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Control of force through feedback in small driven systems
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Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types
of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a
target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a
nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle
in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup,
we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong
feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback
gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.
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I. INTRODUCTION

The advance of experimental techniques allows the study
and manipulation of small systems with an unprecedented level
of control [1–6]. In particular, force-spectroscopy techniques
such as optical and magnetic tweezers are ideally suited to
capture and manipulate micrometer-sized objects and measure
energies with high accuracy on the order of thermal fluctua-
tions or a few kBT (with kB the Boltzmann constant and T the
temperature). In these experiments, a mechanical force can be
applied to the ends of a molecule tethered between a bead and
a surface either by controlling the force or the position. This
kind of manipulation opens exciting perspectives in the field
of nonequilibrium physics through time-resolved fluctuation
spectroscopy measurements. By mechanically perturbing the
tethered molecule it is possible to measure time-dependent
correlation and response functions using single molecules as
model systems. In optical tweezers for instance, the position of
the optical trap is controlled by displacing the focus of a laser
beam using mechanical or acousto-optic actuators. Optical
tweezers are therefore natural position clamps [7]. On the
other hand, magnetic tweezers typically work as natural force
clamps where the force applied to the beads is controlled by
approaching a pair of magnets [8]. However, many biophys-
ical and biochemical experiments require performing both
distance-controlled and force-controlled experiments (e.g.,
follow molecular motors working against a constant load).
Feedback mechanisms to perform the latter experiments with
optical tweezers have been developed [9,10]. In fact, although
passive force clamps can also be achieved with optical tweezers
[11], most optical tweezers setups achieve force control using
active feedback mechanisms in which the position of the
optical trap is adjusted at rates ∼10 Hz–1 kHz to keep the
force constant [7,10,12]. Such active feedback mechanisms
have been particularly useful to characterize a variety of
biophysical systems such as folding of nucleic acids structures,
processive DNA motors, or force-dependent kinetics of ligand
binding [13–16]. Consequently, an accurate characterization
and understanding of the parameters driving active feedback
systems is essential for an appropriate interpretation of many
single-molecule experimental results. In turn, the development

of feedback systems has provided the means to investigate
fundamental aspects of the nonequilibrium physics of small
systems such as experimental realizations of the Maxwell
demon [17,18] and the verification of Landauer’s principle
[19–21], or the observation of effective temperatures in driven
DNA molecules [22]. In addition, experimental progress in
these systems has prompted the development of theoretical
descriptions of feedback mechanisms for small systems and
further refinement in the theory of feedback control [23–29].

Here, we study a force feedback protocol for optical
tweezers setups, which randomly changes the force in a
dichotomous fashion between a lower and a higher force value.
This stochastic protocol drives the system to a nonequilibrium
steady state that, under well-defined conditions, has been
shown to fulfill the fluctuation-dissipation theorem but with
an effective temperature higher than the bath temperature,
mimicking additional thermal noise arising from the random
forcing [22]. In the following, we first introduce the ex-
perimental setup and the force feedback (Sec. II). We then
discuss a toy model in which the force feedback mechanism is
implemented for a harmonic oscillator (Sec. III). Subsequently,
we investigate force feedback for a stochastically driven DNA
hairpin in both theory and experiments (Sec. IV). Finally, we
conclude by summarizing our main results and emphasizing
how the mechanical un(folding) of single molecules provides
a paradigmatic example to discuss theoretical concepts in the
field of feedback-controlled small systems.

