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Statistical systems composed of atoms interacting with each other trough nonintegrable interaction potentials
are considered. Examples of these potentials are hard-core potentials and long-range potentials, for instance, the
Lennard-Jones and dipolar potentials. The treatment of such potentials is known to confront several problems,
e.g., the impossibility of using the standard mean-field approximations, such as Hartree and Hartree-Fock
approximations, the impossibility of directly introducing coherent states, the difficulty in breaking the global
gauge symmetry, which is required for describing Bose-Einstein condensed and superfluid systems, the absence
of a correctly defined Fourier transform, which hampers the description of uniform matter as well as the
use of local-density approximation for nonuniform systems. A novel iterative procedure for describing such
systems is developed, starting from a correlated mean-field approximation, allowing for a systematic derivation
of higher orders, and meeting no problems listed above. The procedure is applicable to arbitrary systems,
whether equilibrium or nonequilibrium. The specification for equilibrium systems is presented. The method of
extrapolating the expressions for observable quantities from weak coupling to strong coupling is described.
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I. INTRODUCTION

Atomic interactions are usually described by pair interac-
tion potentials. Quite often, such potentials are not integrable.
This essentially complicates the use of these potentials
for developing the description of statistical systems. Thus,
nonintegrable interaction potentials do not allow for the use
of the standard mean-field approximations, such as Hartree,
Hartree-Fock, or Hartree-Fock-Bogolubov approximations.
For treating the systems with these potentials, one needs to
resort to two-particle characteristics solving the Brueckner or
Bethe-Salpeter equations (see, e.g., Refs. [1–3]). Dealing with
two-particle theories is more complicated than with mean-field
approximations and, in addition, it is not always clear how to
develop a procedure for obtaining higher-order consecutive
corrections above the given two-particle approximation. It
would certainly be desirable to have a method of successive
iterations that would combine the simplicity of using, as a
first step, a mean-field approximation and confronting no
divergences related to the nonintegrable interaction potential.

Among other principal difficulties arising when dealing
with nonintegrable potentials, it is possible to mention the
impossibility of introducing coherent states, the problem with
breaking the global gauge symmetry required for character-
izing systems with Bose-Einstein condensate and superfluid
systems, and the absence of well-defined Fourier transforms,
which are necessary for describing uniform systems, as well as
nonuniform systems in the local-density approximation. The
explicit illustration of these difficulties will be given in the
following section.

The aim of the present paper is to suggest a consistent
iterative procedure allowing for the possibility of starting with
a mean-field-type approximation containing no divergences
and providing an explicit method for deriving consecutive
higher-order approximations. For the sake of generality, the
iterative procedure is formulated in the language of Green
functions, so that its application can be realized for arbitrary
systems with nonintegrable potentials, whether equilibrium or
not. If the interaction potential is integrable, the suggested

iterative approach reduces to the standard iteration theory for
Green functions. As examples of nonintegrable potentials, the
Lennard-Jones and dipolar potentials are considered, showing
the possible way of regularizing them.

The general procedure is applicable to arbitrary systems,
whether equilibrium or not. The specification for equilibrium
systems is considered. General rules for defining smoothing
functions regularizing interaction potentials are given. A
method is described, based on self-similar approximation the-
ory, allowing for the extrapolation of the values of observable
quantities from the region of weak coupling to arbitrarily
strong coupling. Using this method, it is possible to derive
a rather simple expression for the ground-state energy of a
Bose gas with hard-core interactions, which is in very good
agreement with Monte Carlo simulations.

Throughout the paper the system of units is used where the
Planck and Boltzmann constants are set to one.

