the convergence. Next we show that the latter one would
be related to pressure through the observations of equilibrium
current fluctuations. We try to explain the two mechanisms
phenomenologically based on the transition-state theory of
the dissociation formation and on the full fluctuating hydro-
dynamic equations. In the latter analysis, the cutoff of the
anomaly comes from the response to the pressure fluctuations.
In the approach of mode coupling theory (MCT), one can see
the convergence and a feature related to the breakdown of
the hyperscaling between α and z. The renormalization group
(RG) result suggests the recovery caused by the crossover
between two fixed points. Compressibility yields the ballistic
fixed point,

z = 1. (8)

We found that this scaling can be reproduced by the scaling
discussions of the RG flows on full fluctuating hydrodynamic
equations along the same procedure with [11]. The correspond-
ing crossover is observed in the Fermi-Pasta-Ulam (FPU)-β
lattices. Our results provide a picture of the recovery that the
anomalous scaling can be cut off at N∗, the characteristic size
of the dissociation or that of the crossover between the two
fixed points,

κ ∼
{
Nα, N � N∗
Nα

∗ , N 
 N∗.
(9)

The construction of this paper is as follows; First, in the
Settings section, we set the system Hamiltonian and the
two typical interaction potentials, and describe the details
of two observations to measure the system-size dependence
of heat conductivity. Next in the Results section, we report
three results in the corresponding subsections: the first one

for steady heat conduction, the second one for equilibrium
fluctuations of energy currents, and the third one for analysis.
In the Discussion section, we discuss the correspondence of
our results with the ordinary theories and with numerical
simulations and the suggestion for experiments. We report
the inviscid-ballistic scaling crossover of FPU-β lattices in the
same section.

II. SETTINGS

A. Settings of systems

We study the one-dimensional N particle Hamiltonian
systems of nearest-neighbor interactions,

H(�) =
N∑

i=1

[
p2

i

2mi

+ U (xi)

]
+

N−1∑
i=1

V (xi+1,i), (10)

with appropriate boundary conditions. � :=
(x1, . . . ,xN ,p1, . . . ,pN ) is the phase space coordinate.
With pinningless monatomic [mi = m,U (x) = 0], where the
system should show the anomalous heat conduction, we set
the two typical models of normal heat conduction. One is
for thermally activated recovery, the pure repulsive-δ (PR-δ)
model,

V (x) = g

δ
x−δ. (11)

The other is for pressure-induced recovery, the FPU-β model,

V (x) = K

2
x2 + β

4
x4. (12)

These two models show the different forms of temperature
dependence on heat conductivity with each other. The former
one suggests the noncontinuum mechanism as already reported
in [43], and the latter one provides an inconsistent example
with their class.

Pure repulsive δ is described here. The mechanical parame-
ters are (m,g,δ,d,e). d is the average distance of particles given
by the boundary conditions and e is the energy scale per particle
given by the initial conditions or by attached thermostats. The
free parameters are [δ,V∗ := V (d)/e]. xi expresses the ith
particle position. Two limits, V∗ → 0 (dilute high energy), ∞
(dense low energy), with finite δ correspond to integrable limits
(of hard-core particles and of harmonic chains). This system
shows the strong nonlinearity at V∗ ∼ 1. δ characterizes the
interaction decay (δ → 0: log interactions, δ → ∞: hard core
interactions). It has been already reported that this system
should show the asymptotic convergence of heat conductivity
at δ = 1,6,12 [41]. Now we take the unit (m,g) → 1 and
choose the parameters as (δ = 6,V∗ ∼ 1) to get the strong
nonlinearity.1

FPU β has the following mechanical properties:
(m,K,β,l,e) are the mechanical parameters of this system. l is

1In the sense that the maximum Lyapunov exponent is large
compared with dilute case (d > 1) and the Lyapunov spectra shows
the same shape with high energy FPU β, which correspond to the
case that the Hessian of Hamiltonian is able to be replaced by the
random matrix [47] on the surface spanned by conserved quantities.
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the averaged compression given by the boundary conditions. e
is the same with the PR-δ case. xi expresses the deviation
from the equilibrium point under the free boundary. An
appropriate center uniquely determines it. The compression
parameter l expresses the mismatch between the equilibrium
position of force under the chosen boundary and that under
the free boundary. We take the unit (m,K,β) → 1. The left
free parameters are (l,e) here. e decides the nonlinearity of
the system (e → 0: harmonic; e → ∞: strong nonlinear),
and l corresponds to the pressure. The heat conduction
at (e 
 1,|l| � 1) is well studied [2], and it shows the
fluctuating hydrodynamic (FH) scaling at large N [16,19].
Our simulations suggest the compression would be intrinsic
for the recovery of Fourier’s law. For the notation, we introduce
the isodense potential (coordinate transformation xn → yn :=
xn + nl)

V (x) = K

2
x2 + β

4
x4 → K

2
(x − l)2 + β

4
(x − l)4. (13)

We call it compressed FPU β (c-FPU β) here. The isodense
condition is tricky in FPU β (l-compressed fixed: V (x1) +
V [−(N + 1)l − xN ]; l-compressed periodic: V [x1 − (xN +
Nl)]), but easy in c-FPU β [fixed: V (x1) + V (−xN ); periodic:
V (x1 − xN )]. We study its l dependence in the highly nonlinear
regime (e 
 1), where the system shows the FH anomaly at
l = 0, zero pressure [16,19].

B. Settings of experiments

We studied two observables to investigate the system size
dependence of heat conductivity. One is the heat conductivity
defined by heat currents and temperature profiles under the
states of steady heat conduction maintained by stochastic
reservoirs. The other is power spectra of total energy cur-
rents under the isolated equilibrium conditions with periodic
boundaries. We note that we studied heat conductivity of the
former case under the globally far from equilibrium conditions
where the temperature difference of the attached reservoirs
is comparable with the average temperature of them. If the
system recovers the intensive property of heat conductivity,
this observation lets us see the temperature dependence of
the heat conductivity under the isobaric conditions. The
temperature dependence connects to the possible mechanisms
of the recovery. As an example, the dissociation class shows the
Arrhenius temperature dependence of heat conductivity [43].

The details of time integrations and of reservoirs are
as follows. We use the fourth order symplectic integrator
with time steps �t = 0.0025 in PR-6 and with �t = 0.02
in c-FPU β. We also checked the independence of our
results on time steps by the changing �t → �t/4 in some
experiments. For PR-6, we set the thermal wall boundaries
[17] at both edges (x = 0,Nd). For c-FPU β, we introduce
the potential boundaries [V (x1) + V (−xN )] and attach the
boundary reservoirs of Langevin type (viscosity: γ ) to the
10 + 10 particles at the corresponding edges. The algorithm of
the attachment is geometric Langevin type [48]. The reservoir
parameters are chosen as (TL,TR,d) = (4,1,3/4) for PR-6
and (TL,TR,γ ) = (50,30(10),2) for c-FPU β. We make the
initial conditions with the attachment of Langevin reservoirs
in equilibrium cases.

III. RESULTS

A. Result of nonequilibrium simulation

1. Definitions of temperature and heat conductivity

We also note about the arbitrariness of the defined heat
conductivity. One can define energy currents and temperature
profiles based on the particle index or on the field coordinate
[3]. This is a property of the lattice systems. This arbitrariness
makes the following confusing situations under the globally
far from equilibrium conditions. The density heterogeneity
causes the two different temperature gradients, although
the steady state values of the energy currents show the
quantitative correspondence (〈Jfield〉 = 〈Jparticle〉 for PR-6).
Then the values of heat conductivity defined by the ratios
are different. This difference remains even though the system
is of nearly local equilibrium, because the system satisfies
the isobaric (not isodense) conditions under the steady heat
conduction. In our PR-6 case, however, we observe that the
density difference takes a rather small value, roughly 10%
of initial packing density d−1. This is negligible for the
discussion of the anomaly. In the compressed FPU-β case
there is no arbitrariness, because one can take the lattice
constant as large as one wants [19]. We take the particle type
observables, e.g., Jn+1,n := pn+1+pn

2 (− ∂V (xn+1,n)
∂xn+1,n

) with energy

density en := p2
n/(2m) + [V (xn+1,n) + V (xn,n−1)]/2, through

this paper. One can also define the stress along particle
coordinates σn+1,n = − ∂V (xn+1,n)

∂xn+1,n
. It gives the pressure of the

steady state (in the sense of particle coordinates) conforming
to the virial theorem.

Now we observe the kinetic temperature, which corre-
sponds to the thermodynamic one under the local equilibrium
condition [(Tn+1 − Tn)/Tn � 1 for the finite interparticle
distance]. Here, the kinetic temperature is defined as

Tn :=
〈
p2

n

mn

〉
. (14)

We use the bracket 〈〉 to express the long time average.
Figure 1 is the temperature profile of c-FPU β under the

steady heat conduction at (TL,TR,l,N ) = (50,10,4,215) and
shows the gaps at the edges and the gradient varying at the
bulk. As N increases, the gaps are slowly decreasing and the

 10
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FIG. 1. The temperature profile of c-FPU β at (TL,TR,l,N ) =
(50,10,4,215). One can see the gaps and the varying gradient.
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FIG. 2. Bulk heat conductivity (left: PR-6; right: c-FPU β). Parameters are (TL,TR,d) = (4,1,3/4) for PR-6 and (TL,TR,γ,l) = (50,30,2,4)
for c-FPU β. They show the convergence except c-FPU β at l = 0. The transient exponents are 1/2 in PR-6 and 0.33 in c-FPU β at l = 4. For
accuracy, we check the power of the last two points in c-FPU β at l = 2,4 as an indicator of the convergence. The powers are 0.018(l = 2) and
0.009(l = 4), which show the quantitative evidence of the convergence.

varying gradient remains.2 The situation of the PR-6 case is
the same with it. We consider the points. First, it is necessary
to remove the boundary gap, which can show the convergence
of pretense [17], for the accurate observation of the system
size dependence. Second, the spatially varying gradient means
the spatially varying heat conductivity.