II. EXPERIMENTAL SETUP AND FEEDBACK

A. Free-energy landscape

In the experimental setup, a bead is attached to each strand
of a DNA hairpin of 6800 base pairs via molecular handles,
in our case short segments (29 base pairs) of double-stranded
DNA. One of the beads is captured with an optical trap while
the other one is kept immobilized by air suction in the tip of
a glass pipette [see Fig. 1(a)]. By controlling the position λ

of the optical trap, a force f is applied on the DNA hairpin.
The application of a larger force unfolds the DNA, thereby
increasing the number of open base pairs n. Figure 1(b) shows
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FIG. 1. (a) Experimental DNA unfolding setup. Moving the
optical trap with position λ changes the force f , which is applied on
the DNA hairpin. A larger force unfolds the DNA, i.e., increases the
number of open base pairs n. (b) Experimental force-distance curve
of the 6800 base pairs DNA hairpin for a protocol that increases the
trap position λ linearly in time with speed ν = 300 nm/s (unfiltered
data at 1 kHz in lighter color and data filtered at 4 Hz in darker color).
The relation between the measured force fexp and the actual force
f is given by Eq. (1). (c) Free-energy profile G(f,n) of the hairpin
versus the number of open base pairs n for various values of the
force f .

the force-distance curve (FDC) obtained by increasing the trap
position linearly in time while measuring the force applied to
the ends of the hairpin. This FDC shows a typical sawtoothlike
pattern representing the unfolding reaction of the DNA hairpin
as it progresses through many partially unfolded intermediate
states.

Intermediate states are expected from the predicted free-
energy profile of the hairpin, which can be derived from its
FDC [30]. In Fig. 1(c), we show the free-energy profile for

several values of the force f around the coexistence force
(fc � 17.1 pN), the latter being defined as that value of the
force where the state with n � 2000 and the fully unfolded
state have equal free energies. The 6800 base pairs DNA
hairpin has many intermediate states that are separated by
barriers much larger than kBT . Moreover, at the coexistence
force, the free energy drops sharply for roughly the first 2000
base pairs of the hairpin due to the high abundance of AT
base pairs in that region. Consequently, in our experiments
and simulations, the long hairpin is rarely seen to fold below
n � 2000 at forces not far from fc. Finally, we stress that
the application of a force f > fc tilts the free-energy profile
such that unfolded states become energetically more favored.
Changing the force over time, as in the stochastic driving we
are considering here, thus drives the hairpin back and forth
across its free-energy profile.

B. Constant force feedback

So far, we have discussed the free-energy profile of the
hairpin for various controlled values of the force f . However,
in experiments with optical tweezers, one controls the position
λ of the trap whereas the force f fluctuates. To nevertheless
control the force, a feedback protocol is implemented by the
repeated execution of the following two steps:

Step 1. The force f that acts against the captured bead is
measured as an average over a time interval τF

fexp ≡ 1

τF

∫ τF

0
f (t) dt, (1)

where fexp is the experimentally recorded force and the initial
time 0 is taken at the beginning of the time interval.

Step 2. The optical trap is moved depending on the
measurement outcome to bring this force closer to a target
value fT . More precisely, given some measured force fexp as
input, the feedback adjusts the trap position λ by means of

�λ = G
fT − fexp

keff
, (2)

where G is the dimensionless feedback gain and where keff is
an effective rigidity of fixed value, which sets the relevant scale
for the conversion from forces to distances. Hence, if the force
is smaller than the desired value fT , the feedback increases
the distance λ to pull stronger (�λ > 0). Conversely, if fexp is
larger than fT , �λ < 0 to decrease the force. How much the
trap is moved in these two cases is determined by the feedback
gain G, which is a free parameter of the force feedback.

Ideally, this feedback might be used to apply and maintain
a constant force on the DNA. In Fig. 2, we show data for
experiments which start with the DNA hairpin in the folded
state and use the feedback defined by Eq. (2) to apply a
constant force sufficiently large to completely unfold the DNA.
Figure 2(a) illustrates that whenever the force fexp drops below
the target value fT , the feedback increases the trap position λ,
in agreement with Eq. (2). Furthermore, Fig. 2(b) demonstrates
that the hairpin remains stuck in several intermediate states for
a noticeable time before unfolding into the next intermediate.
This result is in agreement with the earlier observation that
the intermediate states are separated by large barriers if a
constant force is applied [see Fig. 1(c)]. Moreover, the varying
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FIG. 2. (a) Experimental trajectory of the force fexp (solid, lighter
color) and the trap position λ (dashed) using the linear feedback
defined in Eq. (2) to apply a constant force (black). (b) Trajectories
of the number of open base pairs n for different repetitions of the
experiment each using the same feedback protocol as in (a). The
dashed curves in (a) and (b) correspond to the same experiment.

amounts of time spent in a given intermediate across different
constant force experiments highlight the stochastic nature of
the unfolding process.