II. PROBLEMS WITH NONINTEGRABLE INTERACTION
POTENTIALS

Let us denote by x the set of the spatial variables r and of
internal degrees of freedom, such as spin, if any. Employing
field operators, we shall omit, when there can be no ambiguity,
the notation of time t , writing ψ(x) instead of ψ(x,t) and
restoring time, when it is important. Depending on statistics,
the field operators satisfy either Bose or Fermi commutation
relations,

[ψ(x), ψ†(x ′)]∓ = δ(x − x ′), [ψ(x), ψ(x ′)]∓ = 0. (1)

The system Hamiltonian has the form

H =
∫

ψ†(x)[K(x) − μ(x)]ψ(x) dx

+ 1

2

∫
ψ†(x)ψ†(x ′)V (x,x ′)ψ(x ′)ψ(x) dxdx ′, (2)
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in which

K(x) = − ∇2

2m
+ U (x),

U (x) is an external potential, V (x,x ′) = V (x ′,x) is the
interaction potential, and μ(x) is a local chemical potential
including external perturbing fields.

The interaction potential is assumed to be nonintegrable,
such that ∣∣∣∣

∫
V (x,x ′) dx ′

∣∣∣∣ → ∞. (3)

It is this divergence that leads to difficulties, as is explained
below.

A. Mean-field approximation

Nonintegrability Eq. (3) yields divergences when resorting
to the standard mean-field approximations. For instance, let us
consider the Hartree-Fock approximation,

ψ
†
1ψ

†
2ψ2ψ1 = 〈ψ†

1ψ1〉ψ†
2ψ2 + ψ

†
1ψ1〈ψ†

2ψ2〉
± 〈ψ†

1ψ2〉ψ†
2ψ1 ± ψ

†
1ψ2〈ψ†

2ψ1〉
− 〈ψ†

1ψ1〉〈ψ†
2ψ2〉 ∓ 〈ψ†

1ψ2〉〈ψ†
2ψ1〉, (4)

where, for short, we denote ψi ≡ ψ(xi). Substituting this into
the Hamiltonian results in the generally divergent Hartree
potential, ∣∣∣∣

∫
V (x,x ′)ρ(x ′) dx ′

∣∣∣∣ → ∞, (5)

where the density is given by the statistical average,

ρ(x) ≡ 〈ψ†(x)ψ(x)〉.
The divergence becomes evident in the uniform case, when the
density is constant.

Hence, the mean-field approximation cannot be used for a
nonintegrable interaction potential.

B. Coherent states

Coherent state is defined as an eigenstate of the destruction
field operator,

ψ(x,t)|η〉 = η(x,t)|η〉, (6)

with the eigenvalue called coherent field. Then the equation of
motion for the field operator,

i
∂

∂t
ψ(x,t) = δH

δψ†(x,t)
, (7)

results in the nonlinear Schrödinger equation for the coherent
field,

i
∂

∂t
η(x,t) =

[
K(x) − μ(x)

+
∫

V (x,x ′)|η(x ′,t)|2 dx ′
]

η(x,t). (8)

If the interaction potential is nonintegrable, then, in general,
the integral term in the right-hand side diverges:∣∣∣∣

∫
V (x,x ′)|η(x ′,t)|2 dx ′

∣∣∣∣ → ∞. (9)

Again, the divergence is evident for a uniform case, when the
coherent field is constant.

This implies that the usual way of introducing coherent
states does not work, when the interaction potential is not
integrable.

C. Bose-Einstein condensation

For the phenomenon of Bose-Einstein condensation, as
is known [4,5], the global gauge symmetry breaking is a
necessary and sufficient condition. The symmetry breaking
can be accomplished in several equivalent ways, the simplest
of which is by means of the Bogolubov [6,7] shift,

ψ(x) = η(x) + ψ1(x), (10)

in which the first term is the condensate function and
the second, an operator of uncondensed atoms. Note that
this is an exact canonical transformation [5,8,9], but not
an approximation as sometimes is assumed. The Bogol-
ubov shift defines the condensate function as an order
parameter,

η(x) = 〈ψ(x)〉. (11)