Then we define heat conductivity in two ways to discuss
its system size dependence and its spatial variance. Jn+1,n is
independent of the index in the average of the steady state if
the n,n + 1th particles have no interaction with reservoirs. So
we simply call it J . First, to study the system size dependence,
we introduce the bulk averaged gradient ∇nTn, which is given
by the linear fitting of Tn in 1/4 � n/N � 3/4, and define the
following heat conductivity:

κ̄(N ) := 〈J 〉/∇T . (15)

Here we call it bulk heat conductivity. We discuss the anomaly
of the bulk through this observable under an assumption that
the effect of the discontinuities is negligible. This assumption
is valid in nonintegrable large systems. These gaps occur
within the reservoir-attached particles at the edges, so they
come from purely interfacial resistance. Second, to study the
spatial variance, we introduce the segmented averaged gradient
̂∇nTn, which is given by the linear fitting of Tn in a sufficiently
narrow temperature range sufficiently slowly varying, and
define the following heat conductivity with the assumption
that ̂∇nTn is a function of the average temperature of each
segment and N ,

κ(T ; N ) := 〈J 〉/∇̂T . (16)

Now we call it local heat conductivity. We took two ways
to prepare the data of such a temperature range. One is that
we equally divide the data 16 (or 32) and cut out Tn of the
reservoir-attached particles. The other is that we set (T ,� �
T ) and extract Tn satisfying the condition |Tn − T | < �. Our
assumption of local heat conductivity is valid in the systems of
normal heat conduction. Heat conductivity of normal heat con-
duction depends only on the local thermodynamic quantities,

2This is a prefetch but one cannot see the gradient increasing at
the edges in this case, which is a characteristic feature of anomalous
systems [49].

although that of anomalous heat conduction depends also on
the positions and on the system sizes. Then, this observable lets
us know the temperature dependence of the heat conductivity
under the isobaric conditions of the pressure P given by
the boundary conditions, if the system recovers the intensive
property of heat conductivity. We study the asymptotic master
curve of the intensive heat conductivity. We can observe such
temperature dependence at once under the globally far from
equilibrium conditions.

2. System size dependence of bulk heat conductivity

Figure 2 is the result of the bulk heat conductivity κ and
shows the convergence in some ways. κ of PR-6 shows the
transient anomalous scaling α = 0.498 ± 0.005 in 102 � N �
104 (the exponent of which is fitted in 27 � N � 212) and the
recovery of normal heat conduction without showing the FH
scaling α = 1/3. κ of c-FPU β is somewhat strange. It shows
the FH anomalous scaling α = 1/3 at l = 0, consistent with
previous reports [16,19], but it shows the convergence at l =
2,4. Particularly, at l = 4, it shows the anomalous scaling α =
0.330 ± 0.006 in the transient N dependence (fitted in 29 �
N � 213), which is almost the FH exponent 1/3. It suggests
that the convergence should occur after the FH scaling, in the
continuum limit.

κ of PR-6 shows the divergence with the exponent α �
1/2 in 102 � N � 104 and the convergence at larger sizes.
This convergence is consistent with [43]. Its exponent α �
1/2 is larger than FH scaling α = 1/3 and just the second
universality exponent [49,50]. The intensive behavior remains
even at N ∼ 105. As recently reported, diatomic hard core
shows the convergence if their chosen parameters are nearly
integrable [46]. Some nearly integrable systems may show
significant slowdown to obey the prediction of the continuum
theory like in the FPU problem [15]. However, our choice
of parameters provides the strong nonlinearity, although PR-6
has integrable in some limits (see the Settings section). We
need another explanation of the convergence. It might generate
the ballistic transport of the hard core by the local thermal
activation to cause this result. This mechanism is consistent
with the dissociation-induced recovery proposed in [43].

κ of c-FPU β shows the anomaly at l = 0 but the converging
behavior at l = 2,4 and we observe the transient anomaly
at l = 4 where the exponent is the FH α � 1/3. First, the
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FIG. 3. Local heat conductivity (left: PR-6; center and right: c-FPU β). Parameters are (TL,TR,d) = (4,1,3/4) for PR-6 and (TL,TR,l) =
(50,10,4) for c-FPU β in the center panel. The right panel shows the values of FPU β at the largest size of our observations with multiplication
of normalization factors. They can be fitted with a unique curve approximately. One can observe the two different types of temperature
dependence: the Arrhenius type connected with the thermally activated recovery in PR-6 and the non-Arrhenius type in c-FPU-β, suggesting
another process from thermal activation.

result at l = 0 is consistent with the ordinary understanding of
anomalous heat conduction [16,19]. The difference of the trend
from the previous results at l = 0 with small sizes is caused
by the difference of reservoirs and by the definitions of the
temperature gradient. In our case, the number of the attached
particles is slightly larger, so the boundary resistance is rather
small, and the direct measurement of gradients reduces the
effect of temperature gaps to the observable. Second, κ at l = 2
changes the N dependence completely from the case at l = 0
and shows the converging behavior throughout the observation.
This is inconsistent with ordinary predictions [11], then we
calculated κ until N > 104 but the results were the same. Here
we introduce the power measured from the last two points
as the indicator of convergence. The power is α � 0.018 at
l = 2, almost 20 times smaller than the predicted exponents.
The increase goes to be saturated. At the last, l = 4 is the
delicate case. We got the transient exponent α � 1/3 in 102 �
N � 104, which is consistent with the FH theory, but κ shows
another trend at large N . There is a plateau at larger sizes. We
checked the power from the last two points and got 0.009. It
is the convergence. The weak exponents in FPU αβ at some
parameters are already observed in [41], but the converging
behavior like our case was not reported in their studies. We can
see the transient exponent smaller than 0.1 in the l = 2 case,
so it may correspond to their reports of such weak exponents.
The difference would be caused by the temperature or by
finite size effects. We chose the high temperature (T � 10),
highly nonlinear, and N > 104, but their choice was low T (�
0.1), weakly nonlinear, and N < 104. Actually, the long time
tail is sensitive to the energy. The result in [45] showed the
normal-anomalous crossover around e ∼ 0.1 in FPU αβ (at
α = 0.1) of the same unit with us. Repeatedly we note the
high temperature of our system. It is also hard to suppose the
possibility of dissociation because of the system property. This
is directly checked by the following results of the temperature
dependence in the local heat conductivity.

One can doubt whether our results are transient plateaus.
The flattening before the FH scaling is actually reported in
the previous research [42]. Our case of FPU β also has
such a flattening at l = 2,4 in N � 103. However, one can
see the convergence which is after the FH scaling at l = 4.
This is not included in their studies. Next we study the
local heat conductivity to avoid the rash conclusion, although
our results of bulk heat conductivity suggested the recovery

of the intensive property accompanying the increase of
pressure.

3. Temperature dependence of intensive local heat conductivity

Figure 3 is the result of local heat conductivity κ and shows
the two asymptotic master curves κ(T ; ∞) accompanying
the recovery of normal heat conduction. Here we call the
suggesting master curve κ(T ; ∞). Although the secured
convergence of κ(T ; N ) → κ(T ; ∞) in the thermodynamic
limit is still controversial, these N -independent curves are the
strong evidence of the recovery. Obvious N dependence of κ

means the breakdown of our assumption that the local heat
conductivity is described by the local (T ,P ), and one can
see such N dependence only at small sizes. From the master
curves, one can see the Arrhenius T dependence in PR-6 which
corresponds to the thermal activation of dissociation [43] and
the non-Arrhenius one in c-FPU-β, which corresponds to a
different mechanism from thermal activation.

κ of PR-6 shows the recovery of the intensive property and
the Arrhenius temperature dependence,

κ(T ,∞) ∼ eC1/T . (17)

The recovery began from the bulk. C1 is estimated as
C1 � 1.67 ± 0.04 from our fitting. It is already reported
that soft rod systems also show the Arrhenius type heat
conductivity given by the GK formula [43], and they claimed
the effective vacancy, dissociation should cause the normal
heat conductivity. Such a mechanism would be also realized
in this case. The local dissociation is naturally understood as
the high energy property in this system (integrable hard core).

κ(T ; N ) of compressed FPU β at (l,TR) = (4,10) recovers
the intensive property from the hotter side of the bulk and
converges to the power-law curve,

κ(T ; ∞) ∼ T −C2 . (18)

C2 is estimated as C2 � 2.30 ± 0.01 from our fitting. We
note the replacement of TR (30 → 10) is done to obtain the
sufficiently wide temperature range. The result looks robust
against the replacement. Figure 3 (right) shows the values
of FPU β at the largest size of our observations [(TR,l) =
(30,2),(30,4),(10,4), corresponding size N = 215,217,220]
with multiplication of normalization factors (×25,0.8,1 re-
spectively). They can be roughly fitted with a unique curve. The
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FIG. 4. Left: Normalized power spectra of the total energy currents |Ĵ (ω)|2/N of c-FPU β at T = 30 in 10−5 � ω � 1. Right: Comparison
between the local heat conductivity at the averaged temperature T̄ of steady heat conduction and the corresponding value given by the Green
Kubo formula. One can see the anomalous scaling |Ĵ (ω)|2/N ∼ ω−α at small ω of l = 0, but Lorentzian |Ĵ (ω)|2/N ∼ a/[1 + (bω)2] recovers
with l increasing (l = 2,3). There is no system size dependence at l = 2,3. The trends of (a,b) that (a,b) increase with l are consistent with
Fig. 2. Pressure looks to suppress the long time tail. The comparison of heat conductivity (right) shows the consistent convergence of heat
conductivity in highly compressed FPU β.

non-Arrhenius T dependence suggests another mechanism
from some thermal activation. Taking into consideration the
high T property of this system, the result of bulk heat
conductivity and this non-Arrhenius T dependence, one can
expect that this recovery of the intensive property may be
understood with some continuum theory. We also observed the
different exponent from the already reported κ ∼ T 1/4 scaling
of zero pressure FPU β [51]. The cause may be provided
from the convergence of the heat conductivity or the pressure
dependence of the heat conductivity because of the effect that
the density fields of FPU β becomes spatially nonuniform
to satisfy the constraint of uniform (P,J ) conditions except
P = 0. We also observed almost the same scaling at l = 2,
then it may come from the normal-anomalous crossover. More
accurate discussions on this change of the T dependence across
the crossover need other experiments from ours. We first took
the assumption that the global coupling is negligible. This
assumption cannot be applied in anomalous heat conduction.
Our interest is the difference of the temperature dependence
from the already reported Arrhenius one and it was shown,
so we do not go into the detailed discussion of this difference
here.