C. Stochastic driving

The discussion of the constant force feedback has shown
that the DNA hairpin remains stuck in one state if a constant
force is applied, since large barriers in the free-energy profile
prevent further transitions [see Fig. 1(c) and Fig. 2(b)]. In
the following, we discuss a protocol that changes the target
force over time and thus helps the DNA to continuously
perform transitions among many of its states. Specifically, we
consider the case of a dichotomous stochastic target force that
is randomly switched at a rate 1/τe between the two values

f ±
T ≡ fc ± �f, (3)

where fc is the mean force and �f the force amplitude. For
this protocol, Fig. 3(a) illustrates how the feedback adjusts the
force fexp to the stochastic target force fT . Since the feedback
control is not perfect, the force fluctuates noticeably around the
target value. However, for the feedback parameters considered
in Fig. 3, these fluctuations are small compared to the force
amplitude �f of the external protocol. We furthermore stress
that this protocol indeed drives the DNA hairpin back and forth
through its states [see Fig. 3(b)].

In the following, the feedback-controlled dynamics of the
stochastically driven hairpin will be systematically explored
in both theory and experiment. In Sec. III we consider a toy
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FIG. 3. (a) Experimental trajectory segment (left) and histogram
(right) of the target force fT (black) and the force fexp (lighter color),
where keff � 0.1 pN/nm, fc = 18.1 pN, �f = 1.6 pN, τe = 1.33 s,
τF = 1 ms, and G = 1. (b) Corresponding trajectory segment (left)
and histogram (right) of the number of open base pairs n. In both (a)
and (b), the histogram is evaluated over the full trace from which the
time segment shown on the left hand side has been excerpted. This
trace is 1280 s long.

model of force feedback and study the feedback-controlled
dynamics of an overdamped particle in a harmonic oscillator.
For this system, we investigate the average reaction of the force
to a change of the target value during the stochastic driving.
In Sec. IV A, this quantity is discussed in the context of the
DNA hairpin system under random forcing. Subsequently, the
dynamics of the DNA hairpin under force feedback is further
evaluated through contour plots of the probability density in
the (fexp,λ) plane (Sec. IV B).

III. TOY MODEL: HARMONIC OSCILLATOR

A. Feedback

We consider the dynamics of an overdamped particle in the
harmonic trap V (x,λ) = k(x − λ)2/2 where x and λ are the
positions of the particle and the trap, respectively, and where
k is the trap stiffness. The dynamics of this system can be
described by the Langevin equation

ẋ = −μ∂xV (x,λ) + ζ (t), (4)

where μ is the mobility and ζ (t) the thermal white noise with
mean 〈ζ (t)〉th = 0 and variance 〈ζ (t2)ζ (t1)〉th = 2μkBT δ(t2 −
t1). For this system, the force feedback is implemented in
analogy to the DNA unfolding system. Hence, we model a
feedback that repeatedly first measures the force f = −k(x −
λ) that acts on the particle and then adjusts the position λ of the
trap according to Eq. (2) in order to bring f closer to the desired
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target force fT . The feedback needs a finite operation time τF

during which the trap position is kept constant to perform
each one of these measurements. All force measurements thus
represent a time average over one time interval τF .