The equation of motion for the condensate function,

i
∂

∂t
η(x,t) =

〈
δH

δη∗(x,t)

〉
, (12)

takes the form

i
∂

∂t
η(x,t) = [K(x) − μ0(x)]η(x) +

∫
V (x,x ′)[ρ(x ′)η(x)

+ ρ1(x,x ′)η(x ′) + σ1(x,x ′)η∗(x ′)

+ ξ (x,x ′)] dx ′, (13)

where the notations are used for the single-particle density
matrix,

ρ1(x,x ′) ≡ 〈ψ†
1(x ′)ψ1(x)〉,

anomalous averages

σ1(x,x ′) ≡ 〈ψ1(x ′)ψ1(x)〉, ξ (x,x ′) ≡ 〈ψ†
1(x ′)ψ1(x ′)ψ1(x)〉,

and the total density,

ρ(x) = ρ0(x) + ρ1(x),

consisting of the condensate density,

ρ0(x) ≡ |η(x)|2,
and the density of uncondensed atoms,

ρ1(x) = ρ1(x,x) = 〈ψ†
1(x)ψ1(x)〉.

Equation (13) contains the Hartree term Eq. (5), which is
generally divergent.

Thus, the global gauge symmetry breaking, which is
required for a correct description of Bose-condensed systems,
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cannot be realized. For instance, the symmetry breaking leads
to the appearance of anomalous averages that need to be
accurately calculated [10] for obtaining the condensate fraction
in agreement with numerical data [11].

D. Superfluid state

The analogous problem arises when considering superfluid
systems in three-dimensional space, since superfluidity is
accompanied by Bose-Einstein condensation, which requires
global gauge symmetry breaking. Then, breaking the symme-
try by the Bogolubov shift Eq. (10), we again get a divergent
term in the condensate-function equation.

It is easy to show that without gauge symmetry breaking,
superfluidity in three-dimensional systems cannot be defined.
The general formula for the superfluid density reads as

ρs = ρ − 2Q

3T
, (14)

where the dissipated heat,

Q = var(P̂)

2mN
, (15)

is expressed through the variance,

var(P̂) = 〈P̂2〉 − 〈P̂〉2,

of the momentum operator,

P̂ =
∫

ψ†(r)(−i �∇)ψ(r) dr.

The dissipated-heat expression contains the anomalous
averages that cannot be omitted. Thus, in the Hartree-Fock-
Bogolubov approximation, the dissipated heat is

Q =
∫

k2

2m

(
nk + n2

k − σ 2
k

) dk
(2π )3

, (16)

where

nk =
∫

ρ1(r,0)e−ik·r dr, σk =
∫

σ1(r,0)e−ik·r dr.

By direct calculations [5,12,13] it is straightforward to prove
that omitting the anomalous average σk results in the diver-
gence of integral Eq. (16).

In this way, breaking the global gauge symmetry, which
is necessary for the correct description of superfluid systems
in three dimensions, leads to divergences, similar to those
occurring in the case of Bose-condensed systems.

E. Fourier transform

In the case of a uniform system or employing the local-
density approximation for a nonuniform system, one needs to
consider the Fourier transform of the interaction potential. For
instance, keeping in mind the potential,

V (r,r′) = V (r − r′), (17)

one considers the Fourier transform,

Vk =
∫

V (r)e−ik·r dr, (18)

with the inverse transform,

V (r) = 1

V

∑
k

Vke
ik·r. (19)

But if the potential is not absolutely integrable, such that∫
|V (r)| dr → ∞, (20)

then the Fourier transform Vk is not well defined [14,15]. And
if the interaction potential is not integrable, it is not absolutely
integrable, since∣∣∣∣

∫
V (r) dr

∣∣∣∣ �
∫

|V (r)| dr.

In the following sections, we develop an iterative procedure
that is free from all those problems discussed above, despite
that the interaction potential is not integrable.