B. Result of equilibrium simulation

It was suggested through the observations of steady heat
conduction that there should be a thermally activated recovery
of the heat conduction and that of continuums. Particularly,
the latter case showed a striking negative example for ordinary
fluctuating hydrodynamic predictions. Then we also study the
convergence of heat conductivity through the observations of
total energy current power spectra under the isolated equilib-
rium periodic boundary conditions to check our problematic
result. Here we assume the equivalence of ensembles and
change the boundary conditions from the isobaric isothermal
〈〉eq

T ,P to the isothermal isodense 〈〉eq
T ,l . We studied its power

spectra |Ĵ (ω)|2, the Fourier components of the correlations
〈Ĵ (0)Ĵ (t)〉eq

T ,l , and their l dependence.
We beforehand discuss the validity of such equivalence. It

is necessary to characterize the heat conductivity by a single
value of temperature T that the temperature difference is suf-

ficiently small in the correlation length of the energy current,
but such a length does not exist in the systems of anomalous
heat conduction [24,28]. The quantitative correspondence of
the heat conductivity in globally far from equilibrium with
the correlation function in the isolated periodic boundary
is actually a delicate problem [42,52]. Nevertheless, one
can observe the long time tails of the currents under the
isolated periodic boundary conditions and these scalings of
the anomaly show the correspondence even with such changes
of boundaries (see the l = 0 case of Fig. 4), furthermore, one
can see the correspondence well because of the absence of
boundary perturbations [17,34].

Figure 4 (left) shows normalized power spectra of total
energy currents |Ĵ (ω)|2/N in compressed FPU β at T =
30. The anomalous scaling |Ĵ (ω)|2/N ∼ ω−α, α = 1/3 is
observed in the l = 0 case of zero pressure. The strong
exponent observed at high frequencies corresponds to the
next FH exponent 4/3. However, the l = 1 case shows no FH
scaling at low frequencies although one can see the next FH
4/3 tails at high frequencies. Then it asserts that the FH tail in
low frequencies is suppressed by the compression. The scaling
changes to the Lorentzian at highly compressed cases (l = 2,3)
and one can see the clear suppression of the anomaly at low
frequencies. The trend in the Lorentzian of the height and that
of the time scale are consistent with our experiment of steady
state heat conduction that they increase with compression. We
checked the N convergence of the Lorentzian and the results at
N = 256,1024 were the same. In the ordinary understanding,
if the ad hoc cutoff of the anomaly ω > 2πc/N is valid also
under this condition, the spectra at l = 1,2,3 should show the
long time tails at the same area with the l = 0 case, except
the improbable explosion of tm with l increasing, because
the sound velocity is only doubled through the l increasing
(l = 0 → 3 at T = 30). The result that there is only the 4/3
exponent (no 1/3) at l = 1 and the Lorentzian recovery at
l = 2,3 suggests that the compression (pressure) should induce
the suppression.

This result of equilibrium correlations should show the
quantitative correspondence with our result of steady heat
conduction if the convergence is not a fake. The Green Kubo
formula requires that a variable given by the equilibrium
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correlations N−1
∫ ∞

0 dt〈Ĵ (0)Ĵ (t)〉eq
T ,P and heat conductivity

of the system κ∗(T ,P,N ) take a same value, that is

lim
N→∞

(
1

N

∫ ∞

0
dt〈Ĵ (0)Ĵ (t)〉eq

T ,P − κ∗(T ,P,N )

)
= 0. (19)

In general, we should include the other orders of the system
and in such a case, one can translate (T ,P ) into the whole
intensive variables conjugate with the conserved fields of the
system except N . We can expect that FPU β should not have
such additional orders because of the consistency between
equilibrium correlations of FPU β and the prediction of
fluctuating hydrodynamics for simple fluids [24]. Furthermore,
if the system shows the normal heat conduction, the above
relation becomes more tractable. First, energy currents in the
systems of normal heat conduction have the finite correlation
length, so heat conductivity is not modified under the change
of boundaries if the change does not vary (T ,P,N ). It means

1

N

∫ ∞

0
dt〈Ĵ (0)Ĵ (t)〉eq

T ,P = 1

N

∫ ∞

0
dt〈Ĵ (0)Ĵ (t)〉eq

T ,l∗(T ,P ).

(20)

We defined l∗(T ,P ) as the compression that gives the pressure
P under the temperature T (and N ). Also, in the system of
normal heat conduction, heat conductivity is independent of
the observational condition if (T ,P ) take the same values. It is
another consequence of the locality guaranteed in the systems
of normal heat conduction. Then, from the above relations, the
question about the consistency between the variable given by
the equilibrium correlations,

κGK (T ,l,N ) := 1

N

∫ ∞

0
dt〈Ĵ (0)Ĵ (t)〉eq

T ,l, (21)

and our local heat conductivity κ(T ,N ) gives us the hint
whether the numerical convergence captures the behavior in
the thermodynamic limit. For this investigation, it is enough
to check the relation

lim
N→∞

[κGK (T ,l∗,N ) − κ(T ,N )] = 0. (22)

We note the Green Kubo relation holds even at finite sizes if
the observational condition and the size are the same, which
can be proved with fluctuation theorem [53] (see Appendix A),
but this is not guaranteed in different sizes or with different
boundaries. So, this consistency becomes strong evidence of
the convergence in the thermodynamic limit, though we cannot
access the limit in the rigorous sense.

Figure 4 (right) shows the consistency between
κGK (T ,l∗,N ) of equilibrium simulations and κ(T ,N ) of steady
heat conduction at the averaged temperature of reservoirs
T = T̄ [:= (TL + TR)/2]. As subtle but significant notation,
l∗ and l of nonequilibrium simulations of far from equilibrium
conditions should not take the same value in general, because
local compression of nonequilibrium simulations takes a
different value from l. Homogeneity of pressure under the
simulation is satisfied for the steady condition, so the choice of
pressure avoids meaningless confusion. The values of pressure
in nonequilibrium simulations are P � 22.5(l = 2),77.6(l =
4) with Langevin reservoirs (TL = 30,TR = 50,T̄ = 40,γ =
2,N = 215, attached particle number 10 + 10) at the edges.
The values of pressure were robust against the size in our case.

We measured κGK at the rather small sizes [N = 1024(l =
2),256(l = 4)] on receiving the N independence as seen in the
left panel of Fig. 4. Both cases of different compression l = 2,4
show the quantitative correspondence with Green Kubo values
at large sizes. The transient exponent at l = 4 is consistent
with the corresponding bulk heat conductivity. This system
shows the numerical consistency of two variables under the
different conditions (of sizes and of boundaries). It strongly
asserts the normal heat conduction which remains at the larger
sizes.

C. Result of analysis

Our simulations showed two different types of temperature
dependence on intensive heat conductivity. They suggest two
mechanisms in the recovery of Fourier’s law. The Arrhenius
form connects to a thermally activated inhibitor and the
non-Arrhenius one suggests a continuum mechanism different
from the former. Here, we try to explain these processes
phenomenologically.

1. Transition-state theory of thermally activated dissociation

Here we estimate the coefficient of the Arrhenius T depen-
dence in PR-6 along the scenario of the thermally activated
dissociation proposed in [43]. In PR-6, there is no FH scaling
before the convergence and the temperature dependence is the
Arrhenius form. This result suggests the possibility that some
noncontinuum effect would suppress the anomaly. According
to them, this convergence is caused by the effective vacancy
(dissociation) formation. Now we assume it as an effective
point defect and estimate the effective activation energy to
compare with our numerical result.

If one can define the maximum energy state on each vacancy
formation path, according to the transition-state theory, the
vacancy formation ratio P∗ ∼ exp(−E∗/T ) can be decided by
the minimum of their energy cost [54], i.e., E∗ is the energy
difference between the maximum energy and the minimum
energy on the path to generate a defect with the smallest energy
cost. In this case, the path corresponds to the quasistatic path,
then E∗ corresponds to the minimum energy benefit to make a
vacancy at the bulk. Concretely, as the minimum work to make
a vacancy of the characteristic length d at the bulk including
N particles, one can estimate E∗ as

E∗ ∼ N

{
V

(
d

(
1 − 1

N

))
− V (d)

}
− V (d) (23)

� −∂V (d)

∂d
d − V (d). (24)

Then, the minimum length which has a vacancy in average
would be

N∗ ∼ P −1
∗ ∼ eE∗/T . (25)

Then, assuming the scaling κ ∼ Nα is saturated at N∗, the
temperature dependence of κ is given by

κ ∼ Nα
∗ ∼ eαE∗/T . (26)

We compare the estimation with the numerical value: C1 �
1.7 ∼ 2. We derive the value: C1 ∼ 2.341 ∼ 2 from the above
discussion with α � 1/2 of the simulation. The mechanism
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of the recovery caused by the thermally activated point defect
gives an approximate picture to this convergence, even though
the dissociation is not well defined in this system. One can take
elastically colliding systems like in [43] as the model systems
for more accurate treatments, where the dissociation is safely
defined.