Let the initial trap position at time t = 0 be λ0. The
dynamics of the trapped particle is then governed by

ẋ = −(x − λ0)/τs + ζ (t) (5)

in the following time interval 0 � t < τF , where τs ≡ 1/(μk)
is the relaxation time of the particle in the trap. In this time
interval, within the feedback scheme, the mean force [see
Eq. (1)]

f0 ≡ 1

τF

∫ τF

0
f (t) dt (6)

is measured first and then, at time t = τF , the trap position is
instantaneously changed to the new value

λ1 = G
fT − f0

k
+ λ0 (7)

[see Eq. (2)]. This procedure is repeated in the following
feedback interval but with the trap position updated to λ1.
For any given external protocol of the target force fT (t), the
feedback-controlled dynamics can therefore be solved in an
iterative manner. Here, we use the same protocol as for the
DNA unfolding system but with fc = 0, hence, we randomly
switch the target force between the two values ±�f at rate
1/τe [see Eq. (3)].

B. Feedback-induced relaxation towards the target force

Whenever the external protocol changes the target force
during the stochastic driving, the feedback needs to adjust the
force to a new value. The feedback thus induces a reaction
of the force to a change of the target value, which depends
critically on the feedback parameters and can therefore be used
to characterize the feedback. Since the target force is random
and because of the presence of thermal noise, the force reacts
stochastically to a jump of the target force [see Fig. 4(a)]. In
the following, we hence consider the average reaction of the
force to a given change of the target value along the particle
trajectory. Specifically, from now on, we focus on transitions
of the target force from f −

T = −�f to f +
T = �f [fc = 0 in

Eq. (3)] noting that for the opposite transition, f +
T = �f to

f −
T = −�f , the results are the same except for an overall

change of sign.
The average that we perform is illustrated in Fig. 4(a). For

this average, we introduce a time τ to describe the position
of the oscillator along a given time interval where the target
force has been set to f +

T = �f . We will call this an f +
T time

interval or f +
T interval for short. Now let t0 be the time at the

beginning of such an f +
T interval, i.e., the time at which the

target force changes from −�f to �f . For a given f +
T interval,

we start counting τ from zero at time t = t0 − τF [Fig. 4(a)].
For that f +

T interval, the time τ is taken to run from zero till
the time at which the protocol changes the target force back to
−�f . For a given value of τ , the average is then performed
over all f +

T intervals. In analogy to τ we also introduce, for
a given f +

T interval, the discrete variable j to keep track of
the number of feedback subintervals (each of duration τF )

oscillations

monotonic
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FIG. 4. (a) Simulated trajectory of the force f = −k(x − λ) on
the particle (lighter color) and the target force of the feedback
(black) for f +

T /
√

kkBT = 1, τF /τs = 0.1, τe/τs = 0.4, and G �
0.95. Whenever the target force is changed from the bottom to the top
value, we start measuring the time τ and the number j of feedback
iterations from zero one time interval τF in advance. Note that the
feedback updates the target force fT after each iteration and thus does
not react immediately to changes of fT . Performing an average of the
force f over all feedback iterations with the same value of j leads to
the curve with squares shown in (b). (b) Mean force 〈fj 〉 in the j th
feedback interval [Eq. (19)] after a change of the target force (black)
for the same τF /τs and τe/τs as in (a) and with G = 1.5 (circles),
G = G0 � 0.95 (squares), and G = 0.5 (triangles). For each G, the
value of 〈f0〉 has been determined numerically from simulations
of the feedback-controlled dynamics. As a guide for the eyes, we
have drawn lines connecting the values of 〈fj 〉. The inset shows the
maximal feedback gain Gmax [Eq. (18)] and the optimal feedback
gain G0 [Eq. (21)]. With symbols in corresponding shape, we mark
the combinations of G and τF /τs for which the mean force 〈fj 〉 is
plotted in the main panel.

elapsed since the target value was changed from f −
T to f +

T .
For example, the first subinterval j = 0 denotes the trajectory
of the oscillator for 0 < τ < τF in a given f +

T interval. We
will use this discrete variable to determine the mean force in
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the j th feedback subinterval after a change of the target force
from f −

T to f +
T .