III. ITERATIVE PROCEDURE FOR GREEN FUNCTIONS

To make formulas more compact, let us introduce the
following abbreviated notations for functions,

f (12 . . . n) ≡ f (x1,t1,x2,t2, . . . ,xn,tn), (21)

e.g., for the δ function,

δ(12) = δ(x1 − x2)δ(t1 − t2), (22)

and for differentials,

d(12 . . . n) ≡ dx1dt1dx2dt2 . . . dxndtn. (23)

And let us define the interaction potential,

V (12) ≡ V (x1 − x2)δ(t1 − t2 + 0). (24)

The single-particle Green function, or propagator, reads as

G(12) = −i〈T̂ ψ(1)ψ†(2)〉, (25)

with T̂ being the chronological operator. For coinciding
arguments, one has

G(11) ≡ lim
x2→x1

lim
t2→t1+0

G(12), (26)

which defines the particle density,

ρ(1) = ±iG(11). (27)

The two-particle Green function is

G2(1234) = −〈T̂ ψ(1)ψ(2)ψ†(3)ψ†(4)〉. (28)

Introducing the inverse propagator,

G−1(12) =
[
i

∂

∂t1
− K(1) + μ(1)

]
δ(12) − 
(12), (29)

with the self-energy,


(12) = ±i

∫
V (13)G2(1334)G−1(42) d(34), (30)

the equation of motion for the single-particle propagator can
be written as ∫

G−1(13)G(32) d(3) = δ(12). (31)
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Choosing a convenient zero approximation for the inverse
propagator,

G−1
0 (12) =

[
i

∂

∂t1
− K(1) + μ(1)

]
δ(12) − 
0(12), (32)

with the related equation of motion,∫
G−1

0 (13)G0(32) d(3) = δ(12), (33)

one gets the Dyson equation,

G(12) = G0(12) +
∫

G0(13)[
(34)

−
0(34)]G(42) d(34). (34)

The latter is to be solved by the iterative procedure,

Gn → 
n+1 → Gn+1, (35)

which shows that we need the sequence of approximations for
the self-energy.

IV. ITERATIVE PROCEDURE FOR SELF-ENERGY

As is known and has been explained above, the standard
perturbation theory for self-energy leads to divergent terms,
when the interaction potential is not integrable. Here we
suggest an iterative procedure for self-energy containing no
divergences.

Recall that the two-particle propagator can be written [16]
in the Schwinger representation as

G2(1223) = G(13)G(22) ∓ δG(13)

δμ(2)
. (36)

Varying the equation of motion, Eq. (31), yields the equation
for the two-particle propagator,

G2(1223) = G(13)G(22) ± G(12)G(23)

+
∫

G(14)G(53)
δ
(45)

δG(67)
[G2(6227)

−G(67)G(22)]d(4567). (37)

Let us introduce a function D(123) by the relation

s(12)D(123) =
∫

G2(1224)G−1(43) d(4), (38)

in which the correlation function s(12) will be specified later.
Then the two-particle propagator becomes

G2(1223) ≡ s(12)
∫

D(124)G(43) d(4). (39)

The latter equation shows that, by means of the function
D(123), the single-particle propagator is transformed into the
two-particle propagator. Therefore, D(123) can be called the
doubling function.

In that way, self-energy Eq. (30) now reads as


(12) = ±i

∫
�(13)D(132) d(3), (40)

where we define the effective potential

�(12) = s(12)V (12). (41)

The function s(12) has to be chosen such that the effective
potential is integrable,∣∣∣∣

∫
�(12) d(2)

∣∣∣∣ < ∞, (42)

because of which the function s(12) can be called a smoothing
function.