2. Fluctuating hydrodynamic description of
the pressure-induced recovery

We investigate how the pressure fluctuation changes the ob-
served transport coefficients here. Our numerical simulations
suggest that there would be a pressure-induced mechanism of
the recovery of Fourier’s law in one-dimensional momentum-
conserving systems. This non-Arrhenius temperature depen-
dence is inconsistent with the scenario of thermally activated
dissociation, so we should consider the recovery with some
continuum theory. Here we consider the mechanism with the
fluctuating hydrodynamics.

One-dimensional full fluctuating hydrodynamic equations
describe the slow motion of the conserved quantities (: mass,
momentum, and energy) and consist of the following equations
of continuity, writing (ρ,v,e) as mass density, velocity, and
energy density:

∂tρ + ∂x(ρv) = 0,

∂t (ρv) + ∂x(ρv2 + σ ) = 0,σ = P − μ∂xv − s,

∂t e + ∂xJ = 0,J = ev + vσ − κ∂xT − g. (27)

Here (P,T ) express pressure and temperature and are the
functions of mass density and internal energy density (ρ,e −
ρv2/2). (μ,κ) are bulk viscosity and heat conductivity. (s,g)
are random stress and random heat current. The currents of
momentum and those of energy include dissipation terms
which consist of the deterministic part expressed as the
linear irreversible process and the stochastic part satisfying
fluctuation dissipation relation (FDR) [35]. (s,g) are described
by the white noise as a consequence of the central limit
theorem, and satisfy the following relations expressing the
local FDR, using 〈〉 as the noise average:

〈s(x,t)s(x ′,t ′)〉 = 2μT δ(x − x ′)δ(t − t ′),

〈g(x,t)g(x ′,t ′)〉 = 2κT 2δ(x − x ′)δ(t − t ′),

〈s(x,t)g(x ′,t ′)〉 = 0. (28)

In addition, the high wave number cutoff � is assumed because
of the noncontinuum area of short wavelength.

We want to derive some simple model to study the effect
of compressibility based on these equations here. We treat
our equilibrium result as the observation of the anomaly
suppression, then do not consider the nonequilibrium effects.
Our treatment to discuss the convergence also neglects
the nonlinear terms of dissipation terms, because they are
irrelevant even in the inviscid scaling [15]. We restrict our
attention in such a parameter range. We write (ρ,u := ρv,e)
as mass density, momentum density, and energy density, and
study the fluctuations (δρ,u,δe) from the base of a static
equilibrium state (ρ0,0,e0). Their motion is described by
the following equations, at the lowest order of nonlinearity

neglecting irrelevant dissipative nonlinear terms,

∂tδρ + ∂xu = 0,

∂tu + 1

ρ0
∂xu

2

= −
(

∂P

∂ρ

)
0

∂xδρ −
(

∂P

∂ρ

)
0

∂x

(
δe − u2

2ρ0

)
+ ν0�u + ∂xs0 − 1

2
∂x

[(
∂2P

∂ρ2

)
0

(δρ2)

+ 2

(
∂2P

∂ρ∂e

)
0

δρδe +
(

∂2P

∂e2

)
0

δe2

]
,

∂t δe + 1

ρ0
∂x(uδe)

= −h0∂xu + κ0

(
∂T

∂ρ

)
0

�δρ + κ0

(
∂T

∂e

)
0

�δe + ∂xg0

− e0

ρ0
∂x

(
u

δρ

ρ0

)
− ∂x

[
u/ρ0

((
∂P

∂ρ

)
0

δρ

+
(

∂P

∂ρ

)
0

δe

)]
. (29)

We defined (ν0 := μ0/ρ0,h0 := (P0 + e0)/ρ0) and 0 is the
indicator of original equilibrium values. The derivation of
the above equations is almost the same as in [15]. Spohn
chose the particle distance as a conserved quantity instead
of mass, but this is basically equivalent [55]. The nonlinear
terms arise from pressure nonlinearity and Galilean invariance
of fluids. Pressure nonlinearity is well studied in Spohn’s
papers. He assumed fluid equations in the particle currents
(Lagrangian description) and no streaming terms appear in
the description. Compared with pressure, streaming terms
seem to have attracted less attention in spite of the famous
mechanism of the anomaly induced by them [29]. Then we
continue the analysis with the approximation of weak pressure
fluctuations here to study the other origin of nonlinear effects.
For further approximation, we treat the pressure fluctuations
as the perturbations and neglect the corresponding nonlinear
terms. We also neglect the nonlinear term including (δρ/ρ0)
taking into account the arbitrarily large lattice constant of
lattice systems, then get the following equations:

∂tδρ + ∂xu = 0,

∂tu + 1

ρ0
∂xu

2 = −Y0∂xδρ − Z0∂xδe + ν0�u + ∂xs0,

∂t δe + 1

ρ0
∂xuδe = −h0∂xu+ D0�δe +E0�δρ + ∂xg0. (30)

Here we defined the coefficients Y0 := ( ∂P
∂ρ

)
0
, D0 := κ0( ∂T

∂e
)
0
,

Z0 := ( ∂P
∂ρ

)
0
, and E0 := κ0( ∂T

∂ρ
)
0
. D0 is positive in general. h0

can take the negative values, e.g., negative h0 corresponds
to some expanded states in FPU β. In the Z0 = 0 case,
corresponding to zero pressure in FPU β, Y0 is positive
because the sound velocity takes the real value. Particularly,
(Y0,Z0,h0,E0 → 0) corresponds to the dynamics of the pas-
sive scalar on noisy Burgers fluids [56], and the divergence
of observed transport coefficients (ν,D) obeys the inviscid
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scaling [25,29]. Then, one can see this model as a minimal
model to study the effect of compression.

The explicit calculation of renormalization into the ob-
served transport coefficients on these equations clarifies how
the pressure fluctuations affect the observed heat conductivity
as a consequence of Galilean invariance. In particular, the
Z = 0 (Z negligible) case is consistent with the decoupling
hypothesis in [15], where the heat mode is passive to the
sound modes, and we choose the parameter. Here, those
waves are defined as the plane waves of perfect fluids. The
propagation speed is zero in the heat mode and the sound speed
in sound modes. The original decoupling hypothesis assumes
the relation between plane waves only at the long wavelength.
It means the asymptotic irrelevance of contribution from the
heat to the sounds. The prediction based on the approximation
is tested with good correspondence [24], so this hypothesis
would capture the truth. We also emphasize that Z = 0 is the
unique parameter satisfying the decoupling hypothesis except
special sets of the coefficients. We put the MCT results under
this parameter choice, which renormalizes the contribution
of the higher wavelength fluctuations at once in the lowest
order of nonlinearity [29]. The result of the heat diffusion
coefficient takes the following value in the long wavelength
and low frequency limit:

DR

D0
= 1 + T0

2πρ0
√

Y0
√

D0(D0 + ν0)

D0 + 2ν0

D0 + ν0

×
(

2 arctan(W0�) + (3D0 + ν0)W0�

(D0 + 2ν0)[1 + (W0�)2]

)
,

W0 :=
√

D0(D0 + ν0)

Y0
. (31)

This convergence is consistent with our numerical simulation.
We note that the zero sound velocity limit (Y0 → 0) recovers
the ordinary result of the DR divergence (DR → ∞). Con-
sidering the difference between ours and the noisy Burgers
solution (Y0 → 0 case), one can understand the convergence
of the renormalized heat conductivity [κR � DR/( ∂T

∂e
)
0
] as

the cutoff of the anomaly around the characteristic wave
number k∗ := 2

√
Y0/ν0. This wave number is defined as the

characteristic wave number of the momentum field Green
function absorbing the density fluctuations, given by

G0(k,t) :=
∫

dωeikt+iωt

iω + ν0k2 − iY0k2/ω
, (32)

to show the effect of compressibility, i.e.,

G0(k,t) �
{

e−ν0k
2t , k 
 k∗

e−(ν0k
2/2)t cos

(
ν0k∗|k|

2 t
)
, k � k∗.

(33)

Thus the compressibility would be intrinsic for this conver-
gence. As other results, we derived the following:

νR

ν0
= ∞, (34)

hR

h0
= 1 + (D0 − E0/h0)T0 arctan(W0�)

2πν0ρ0
√

Y0
√

D0(D0 + ν0)
, (35)

and YR − Y0,ZR − Z0, ER − E0 = 0. hR �= h0 is understood
as the renormalization of the thermal fluctuations into the

energy. The value of the renormalized viscosity νR → ∞
asserts that the result of DR is caused by some breakdown
of the hyperscaling because two transport coefficients show
the same scaling with sizes if the hyperscaling holds [29].

However, there are at least three problems for this in-
terpretation. One is the unknown parameter ν0. The above
result of DR asserts that the cutoff would be determined by
the balance between viscosity and compressibility, but ν0 is
not observable. The second one is the correspondence of this
result and the previous works which claim the divergence of
heat conductivity in the inviscid limit. The third one is νR

divergence. Some RG flow study can avoid the problems, but
the RG study of those equations lacks brevity in spite of the
unclear validity of our approximation.