We stress that the target force that the protocol dictates
and the thermal noise that the particle feels are not correlated.
Therefore, the above introduced average can be analytically
performed by separately first carrying out the thermal average
for one f +

T interval and then running the average over all
f +

T intervals, which occur along the external protocol. We
assume that for the single f +

T interval, which we consider
first, the positions of the particle and trap at time τ = 0 are
x(0) and λ0, respectively, so that the force at that time is
f (0) = −k[x(0) − λ0]. Then, referring to the thermal average
again by 〈. . . 〉th, we find

〈x(τ )〉th = [x(0) − λ0] exp(−τ/τs) + λ0 (8)

for all times 0 � τ < τF by solving Eq. (5). We note that the
thermal noise ζ (τ ) enters the particle trajectory x(τ ) linearly
for the harmonic oscillator and is thus canceled by the thermal
average. From the above Eq. (8), we obtain

〈f (τ )〉th = −k[〈x(τ )〉th − λ0] = f (0) exp(−τ/τs) (9)

as the force trajectory for all times 0 � τ < τF in one given
f +

T interval of the target force where the initial force at time
τ = 0 is f (0). Since for any other f +

T interval, only the initial
force f (0) is different, the average over all of these intervals
along the protocol simply acts as an average over the initial
force f (0). We therefore find

〈f (τ )〉 = 〈f (0)〉 exp(−τ/τs), (10)

for all times 0 � τ < τF , where 〈. . . 〉 represents the average
over all f +

T intervals which occur along the protocol. The mean
force for all times 0 � τ < τF follows as

〈f0〉 ≡ 1

τF

∫ τF

0
〈f (τ )〉 dτ = 〈f (0)〉τs

τF

[1 − exp(−τF /τs)].

(11)

The feedback uses this force to calculate with

〈λ1〉 ≡ G
f +

T − 〈f0〉
k

+ 〈λ0〉 (12)

the mean new position of the trap during the next feedback sub
interval τF � τ < 2τF [see Eq. (7), where fT = f +

T since we
consider f +

T intervals]. The mean force at time τ = τF then is

〈f (τF )〉 = −k[〈x(τF )〉 − 〈λ1〉] = 〈f (0)〉α + Gf +
T , (13)

where

α ≡ exp(−τF /τs) − Gτs

τF

[1 − exp(−τF /τs)]. (14)

The average force in the feedback subinterval τF � τ < 2τF

follows as

〈f1〉 = 1

τF

∫ 2τF

τF

〈f (τF )〉 exp[−(τ − τF )/τs] dτ

= 〈f0〉α + Gf +
T τs

τF

[1 − exp(−τF /τs)].

(15)

This calculation can be iterated to get the mean force in the
j th feedback subinterval

〈fj 〉 = 〈f0〉αj + Gf +
T τs

τF

[1 − exp(−τF /τs)]
j−1∑
m=0

αm, (16)

shown in Fig. 4(b). In the limit j → ∞, this force converges
to a finite value only if

|α| < 1. (17)

For a given feedback time τF , this condition is matched for
feedback gains G < Gmax with

Gmax ≡ τF

τs

1 + exp(−τF /τs)

1 − exp(−τF /τs)
. (18)

The mean force in the j th feedback sub interval then converges
with

〈fj 〉 = 〈f∞〉 + αj (〈f0〉 − 〈f∞〉) (19)

to the limit force

〈f∞〉 ≡ lim
j→∞

〈fj 〉 = Gf +
T

τF /τs + G
. (20)

For the optimal feedback gain

G0 ≡ τF

τs

exp(−τF /τs)

1 − exp(−τF /τs)
(21)

α becomes zero so that the mean force 〈fj 〉 is equal to the
limit value 〈f∞〉 right after the first feedback adjustment
[see Eq. (19) and Fig. 4(b)]. For smaller feedback gains
G < G0, α is positive (but smaller than one) and therefore, 〈fj 〉
converges monotonically towards 〈f∞〉. For larger feedback
gains G0 < G < Gmax, α is negative (but larger than minus
one) so that 〈fj 〉 shows damped oscillations around the
limit value 〈f∞〉 [see Fig. 4(b)]. In this case, the feedback
adjustments are strong enough to let 〈fj 〉 surpass its target
value. These oscillations get stronger the more the feedback
gain approaches the threshold value Gmax. Ultimately, for
G > Gmax, i.e., α < −1, the feedback adjustments are so
strong that the mean force 〈fj 〉 is farther away from the target
value after each feedback iteration. The oscillations of 〈fj 〉
then grow over time and the system is unstable [see Eq. (19)].