From Eqs. (37) and (38), we obtain the equation for the
doubling function

s(12)D(123) = D0(123) +
∫

G(14)
δ
(43)

δG(56)

×
[
s(52)

∫
D(527)G(76) d(7)

− G(56)G(22)

]
d(456), (43)

where

D0(123) ≡ δ(13)G(22) ± G(12)δ(23). (44)

It is important to notice that the use of Eq. (44) in Eq. (39)
results in the two-particle propagator,

G0
2(1223) ≡ s(12)

∫
D0(124)G(43) d(4), (45)

which takes into account the correlation function s(12), being

G0
2(1223) = s(12)[G(13)G(22) ± G(12)G(23)]. (46)

This always leads to the occurrence of the effective potential
Eq. (41), so that no divergences arise.

Let us introduce an operator X̂ = X̂[
], whose action on a
function f (123) is defined by the equation

X̂f (123) = [1 − s(12)]f (123)

+
∫

G(14)
δ
(43)

δG(56)

[
s(52)

∫
f (527)G(76) d(7)

−G(56)G(22)

]
d(456). (47)

Then Eq. (43) takes the form

(1 − X̂)D(123) = D0(123). (48)

The latter can be rewritten as

D(123) = (1 − X̂)−1D0(123). (49)

Here, the inverse function of an operator expression is defined
in the usual way through the expansion,

(1 − X̂)−1 =
∞∑

n=0

X̂n. (50)

The other representation of the inverse operator function is

(1 − X̂)−1 = lim
n→∞ Ŷn, (51)

where

Ŷn =
n∑

m=0

X̂m (Ŷ0 = 1̂). (52)
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Then Eq. (49) defines the sequence of iterative approximations
for the doubling function

Dn(123) = ŶnD0(123). (53)

As a result, we come to the iterative procedure

Dn → 
n+1 → Ŷn+1 → Dn+1. (54)

To illustrate this iterative procedure, let us start with the
zero-order approximation for the doubling function Eq. (44),
substituting which into Eq. (40), we get the first-order self-
energy,


1(12) = δ(12)
∫

�(13)ρ(3) d(3) + i�(12)G(12). (55)

Using the operator

Ŷ1 = 1 + X̂[
1] (56)

in Eq. (53) yields the first-order doubling function,

D1(123) = D0(123)[2 − s(12)] ± i

∫
V (1234)G(42) d(4)

∓ i

∫
V (1443)G(22)[1 − s(43)] d(4), (57)

with the vertex

V (1234) = G(14)G(23)�(43) ± G(13)G(24)�(34).

Employing D1(123) in Eq. (40) results in the second-order
approximation for the self-energy,


2(12) = 
1(12) + �(12) + 
(12), (58)

in which the correcting term is

�(12) = δ(12)
∫

�(13)ρ(3)[1 − s(13)] d(3)

+ i�(12)G(12)[1 − s(12)]

+
∫

�(14)G(44)[1 − s(34)]V (1332) d(34), (59)

and the last term is


(12) = −
∫

�(13)G(43)V (1324) d(34). (60)

In that way, the iterative procedure can be continued to any
desired order.

First of all, we see that nowhere there appears the divergent
bare interaction potential, but everywhere we meet only the
smoothed effective potential that is integrable according to
Eq. (42). Hence, no divergences occur in the iterative process.

Moreover, the smoothing function s(12) can be specified
to simplify the resulting expressions. Thus, if s(12) is chosen
to represent a screening function, then it enjoys the following
properties. When the bare interaction provokes divergences,
then s → 0, while when the bare interactions are finite, then
s → 1. So that in any case the product s(1 − s) is small. If so,
then the correction � is small as compared to 
1. As is evident,
all expressions can be considered as expansions in powers of
� and 1 − s. Therefore, the last term in correction Eq. (59)
is of third order and should be omitted in the second-order
approximation.

If in the second-order self-energy Eq. (58) we neglect the
small correcting term Eq. (59), then the self-energy equals


2(12) = 
1(12) −
∫

�(13)G(43)V (1324) d(34).