The passive scalar limit, Z0 = h0 = E0 = 0, extremely
simplifies the problem, then we study the RG flow on this
condition with believing some universality. This parameter
simplification does not change our MCT results for the two
transport coefficients D and ν. It means the results of our
MCT analysis can be understood based on the following
RG discussion. For further simplicity, we do not discuss the
slightly messy flow of passive scalar here. Its flow does not
affect the flow of the other conserved fields and should show
the breakdown of the hyperscaling as the consistency with our
MCT analysis (i.e., the value is absorbed into 0 under the flow).
Then our starting point is

∂t δρ + ∂xu = 0,

∂tu + 1

ρ0
∂xu

2 = −Y0∂xδρ + ν0�u + ∂xs0. (36)

These equations correspond to fluctuating hydrodynamic
equations where pressure is temperature-independent and
weakly fluctuates. c0 := √

Y0 is the original sound velocity.
One can do the same diagram calculation with the noisy
Burgers case [29], then we briefly report the results. We intro-
duce the formal nonlinear intensity λ and replace 1/ρ0 with
λ0 := 1/ρ0. We write the noise intensity as �,�0 := 2ρ0ν0T0

to avoid the confusion of notation and define the coefficients
Ȳ := 4Y/(ν�)2,λ̄ := λ

√
�/(ν3�) for preparation.

The renormalization of the contribution from short wave-
length � > |k| > �e−l ,u> := uθ (|k| − �e−l) to long wave-
length |k| < e−l ,u< := u − u> and the rescaling along the
scaling of u, k′ := elk, ω′ := e

∫ l

0 z(l′)dl′ω, u< =: ζu′, y(l) :=
d
dl

lnζ − (z + 1/2) shape the following RG flow:

dν

dl
= ν

(
z − 2 + λ̄2

2π

)
, (37)

d�

dl
= �

(
z − 2 − 2y + λ̄2

2π

1
√

1 − Ȳ
3

)
, (38)

dλ

dl
= λ(−3/2 + z + y), (39)

dY

dl
= Y (−2 + 2z). (40)

ζ is chosen to make the same RG flow of (ν,�), and z is chosen
as ν fixed at their initial values. The values are
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FIG. 5. The RG flow field (43) and (44) of approximated full fluc-
tuating hydrodynamic equations in the passive scalar limit. There are
four fixed points: (λ̄,Ȳ ) = (0,0), (0,∞), (

√
π,0), (

√
2π,1 − 2−2/3).

The latter two points are the well-known inviscid fixed point and the
nontrivial ballistic fixed point. The linearly stable fixed point is the
ballistic fixed point only. The inviscid fixed point is unstable except
in Ȳ = 0. We marked the three fixed points taking finite values and
show the typical flow in the same figure. Ȳ slowly increases around the
inviscid fixed point and the flow is accelerated after the detachment
and wraps around the ballistic fixed point.

y = λ̄2

4π

[
1

√
1 − Ȳ

3 − 1

]
, (41)

z = 2 − λ̄2

2π
. (42)

Under the choice, the RG flow is reduced to

dȲ

dl
= Ȳ

(
2 − λ̄2

π

)
, (43)

dλ̄

dl
= λ̄

[
1

2
− λ̄2

4π

(
3 − 1

√
1 − Ȳ

3

)]
. (44)

We put the flow in Fig. 5. Now one can find four fixed points:
the trivial Gaussian fixed point (λ̄,λ̄,y,z) = (0,0,0,2), the
well-known inviscid fixed point (λ̄,Ȳ ,y,z) = (

√
π,0,0,3/2),

the Ȳ divergent Gaussian fixed point (λ̄,Ȳ ,y,z) = (0,∞,0,2),
and the other nontrivial fixed point (λ̄,Ȳ ,y,z) = (

√
2π,1 −

2−2/3,1/2,1). Here we call it the ballistic fixed point because
of its z value z = 1. Gaussian fixed points are unstable in one
dimension as already pointed out [29], and the situation is the
same in this analysis. It is noteworthy that only the ballistic
fixed point is linearly stable. The Ȳ divergent Gaussian fixed
point is unstable in λ̄ > 0, so it would have no meaning because
we started the analysis with λ̄0 �= 0. The inviscid fixed point
is unstable to the Ȳ direction and stable only in Ȳ = 0. If the
system at the point is perturbed to the Ȳ direction, Ȳ increases
and the flow is absorbed to the ballistic fixed point. This result
corresponds to the anomaly cutoff in our MCT analysis. We
repeat the positivity of Ȳ0 in this case.

With the above results, one can interpret the anomaly
cutoff of the observed heat conductivity as some crossover
between those two fixed points. The cutoff is determined
by the characteristic wave number �∗ where viscosity and
compressibility are balanced. �∗ is defined as the minimum

wave number satisfying the following relation:

2c

ν(�∗)�∗
= 1. (45)

These quantities are observable. If the system obeys the
inviscid scaling, one can roughly estimate ν as ν(k) ∼ k−1/3

then the viscous fluids have such �∗ because of c > 0.
The corresponding system size N∗ := 2π/�∗ is also given
if �∗ exists. Now, the scenario asserted from the results is
as follows. At first, heat conductivity increases obeying the
inviscid scaling in the small system sizes N � N∗, but the
trend changes at N ∼ N∗ and the heat conductivity shows
the convergence at the larger system sizes N 
 N∗, i.e.,

κ ∼ [ min[N,N∗]]1/3. (46)

The flow stagnates around the inviscid fixed point, then there
can be a certain period to show the anomaly. The result is
consistent with the result of c-FPU β at (l = 4,T 
 1) where
bulk heat conductivity increases with α ∼ 1/3 transiently and
shows the tendency of saturation at larger system sizes. The
result at l = 2 showing the rapid saturation can be interpreted
as the case where initial (λ̄,Ȳ ) are near the ballistic fixed point.

The above scenario would be appropriately modified to
include the obvious counterexample, the inviscid fixed point
(Ȳ ,λ) = (0,

√
π ) in our analysis. This parameter Ȳ = 0 corre-

sponds to the l = 0 case showing the agreement to the ordinary
theories [11,15]. The stability of two nontrivial fixed points
would be also changed by the effect of pressure nonlinearity.
Even though, we expect that full analysis would keep the main
ideas of this discussion, that the convergence our simulation
captured would be connected to the crossover between two
fixed points in the intermediate wavelength. According to our
RG analysis, there can be a transition in the long wavelength
limit of full fluctuating hydrodynamics.

IV. DISCUSSION

Here we discuss the correspondence between our results
and previous works: the RG flow results (explicit calculations
of noisy incompressible fluids, those of noisy Burgers fluids
[29] and the scaling analysis [11]), MCT results of full FH
(for the scaling of equilibrium correlators [15] and for steadily
sheared systems [57]), numerical simulations, and the carbon-
nanotube experiments [20].

Thermally activated dissociation and pressure fluctuations
would cause the recovery of Fourier’s law in one-dimensional
momentum-conserving systems. The integrable systems at the
dilute (high-energy) limit (e.g., PR-δ [41] and soft rod [43])
would be the models of the thermally activated recovery.
The poly(quasi)stable interaction potential systems like the
coupled rotator model would be also in this class for the
same reason. The direct calculation of heat conductivity in
the coupled rotator model with on-site potential predicts the
Arrhenius T dependence [33]. With the same mechanism,
the carbon nanotube may also show the saturation caused by
thermally generated defects which is not avoidable in the real
experiments [58]. The dissociation discussed here is not static
and did not get the sufficient test. In addition, the relation
between the dissociation class and nearly integrable systems
which show the convergence (e.g., diatomic hard core with
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small mass difference [46]) is still unclear. Further study is
needed. Also, we note that one can see the long time tails of
energy currents in diatomic PR-6 at the golden mass ratio.
The reason would be the nonintegrability in its dilute limit
(diatomic hard core). At the same time, the sum of momentum
in each set of the same mass particles shows the long time
tail, which means this observable is effectively conserved.
The diatomic systems may need careful treatments [46,50].
The previous numerical simulation reporting the importance
of the ballistic behavior in normal heat conduction [59] was
criticized because of their zero-temperature simulations [60],
but our following ballistic scaling observation is at the high
temperature, where the system shows the anomaly at zero
pressure. Potential asymmetry makes nonzero pressure, thus
this ballistic-inviscid crossover on the RG flow may give some
insight to the controversial systems of the convergence like
FPU α,β and LJ [4,40–42,44,61]. For the real experiments,
if our discussions are right, the dominance of these two
effects is not clear, so it is also of interest to find the
system showing the two mechanisms (corresponding to two
temperature dependence). The multiparticle collision system
[45] is intriguing. The recovery of Fourier’s law in the
thermodynamic limit should also still be discussed.

The continuum suppression of the anomaly is caused by
the response to the pressure fluctuations in our analysis, and
then compressibility can be an intrinsic factor. Our analysis
considers the pressure fluctuations at the base of the linearized
hydrodynamics and the wave number of saturation is decided
with the sound velocity (

√
Y0). In incompressible fluids, the

pressure effect is the first order of nonlinearity [then O(l)] and
the response to the pressure becomes the second order [then
O(l2)], so the (first derivative) RG flow of incompressible
fluids [29] does not include this saturation. In the zero sound
velocity limit, our result corresponds to the noisy Burgers
result [25,29]. We repeat that our RG result demonstrated
the instability of the inviscid fixed point to the assignment
of compressibility. The property and the validity of our
equations in the d > 2-dimensional cases, where the RG flow
of noisy Burgers has an unstable fixed point [29], should be
tested.

It may be constructive to derive the ballistic fixed point
along the discussion deciding the anomalous exponent [11]
here. First, we rescale time and space as x = x ′el, t = t ′ezl ,
and assume the conserved fields we choose (ρ,u,e) take
the same scaling, (ρ,u,e) = ζ (ρ ′,u′,e′). Then, if the mass
conservation law ∂tρ + ∇u = 0 is required to be invariant
under the RG flow, t and x scale in the same way because of the
required assumption. This is the desired exponent z = 1. This
scaling discussion is in contrast to the discussion in [11] which
required the same rescaling of the set (ρ,v,e), where the scaling
(z = 3/2,d = 1) is derived from the requirement of the same
scaling of (ρ,v,e), relevance of nonlinearity in the flow and the
scaling invariance of the equal-time equilibrium fluctuations∫

dxd (ρ2,v2,e2) under the flow (long range Gaussian property
in their terms). In their discussions, the scaling dimension of
the three variables is −d/2 and it corresponds to −(d/2 + z) if
the variables are treated as densities of the time directions (as
a roughly sketched example, ρ → ρ�t) as described in [29].
The second assumption is satisfied in d < 2 dimension. The

last assumption can be understood as the extensive property
of the fluctuations. Then, in other words, one can get the
ballistic fixed point if one replaces the extensive fluctuations
of (ρ,v,e) with those of (ρ,u,e) in their discussion. We also
note that the scaling exponent z = 1 is independent of the
dimension in this discussion. We do not know the meaning.
Our scaling discussion expanded here is of heuristics and
apparently has no use for the stability, but our example
of the RG flow showed the possibility that compressibil-
ity should make the flow around the inviscid fixed point
unstable.