This analysis of the force feedback for the harmonic
oscillator shows that the time evolution of the mean force
after a change of the target force depends crucially on which
feedback gain G and feedback operation time τF is used, as
summarized in the phase diagram shown as inset in Fig. 4(b).
Specifically, G and τF also determine the limit value 〈f∞〉
to which the mean force 〈fj 〉 converges if G < Gmax [see
Eq. (20)]. This limit value is below f +

T for all G and τF since
the particle inevitably tends to relax towards the minimum
of the trap where the force is zero. This result becomes
particularly transparent if the limiting mean force, Eq. (20), is
evaluated for the optimal feedback gain G0 for which

〈f∞〉 = f +
T exp(−τF /τs). (22)

012107-5



E. DIETERICH et al. PHYSICAL REVIEW E 94, 012107 (2016)

-1

0

1

0 0.05 0.1 0.15 0.2

<f
ex

p
- f

c>
, f

T
[p

N
]

time [s]

G = 4, τF = 1ms (6)

G = 2, τF = 1ms (3)

G = 1, τF = 1ms (4)

G = 0.5, τF = 1ms (2)

G = 0.25, τF = 1ms (2)

0 0.05 0.1 0.15 0.2
time [s]

G = 2, τF = 1ms

G = 1, τF = 1ms

G = 0.5, τF = 1ms

G = 0.25, τF = 1ms

FIG. 5. Experimental (left) and simulated (right) force relaxation after a change of the target force from f −
T = fc − �f to f +

T = fc + �f

(black), for �f = 1.6 pN, τe = 1.33 s, τF = 1 ms and various G. The value of fc is different in theory (fc = 17.0 pN) and experiment
(fc � 18.1 pN) but is similar to the respective mean unzipping force in both cases. All experimental results are single molecule averages over
a different number of single molecules. For each value of G, this number is given in brackets in the legend. The experimental result for G = 1
is plotted in both the left and the right panel.

IV. DNA UNFOLDING

A. Feedback-induced relaxation towards the target force

We start the discussion of the force feedback in the DNA
unfolding setup by considering the force relaxation after a
change of the target force as discussed above for the harmonic
oscillator. Figure 5 shows the experimental force relaxation for
the stochastically driven hairpin using various feedback gains
G. The experimental results for different single molecules
at the same value of G agree remarkably well, thus proving
the consistency of the data (see Fig. 8 in the Appendix).
Moreover, the experiments show that increasing G leads to
a faster convergence of the mean force to the new target value.
This result suggests that the experiments have been performed
in the monotonic regime identified for the harmonic oscillator
(inset of Fig. 4). However, the experiments clearly show that
the convergence of the mean force is not strictly monotonic
but instead shows gentle oscillations. These oscillations reflect
the fact that the (un)folding process of the DNA hairpin occurs
on more than one time scale, in contrast to the particle in
the harmonic oscillator that relaxes on a single time scale. In
fact, while the feedback just needs to react to the dynamics
of a few base pairs for short times, big transitions involving
cooperatively unzipping regions containing a large number of
base pairs (from several tens to a few hundred, see Ref. [31])
contribute to the feedback response over longer times. Since
the feedback needs some time to respond to these large
unzipping transitions, the mean force first drops and then rises
again. The oscillations of the force relaxation illustrate that
this process takes place on several time scales.

We support these experimental results by simulations of
the dynamics of the DNA hairpin, which explicitly include the
feedback mechanism according to Eq. (2) but otherwise follow

an earlier scheme described in detail elsewhere [22]. Briefly,
the simulations use Kramers-type rates for the opening and
closing of a single base pair within the free-energy profile
G(λ(t),n) of the hairpin. This free-energy profile can be
calculated from a theoretical model of the unfolding setup
[30], which we have already used above to display the free
energy G(f,n) in Fig. 1(c). The time dependence of the trap
position λ(t) is determined by the feedback mechanism, which
periodically performs adjustments of λ according to Eq. (2) to
reach the target force fT .

Figure 5 shows that there is qualitative agreement of the
simulated and experimental force relaxation after a change
of the target value. Specifically, the mean force converges
faster towards the target value for larger feedback gains
G in both theory and experiment. Moreover, the simulated
force relaxation shows oscillations, which are similar to
those reported in the experiments. However, despite their
qualitative agreement, theory and experiment also show visible
differences in that the simulated force is systematically closer
to the target value fT for the same value of G (right-hand
side of Fig. 5). Therefore, the value of G at which the force
fexp overshoots the target force and for which the system
becomes unstable is smaller in the simulations. Indeed, the
feedback gain G = 4, which experimentally leads to a quick
convergence of the mean force causes the force to show
oscillations, which grow over time in the simulations without
ever converging. Hence, the simulation result for G = 4 is not
shown in Fig. 5.

The deviations between theory and experiment are caused
by experimental limitations of the feedback, one of them
being that the trap position cannot be adjusted instantaneously
to a new value since the trap moves at a finite speed
(due to the finite time response of the fiber wiggler that is
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The target values are represented by horizontal lines. All results are averages over single molecules (their number is given in brackets in each
panel).

mechanically coupled to the piezo crystal). These effects have
not been included in our simulations, indicating that the earlier
identified oscillations of the force relaxation are not caused by
the specifics of the experimental feedback but are rooted in the
multiple time scales of the DNA hairpin.

B. Probability density in the ( fexp,λ) plane

The above discussion of the feedback-induced relaxation
of the force towards its target value has shown that the
DNA relaxes on multiple time scales, causing the force to
drop repeatedly before being readjusted by the feedback.
In the following, this relaxation process of the DNA when
subject to feedback control will be discussed in more detail by
considering the probability density in the (fexp,λ) plane.

Figure 6(a) displays the experimental probability density
in the (fexp,λ) plane for a small feedback gain G. The gross
features of this probability density can be understood when
considering the mean measured FDC upon quasireversibly
unfolding the DNA hairpin by increasing the trap position λ

very slowly without any feedback [black curve in Fig. 6(a), this
FDC can be derived from the free-energy profile displayed in
Fig. 1(c)]. Since the system can equilibrate for each value of
λ in this case, this FDC gives the mean equilibrium force for
each trap position λ. For the force feedback considered here,
λ is permanently changed to adjust the force fexp to the target
value fT . Yet, within each feedback interval with length τF ,
the trap position λ is kept constant. Hence, in each feedback
interval, the system tends to relax to the equilibrium state that
corresponds to the current trap position λ. As a consequence,
on average the force fexp drifts towards the equilibrium value as

given by the FDC. This inevitable relaxation of the feedback-
controlled DNA hairpin is analogous to that of the overdamped
particle towards the minimum of the trap observed in Sec. III
[see Eqs. (20) and (22)].

For the stochastic driving, the target force fT is either
above or below the equilibrium force to ensure that the
hairpin is driven back and forth across the majority of its
intermediates (see Fig. 6). By trying to adjust the force to the
target values, the feedback thus competes with the relaxation
of the force towards its equilibrium value, which takes place
within each feedback interval. The parameters of the feedback
determine the outcome of this competition, i.e., by how much
the DNA hairpin is pushed into the nonequilibrium regime.
The experiment shown in Fig. 6(a) demonstrates that if the
feedback gain G is small, i.e., if the feedback adjustments
are weak, the system is hardly driven out of equilibrium so
that only forces in the proximity of the FDC are populated.
For a larger G on the other hand, Fig. 6(b) shows that the
feedback can better counteract the relaxation of the DNA into
equilibrium so that the force population is pushed towards the
target forces. This observation complements the earlier result
that increasing G leads to a faster convergence of the mean
force to its target value (Fig. 5).