In addition, the MCT analysis under sheared condi-
tions (nonequilibrium steady states) already reported the tail
strengthening, corresponding to the normal transport [57].
This may work as an analogy of the possibility that the
nonequilibrium effect causes the convergence. They reported
that the tail exponent changed at the characteristic wave
number of the shear and that the strengthened exponent of
the long wavelength corresponded to the normal transport.
We did not discuss such a possibility here, but it is not hard
to suppose that the nonequilibrium condition (isobaric but
varying temperature) may affect the heat conduction because
of the global coupling as in the GK formula [52].

At last, we go back to the most detailed MCT analysis
of equilibrium correlations in one-dimensional full FH [15]
for the discussion of the correspondence. We mention the
difference that our analysis and Spohn’s analysis are based on
different equations. He started the analysis from the equations
of continuity of conserved quantities (volume, momentum,
and total energy), studied the effect of pressure nonlinearity
with MCT and with some approximations, and got the scalings
of the autocorrelation functions for the three plane waves of
the linearized perfect fluids (one heat mode and two sound
modes). His analysis is based on the linearized hydrodynamics
added pressure nonlinearity. In his analysis, the anomaly is
directly connected with the heat-heat mode correlator which
becomes to the symmetric Levy distribution in sound cones
propagating at the sound speed. His prediction is already
tested in some anomalous systems with good agreements,
but some deviation was also reported [24]. He used some
approximations, however he also claimed the possibility that
his result remains without his approximations in his equations.
His claim looks based on the mirror symmetry of sound cones
and nonlinear terms of currents. Then the difference with us
may come from the starting point equations. Spohn’s equations
do not include streaming terms because of the derivative
along the constituent particles [55], then the nonlinear currents
are mirror-symmetric because the pressure depends only on
mass and on internal energy. However, our equations include
streaming terms and the nonlinear current (uδe) is mirror
antisymmetric. Our result may assert the significance of this
difference. One can have some questions to the validity of our
DR convergence, so to get the credit, we also note that the
result of DR (31) is also the exact solution of the passive scalar
diffusion coefficient in the fluids neglecting their temperature
dependence of pressure. As another derivation, one can easily
get the same diagram of (30) with the same procedure of [62].
Then our result has the universality based on the ballistic fixed
point to some extent.
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To clarify the difference, the test of current fluctuations
would be sufficient. His concrete prediction is as follows. First,
he decomposed the conserved quantities Qn =T [�xn := xn −
xn−1,pn,ẽn := V (�xn) + p2

n/(2m)] into the three plane waves
of the linearized perfect fluids Q̃n. If one obtains the linearized
equations of perfect fluids (∂t + ∂xA)Q = 0 and the covariance
matrix C s.t. Cmn := 〈Qm(x,t) : Qn(y,s)〉eq

T ,P /[δ(x − y)δ(t −
s)], one can define the linear transformation matrix R

satisfying the conditions RAR−1 = diag(−c,0,c),RCRT =
diag(1,1,1) and derive Q̃ := RQ. We used 〈:〉eq

T ,P as 〈f :
g〉eq

T ,P := 〈fg〉eq
T ,P − 〈f 〉eq

T ,P 〈g〉eq
T ,P . One can decide R uniquely

except the trivial arbitrariness ±1. One of the sets takes the
following matrix. See [55] for details. Here we abbreviate the
time and the position for discussing the correlations of equal
time and equal place. Shortening 〈〉eq

T ,P to 〈〉, �xn to x, and
V (�xn) to V , and defining

�̃−1 := T −1(〈x : x〉〈V : V 〉 − 〈x : V 〉2) + T

2
〈x : x〉 (47)

and

c := �̃

(
〈(V + Px) : (V + Px)〉 + T 2

2

)
Z̃1 :=

√
2T c

κ̃ :=
√

2T �̃

∂lP := −�̃

(
〈V : (V + Px)〉 + T 2

2

)
∂eP := �̃〈x : (V + Px)〉, (48)

we can define R as

R := Z̃−1
1

⎛⎜⎝∂lP −c ∂eP

κ̃P 0 κ̃

∂lP c ∂eP

⎞⎟⎠. (49)

These values are easily calculated with the numerical inte-
gration of the corresponding canonical values. And then he
derived the analytic formulas of Q̃ autocorrelators [15]. One
of the heat modes becomes symmetric Levy, and ones of the
sound modes become the sound speed propagating KPZ.

Here we report the deviation with l increasing in c-FPU
β, which looks like the asymptotic form with respect to
t increasing. We set the data of the heat-heat correlator
(�t = 0.005, T = 1) in Fig. 6. We abbreviate the heat-mode
autocorrelator Sh as S here. We only note about the sound
modes that inclined sound-sound correlators already reported
in [15] are also observed. The symmetric Levy distribution
of the heat-heat correlator in the sound cones S(x,t) �
t−2/3fI (x/t2/3) are observed at l = 0 [24], however, the phase
difference of the sound cones looks tripled at l = 0.5. The
deviation is consistent with our other results and also with the
previous reports [24]. The height scaling looks to change at
the same time. The observations of S(0,t) show the change
of the height scaling from z = 3/2 to z = 1. Furthermore,
the heat-mode autocorrelator grows up around cones with the
decreasing center top at l = 1,2. The top is almost negligible
at l = 2. We also note the bumps around the cones are scaled
by x/t , which is just the ballistic scaling z = 1. This exponent
change and growing bumps mean the scaling crossover from

the inviscid scaling S(x,t) � t−2/3fI (x/t2/3) to the ballistic
scaling S(x,t) � t−1fB(x/t). The sound-heat correlations or
the correlation overlaps [24] may affect the result. If the
anomaly remains in his equations [15], this difference may
come from streaming terms. We could not observe the cutoff of
the scaling to provide the convergence, although the crossover
is observed. It is difficult to observe the anomaly cutoff like
S(x,t) � e−t/τ t−1fB(x/t) at the long time scale as already
pointed out in [38] and we do not know what the possible cutoff
looks like. We may need the extensive tests of the universality
in one dimensional momentum-conserving systems.

V. CONCLUSION

Our numerical experiments of steady heat conduction
suggested some possible origins of normal heat conduction in
one-dimensional momentum-conserving systems. The recov-
ery had been explained by the thermally activated dissociation.
However, compressed FPU β under the strong compression
and of high energy (l = 2,4,T 
 1) showed the recovery
of Fourier’s law with the non-Arrhenius T dependence of
heat conductivity. It suggested the existence of the class of
normal heat conduction, the origin of which is explained
by some macroscopic continuum theory in one-dimensional
momentum-conserving systems. There would be at least two
mechanisms of normal heat conduction. The vanishing long
time tails of total energy currents suggested some relation
between the non-Arrhenius type recovery and the pressure.
Then we tried to explain the two mechanisms with correspond-
ing phenomenologies. First, for the case of the Arrhenius T

dependence, we studied the coefficient with the transition-
state theory following the scenario reported in [43] that the
convergence is caused by the thermal activation of dissociation
and got quantitative agreement with our numerical simulations
of PR-6 in a certain extent. Second, for the case of the non-
Arrhenius T dependence, we executed the MCT analysis based
on full FH equations of a specific limit and got the suggestion
that the pressure fluctuations suppressed the anomaly. This
was consistent with our numerical result of compressed FPU
β. The RG flow of further approximated equations asserted
the connection between this result and the ballistic fixed point,
another nontrivial fixed point from the inviscid fixed point.
The fixed point was induced by the compressibility in our
RG analysis. Discussing the correspondence with the previous
accurate theory of equilibrium correlators [15], we found the
possibility of the inviscid-ballistic crossover of the heat mode
autocorrelator. Further investigation is needed to examine
the possibility of normal heat conduction in one-dimensional
momentum-conserving systems.

ACKNOWLEDGMENTS

The author gratefully acknowledges helpful discussions
with H. Hayakawa, K. Saitoh, S. Lepri, and S. Takesue,
and with S. Sasa and T. Hatano with the greatest thanks.
The discussions in “Yukawa International Seminar 2015
(YKIS2015): New Frontiers in Non-equilibrium Statistical
Physics 2015” were valuable opportunities for us.

012115-12



PRESSURE-INDUCED RECOVERY OF FOURIER’s LAW IN . . . PHYSICAL REVIEW E 94, 012115 (2016)

FIG. 6. Left: The equilibrium autocorrelation of the heat mode in c-FPU β at T = 1, t = tn ∼ 400n/c, N = 2048. Right: S(0,t) in t � t2.
z values of the left panel are chosen as z = 3/2 at l �= 2 and z = 1 at l = 2. One can see the symmetric Levy in sound cones at l = 0 and the
growing bumps around the cones at l �= 0. S(x,t) shows the ballistic scaling at l = 2. The width scaling is the inviscid one x/t2/3 at l = 0 and
the ballistic one x/t at l = 2. S(0,t) shows the clear crossover.

APPENDIX A: DERIVATION OF THE GREEN
KUBO FORMULA

We derive the Green Kubo formula of the normal heat
conduction here in two ways. One of them (A22) is the
expansion from the globally equilibrium conditions and the
other (A35) is the expansion from the locally equilibrium
conditions. In the far from equilibrium conditions, one cannot
use the former, but can use the latter.

1. Setting

Let us consider a system that connects to two stochastic
reservoirs at the edges. Each reservoir has its connecting area
and satisfies the local detailed balance condition. We assume
the time-reversal symmetry of the system Hamiltonian and
the nearest-neighbor interaction (“short range” interaction).
We further assume the unique steady state ensemble P st

independent of the initial conditions. Here we consider
the macroscopic variables along the particle index, but can
translate it to that along the field coordinate [Ai → A(x) =∑

i Aiδ(x − xi)]. Under that translation, the choice of the
variable ri(:= xi+1 − xi) in the expansion from the local
equilibriums would be translated into that of the mass density
ρ(x) = ∑

i miδ(x − xi). Also, one can extend this discussion
to the case having additional order parameters.

We describe the fundamental relation to derive the formula
as the preparation. We note � as the phase space coordinate
and H as the system Hamiltonian. hi is the ith particle energy
density, ji+1,i is the corresponding energy current, and ri is the
ith particle compression here. β±(β+ > β−) is the temperature
of the reservoir ±. Energy conservation law can be written as

∂thi + ji+1,i − ji,i−1 =
∑
±

Q̇±
i χ [i ∈ D±], (A1)

χ [A] =
{

1 A: true

0 A: false.
(A2)

D± is the connecting area of the reservoir ± (|D±| � N,N :
system size) and Q̇±

i is the energy from the reservoir ± to the
ith particle per time. By the local detailed balance condition,
the path probability on the path �̂ within the time t ∈ [0,τ ]

and that on the time-reversal path �̂† satisfy the relation

P (�̂|�0)

P (�̂†|�∗
τ )

= e−β±Q±
τ . (A3)

Here, Q±
τ is defined as Q±

τ := ∫ τ

0

∑
i∈D± Q̇±

i , �0 is the initial

state of �̂, and �τ is the end state of �̂. ∗ is the index that
expresses the time-reversal quantity B∗ of the instantaneous
variable B(�). P (�̂|�) is the conditional probability of the
path under this thermostat condition.

It is convenient for later discussions to introduce McLennan
ensembles (A15) [63,64]. First, we note that fluctuation theo-
rem (A8) holds for path-dependent variables A(�̂) because of
the existence of the local detailed balance (A3). Now we use
〈〉 as the average of the stochastic reservoir forces. Defining

�(�̂) := β±Q±
τ + ln

P ref(�0)

P ref(�∗
τ )

(A4)

and using † as the indicator of the time reversals of the path-
dependent variables [A†(�̂) = A(�̂†)], one can get

〈A(�̂)〉 :=
∫

d�̂P (�̂|�0)P ref(�0)A(�̂) (A5)

=
∫

d�̂†P (�̂†|�∗
τ )P ref(�∗

τ )A(�̂)

× exp

(
β±Q±

τ + ln
P ref(�0)

P ref(�∗
τ )

)
(A6)

=
∫

d�̂P (�̂|�0)P ref(�0)e�†(�̂)A†(�̂). (A7)

That is

〈A〉 = 〈A†e�†〉. (A8)

Second, we consider the time evolution of an ensemble Pτ

that started from a reference ensemble P ref . We choose A =
δ(�′ − �τ ) in the above fluctuation theorem, and get

Pτ (�′) = 〈δ(�′ − �τ )〉 = 〈δ(�′ − �∗
0 )e�†〉 (A9)

= P ref[(�′)∗]

×
∫

d�̂P (�̂|�0)e�†(�̂)δ[�0 − (�′)∗]. (A10)
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We take the limit τ → ∞, and the steady distribution is
expressed as

P st (�) = P ref(�∗)

× lim
τ→∞

∫
d�̂P (�̂|�0)e�†(�̂)δ(�0 − �∗). (A11)

We use 〈〉st to express the steady state average. This expres-
sion is transformed into another form for the instantaneous
variables B(�). Using the relation d� = d�∗, one can get the
tractable form

〈B〉st =
∫

d�∗B∗(�∗)(P st )∗(�∗) (A12)

=
∫

d�B∗(�)(P st )∗(�) (A13)

= lim
τ→∞

∫
d�̂B∗(�)P ref(�)P (�̂|�)e�†(�̂), (A14)

namely

〈B〉st = lim
τ→∞〈B∗e�†〉ref . (A15)

We expressed the reference ensemble average as 〈〉ref .

2. Derivation

a. Derivation 1: Expansions from globally equilibrium conditions

We consider the expansion from the static globally equilib-
rium state

(〈ri〉st ,〈pi〉st ,〈hi〉st ) = (l,0,e). (A16)

Corresponding intensive variables are

(βP,βV,β) = (β̄P0,0,β), β̄ = β+ + β−
2

. (A17)

P is the pressure and V is the averaged velocity. Now we
choose

P ref = P can
β̄

:= e−β̄H/Z (A18)

as the reference ensemble. It means the choice of (T ,l). We
use 〈〉can

β̄
to express the average by the ensemble P can

β̄
. Entropy

production � takes the form

� = −β±Q±
τ + β̄[H(�∗

τ ) − H(�)] = �βQ. (A19)

We used the time-reversal symmetry of the Hamiltonian
H(�∗

τ ) = H(�τ ) and defined �β := β+ − β−,Q := (Q− −
Q+)/2. Corresponding time reversals are �† = −�βQ,Q̇∗ =
−Q̇. The energy conservation law of the systems at the steady
states requires

∑
±〈Q̇±〉st = 0. Also, the energy balance at the

bulk (n∈̄D±) yields the relation

|〈J 〉st | := |〈jn+1,n〉st | = 〈Q̇〉st (A20)

= lim
τ→∞〈−Q̇e−�βQ〉can

β̄
(A21)

= �β

∫ ∞

0
dt〈Q̇(0)Q̇(t)〉can

β̄
+ O[(�β)2]. (A22)

The sign of J is minus if the reservoir + is at the left and plus
if it is at the right. The error from the relation can be large if
�β is comparable with β̄ and not negligible in that case.

b. Derivation 2: Expansions from locally equilibrium conditions

One can know the steady state value of the energy and
the compression through the careful observation even if their
values spatially change, and we consider the expansion from
the static locally equilibrium conditions

(〈ri〉st ,〈pi〉st ,〈hi〉st ) = (li ,0,ei). (A23)

Spatial homogeneity of pressure is needed to keep the zero
value of the momenta, then corresponding intensive variables
are

((βP )i ,(βV )i ,βi) = (βiP,0,βi). (A24)

Now we suppose li and ei are slowly varying quantities
in space scaled with the correlation length of microscopic
variables (particularly ji+1,i ,vi := pi/mi). Also, we suppose
the temperature gaps at the edges are negligible. If the system
shows the normal heat conduction, one can realize them
with sufficiently large (but finite) system sizes N . Under the
condition, one can expand the contribution from the entropy
production � around the local equilibriums. So we take the
isobaric local equilibrium ensemble as the reference ensemble,

P ref = P lc
{βi }i ,P := e−βihi−[(βi+1+βi )/2]Pri /Z. (A25)

It means the choice of ({Ti}i ,P ). βi is chosen as the parameter
satisfying the relation

i∈̄D±,〈hi〉lc{βi }i ,P = 〈hi〉st ; i ∈ D±,βi = β±. (A26)

We use 〈〉lc({βi }i ,P ) to express the average by the ensemble
P lc

{βi }i ,P . Entropy production takes the value

� = −β±Q±
τ + βi[hi(�

∗
τ ) − hi(�)]

+ βi+1 + βi

2
P [ri(�

∗
τ ) − ri(�)] (A27)

= −
∫ τ

0
dt

[
βi(ji+1,i − ji,i−1)

− βi+1 + βi

2
P (vi+1 − vi)

]
(A28)

=
∫ τ

0
dt

[
(βi+1 − βi)ji+1,i − βi+1 − βi−1

2
Pvi

]
. (A29)

The time reversals are �† = −�,j ∗
i+1,i = −ji+1,i . Then the

averaged value of the current at the bulk n ∼ N/2 can be
estimated as

〈J 〉st := 〈jn+1,n〉st (A30)

= lim
τ→∞〈−jn+1,n

× e− ∫ τ

0 dt{(βi+1−βi )ji+1,i−[(βi+1−βi−1)/2]Pvi }〉lc({βi }i ,P ) (A31)

=
〈
jn+1,n(0)

∫ ∞

0
dt

[
(βi+1 − βi)ji+1,i

− βi+1 − βi−1

2
Pvi

]〉lc

({βi }i ,P )

+ O[(d∂nβ)2]. (A32)

d is the largest correlation length of the currents.
〈jn+1,n〉lc({βi }i ,P ) = 〈j ∗

n+1,n〉lc({βi }i ,P ) = 0 follows the time-
reversal symmetry of the chosen ensemble reflecting
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H∗ = H. This relation corresponds to that derived by Casati
and Prosen [52] under the chaotic pictures. However, the
estimated error under the anomalous heat conduction is
different from the above. Under the condition, the estimated
error was O[(N∂nβ)2] = O[(�β)2] because there were no
scale separations anymore and the correlation length grows
to the system size (d ∼ N ). The situation of the system
of normal heat conduction is in sharp contrast to it. In the
systems of normal heat conduction, this modified error
estimation O[(d∂nβ)2] assures us the safety to use the relation
even under the far from equilibrium conditions (�β ∼ β̄).
Our interest is in the Green Kubo formula on the systems of
normal heat conduction, so the average of the right hand side
can be estimated under the equilibrium condition with further
expansions. Writing the ensemble average by the isobaric
canonical P can