The change of the force distribution upon increasing the
feedback gain G can be further characterized when considering
the histograms over the experimental traces of the force fexp

[Figs. 6(a) and 6(b)]. These force histograms demonstrate that
the variance of the force for a given target force fT becomes
smaller if the feedback gain G gets larger. In particular, for G =
2, the force variance is small compared to the amplitude �f

of the random forcing [Eq. (3)], which the feedback attempts
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to generate. For this feedback gain, the feedback mechanism
thus manages to keep the force variance sufficiently small to
resolve both target forces.

The experimental results are again compared to simula-
tion outcomes, showing qualitative agreement of theory and
experiment (see Figs. 6 and 7). The experimental probability
densities naturally offer a lower resolution due to additional
noise sources not included in the simulation such as the
damping motion of the mechanically coupled fiber wiggler
and drift effects. Still, the region of the most populated forces
is pushed away from equilibrium and towards the target force
values for larger G in both the experiments and the simulations.
In particular, the good agreement of the simulated probability
density in the (fexp,λ) plane with the equilibrium FDC for
small G supports the experimental observation that the system
equilibrates if the feedback is weak [Fig. 7(a)].

V. CONCLUSION

We have considered the dynamics of a single DNA hairpin
that is stochastically driven by a force feedback mechanism.
With the force relaxation after a change of the target force
and the probability density in the (fexp,λ) plane we have
established two quantities that allow us to evaluate the
feedback-controlled dynamics. For the force relaxation, an
analytic expression has been derived for a simple toy model
where the complex DNA unfolding landscape is replaced by a
harmonic oscillator. This expression emphasizes that the time
evolution of the mean force after a change of the target force
depends critically on the value of the feedback gain G. In
particular, the system becomes unstable if G is too large.

For the DNA hairpin, experiments and simulations show
that the force relaxation after a change of the target force
is more complex since more time scales contribute to the
dynamics. We stress that this kind of force relaxation is not
only found for the stochastic driving protocol investigated here
but can be similarly observed for a constant-force feedback
protocol where the relaxation of the mean force occurs after
conformational transition events that quickly change the force.
This is the case in constant-force hopping experiments where
force feedback can modify the values of intrinsic constant-
force rates [13,14,32].

The discussion of the probability density in the (fexp,λ)
plane makes the need for the feedback to counteract the system
equilibration most explicit. Comparing this probability density
with the force-distance curve from an equilibrium unfolding
process demonstrates that the system inevitably equilibrates if
the feedback adjustments are weak. For larger feedback gains
G, these adjustments are stronger, allowing the feedback to
push the system further into the nonequilibrium regime.

The discussion of the DNA unfolding process under
feedback control, which we have performed here in both
theory and experiment, hence highlights that the dynamics
of the DNA hairpin depends strongly on the parameter of
the feedback mechanism. Thus, our study helps to establish
the DNA unfolding process as a nontrivial paradigm, which
can be used to address general topics raised in the field of
feedback mechanisms for small complex systems. In future
work, the DNA unfolding process could therefore be used
to, e.g., paradigmatically discuss how quantities that have
increasingly attracted interest in recent years, such as the
mutual information connected with a measurement, depend
on the parameters of the feedback mechanism.
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APPENDIX: SINGLE-MOLECULE RESULTS

Figure 8 shows single-molecule results of the force
relaxation after a change of the target force. These
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results have been used to calculate the single-molecule
averages presented in Fig. 5. The remarkable agreement
of different experiments performed with the same pa-
rameters highlights the consistency of the experimental
data.

Furthermore, in Fig. 9, we show one randomly selected
single-molecule result for each feedback gain for which a
single-molecule average is given in Fig. 6 to emphasize that
experiments at the same parameters have been consistent for
the probability density in the (fexp,λ) plane as well.
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