β,P := exp[−β(H + P
∑

i ri)]/Z as 〈〉can
(β,P ), we

get the estimation

〈J 〉st = (βn+1 − βn)

×
〈
jn+1,n(0)

∫ ∞

0
dt

∑
i

[ji+1,i − Pvi]

〉can

(βn,P )

+O((d∂nβ)2,d2∂2
nβ). (A33)

We set a rule that we do not take the summation on the index
n (though we have taken the summation on the index i). This
relation is valid for each gradient βn+1,n(n ∼ N/2), i.e., βn

dependence of the averaged current correlations corresponds
to the temperature dependence of the heat conductivity (×β−2)
in the isobaric cases. Also, at the middle of the system
n ∼ N/2, the forces from the reservoirs within the correlation
time τc does not affect the dynamics of the particles far from
the edges within the time and the contribution of the past
forces from the reservoirs are used only for the setting of the
initial condition; then one can estimate the average with static
isolated-periodic boundary. This translation is done by the
change of the conditional probability P (�̂|�) → δ[�̂(�) − �̂]
[where �̂(�) is the solution of the equation of motion deter-
mined by the system Hamiltonian with the initial condition �],
and we note it as 〈〉can−IP

(β,P ) . Then it can be reduced to

〈J 〉st = (βn+1 − βn)

×
〈
jn+1,n(0)

∫ ∞

0
dt

∑
i

[ji+1,i − Pvi]

〉can−IP

(βn,P )

+O
(

(d∂nβ)2,d2∂2
nβ,d∂nβ

cτc

N

)
. (A34)

We repeat the no summation on the index n. The propagation
speed of the effect is constrained by the sound speed c, so the
error accompanying this translation is estimated as O(d∂nβ ·
cτc/N ). In the monatomic case, the second term vanishes
because of the momentum conservation

∑
i pi = 0, then

〈J 〉st = (βn+1 − βn)
1

N

∫ ∞

0
dt

〈
Ĵ (0)Ĵ (t)

〉can−IP

(βn,P )

+O
(

(d∂nβ)2,d2∂2
nβ,d∂nβ

cτc

N

)
. (A35)

This is the desired relation. Here we defined Ĵ := ∑
i ji+1,i .

Clearly, it can be used even if �β is comparable with β̄. The
perturbation is roughly estimated as (�βd)/(β̄N ). Smallness
of the perturbation comes from the scale separation d/N � 1.
The reverse transformation of the boundary 〈〉can−IP → 〈〉can

and the change of the choice of the macroscopic variable
P → l(T ,P ) recovers the ordinary Green Kubo formula as
already discussed in the paper.

3. Remarks

We note that there is no need to assume the small coupling
between the reservoirs and the system if the reservoirs are
described as the stochastic ones and satisfy the local detailed
balance (A3). It is naturally obeyed by the smallness of the
heated area compared to the bulk. So, one can choose any
stochastic forces of the thermostats if they keep the local
detailed balance. Furthermore, these relations can be applied
to the cases of the finite-size systems if it keeps the temperature
gaps at the edges negligibly small.

The choice of the reference ensemble determines the
accuracy of the expansion, so the reference must be chosen
to keep the averages of the macroscopic variables almost
unchanged under the ensemble transformation (P st → P ref).
Then, the ensemble choice of the homogeneous compression
[li = l,P ref = exp(−βihi)/Z] would not make sense in the
far from equilibriums (�β ∼ β̄) in general because such a
choice can allow the particles to move in average (∂nP �=
0). Such a static steady state cannot exsist. If ∂P (T ,l)/∂T

becomes relevant, the difference between two ensembles is
not negligible.

As a convincing example on the validity of the local
equilibrium ensembles, we show the case of a thermal rectifier
[65]. In that case, the system Hamiltonian takes the form

H = HL(x1, . . . ,xNL
,p1, . . . ,pNL

)

+HR(xNL+1, . . . ,xN ,pNL+1, . . . ,pN )

+ λV (xNL+1,NL
), λ � 1. (A36)

According to the simulation, suppose the situation

P = 0; i � NL, Ti = TL; i > NL, Ti = TR. (A37)

TL(R) is the reservoir temperature of the left (right) side. One
cannot expand � by d∂nβ now, but can get the following
relation repeating the same calculation with that of Derivation
2, defining q := jNL+1,NL

,

〈q〉st = �β

∫
dt〈q(0)q(t)〉lcβL,βR

+ O[(�β)2λ3] (A38)

∝ λ2. (A39)

�β := 1/TR − 1/TL is the inverse temperature difference
between the left reservoir and the right reservoir. 〈〉lcβL,βR

is
the average by the local equilibrium ensemble (A25) of the
corresponding situation. We expanded � by the small pa-
rameter λ. jNL+1,NL

∝ λ[dV (xNL+1,NL
)]/(dxNL+1,NL

) = O(λ)
predicts the scaling 〈jNL+1,NL

〉st ∝ λ2. This relation is actually
observed in [65]. Also, neglecting the O(λ3) terms in the
time evolution that come from the system coupling, one can
estimate the right hand side with the time evolution of the
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FIG. 7. Temperature profile at c-FPU β at l = 0, γ = 2, TL =
50, TR = 30 [TL(R): left (right) reservoir temperature]. The corre-
sponding curve of normal heat conduction κ ∝ T 1/4 is also shown
in the same figure. There are the cusps at the edges corresponding
to the anomaly but the gaps at the edges cannot be seen. The clear
systematic deviation means the asymptotics of the anomaly realized
in this parameter region.

separated systems (H = HL + HR), as already done in [65].
The temperature asymmetry that cannot be treated in the
expansions from the global equilibriums is now included in
this linear response.

We also note that the second term in the Green Kubo of
the local equilibriums (A34) would remain in the diatomic
systems under the compression (tension) even if they recover
the normal heat conduction. In addition, even in the case
of diatomic systems around the globally equilibriums, the
expansion from the isobaric equilibrium shows a different
Green Kubo formula which corresponds to (A34) from the
isodense case (A22). There may be another order because they
should be equivalent if we specify the values of all macro-
scopic variables. Monatomic systems actually have no such
confusion. Diatomic systems may need careful modifications
on that point.

APPENDIX B: ON THE VANISHMENT OF THE
TEMPERATURE GAPS AT THE EDGES

In the preceding appendix, we showed the simple derivation
of the Green Kubo formula and we supposed the vanishment
of the temperature gaps at the edges (between the system and
the reservoirs) there. It is reasonable to have doubt whether
the gaps really vanish in the simulations. We showed the data
of the temperature profile only at N = 215 = 32 768 (Fig. 1),
where the gaps still remain. Here we show the vanishment of
the gaps in our simulations of c-FPU β.

We begin by seeing that the scale-invariant form of the
anomaly can appear at l = 0 even in γ = 2, �T/T̄ = 0.5.
Figure 7 is the temperature profile at the parameters (γ =
2, �T/T̄ = 0.5, l = 0). The nth particle’s temperature Tn is
defined by the kinetic temperature with the long time average.
One can see the existence of the scale-invariant form

Tn = T̃l=0(n/N ) (B1)

(N : system size). As is known, the heat conductivity shows
power law temperature dependence κ ∝ T 1/4 if one takes the
temperature difference sufficiently small [51] in the parameter
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FIG. 8. Temperature profile at c-FPU β at l = 4, γ = 2, TL =
50, TR = 30. The corresponding curve of normal heat conduction
κ ∝ T −2.3 is also shown in the same figure. The clear convergence
means the realization of the asymptotic form in this system. The gaps
at the edges vanish at larger sizes.

l = 0. If the system recovers the normal heat conduction with
the power law temperature dependence of heat conductivity
κ ∝ T a , their corresponding temperature profile must be
described as m � n � N − m,

Tn =
[
T a+1

1+m + (
T a+1

N−m − T a+1
1+m

) n − m

N − 2m

]1/(a+1)

, (B2)

but one cannot see the convergence to it in the figure (m:
the number of reservoir-attached particles to each reservoir).
There are increases of the gradient (cusps) around the edges
(besides the gaps at the edges). This is a characteristic
feature of the anomalous heat conduction and is caused by
the growth of the correlation length. The position-dependent
Green Kubo formula (at the position n) is proportional to∫

dt
∑

i〈jn+1,nji+1,i〉lc (〈〉lc: local canonical average defined
in the preceding appendix), so this is understood as the
consequence of the fact that the integration range of the
position becomes smaller than the correlation length (∼N )
[49]. Here ji+1,i is the energy current between the i + 1, ith
particles. Then this systematic deviation corresponds to the
anomaly. Now the temperature gaps at the edges vanish. Only
the cusps remain.

Next, we checked whether the system at l = 4 reaches
the asymptotics (Fig. 8). Before the discussion, we note that
there are temperature gaps at smaller sizes, but the relation
proposed by Aoki and Kusnezov (B2) [66] can be used even
in these situations. Then, seeing the profile at small sizes
N = 2048, 8192, 32768, one can find the increase of the
gradient (cusps) at the edges, that corresponds to the anomaly.
It means that there is actually the anomaly in this system
at small sizes. The graph κ̄ − N (Fig. 2) actually has the
region that shows the anomaly κ̄ ∼ N1/3 and the region just
corresponds to the sizes we found here. After the checking,
please see the convergence to the asymptotic curve as the
gaps decrease. The profile that was straight at N = 8192 has
slowly bent and converges to the master curve κ ∝ T −2.3

of normal heat conduction at N = 131 072, 262 144. We
put the curve of normal heat conduction κ ∝ T −2.3 with
Tm+1 = 49.7, TN−m = 30.3. It is clear that it converges to
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the profile of the normal heat conduction. At least, one can
understand that this behavior is not the artifact that merely cut

the preasymptotics only. The gaps vanish at larger sizes and
one can safely use the Green Kubo formula in this case.
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