But the latter form is the same as would be the second-order
approximation for the Hamiltonian, in which from the very
beginning we would take the effective potential �(12), instead
of the bare potential V (12), that is, if we would accept the
Hamiltonian

H =
∫

ψ†(x)[K(x) − μ(x)]ψ(x) dx

+ 1

2

∫
ψ†(x)ψ†(x ′)�(x,x ′)ψ(x ′)ψ(x) dxdx ′,

instead of that given by Eq. (2). The iterative procedure for both
these Hamiltonians yields the same first-order self-energy. In
higher orders n > 1, the difference between the iterative terms
for these Hamiltonians is characterized by corrections of the
type � that, because of the structure of the operator X̂, defined
in Eq. (47), always contain the product s(1 − s). Choosing the
smoothing function as a screening function, such that s(1 − s)
is small, makes small the difference between the terms of
the iterative procedure with the bare potential and with the
effective potential.

Therefore, if the bare interaction potential is not integrable,
it is possible to replace it by an effective interaction potential
that is integrable and does not lead to divergences. Appropri-
ately choosing the smoothing function makes the difference in
the sequence of the approximations for the iterative procedure
with bare and effective potentials small.

V. ITERATIVE PROCEDURE FOR RESPONSE FUNCTIONS

Different response functions characterize collective proper-
ties of statistical systems. For example, the response function

χ (12) ≡ − δρ(1)

δμ(2)
(61)

describes collective excitations, with its poles defining the
spectrum of collective excitations. Having the sequence of
approximations for the self-energy makes it straightforward to
derive the related sequence of approximations for the response
function.

It is useful to introduce the three-point response function,

χ (123) ≡ ∓i
δG(12)

δμ(3)
, (62)

whose particular form gives the response function Eq. (61) as

χ (12) = χ (112). (63)

Invoking the Schwinger representation Eq. (36) gives

χ (123) = i[G2(1332) − G(12)G(33)],

χ (12) = i[G2(1221) − G(11)G(22)]. (64)

Because of the symmetry property of the two-particle propa-
gator,

G(1221) = G(2112), (65)
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the response function Eq. (61) is symmetric:

χ (12) = χ (21). (66)

Introducing the notation

χ0(123) = ±iG(13)G(32), χ0(12) = ±iG(12)G(21),

(67)

and using Eq. (37), we obtain the equation for the response
function,

χ (123) = χ0(123)+
∫

G(14)G(52)
δ
(45)

δG(57)
χ (673)d(4567).

(68)

From here, it is clear that the sequence of approximations for
the response function is prescribed by the sequence of the
self-energies:


n → χn+1. (69)

Thus, taking for the zero-order self-energy the Hartree
expression,


0(12) = δ(12)
∫

�(13)ρ(3) d(3), (70)

leads to the equation

χ1(123) = χ0(123) +
∫

χ0(124)�(45)χ1(553) d(45). (71)

Respectively, the response function Eq. (61) is defined by the
equation

χ1(12) = χ0(12) +
∫

χ0(13)�(34)χ1(42) d(34). (72)

The solution to the latter has the form

χ1 = χ0

1 − χ0�
, (73)

in which one recognizes the random-phase approximation,
however with the integrable effective potential instead of the
nonintegrable bare potential. Taking for the self-energy the
first-order approximation Eq. (55) produces the equation

χ2(123) = χ0(123) +
∫

[χ0(124)χ2(553)

+ iG(14)G(52)χ2(453)]�(45) d(45), (74)

from which it follows the equation for the response function
Eq. (61),

χ2(12) = χ0(12) +
∫

[χ0(13)χ2(42)

±χ0(431)χ2(342)]�(34) d(34). (75)

Since in all orders only the effective potential enters the
equations, no divergences arise.

VI. EXAMPLES OF NONINTEGRABLE INTERACTION
POTENTIALS

Depending on the type of the nonintegrable interaction
potential, different smoothing functions can be employed [17].

A. Hard-core potentials

A hard-core potential diverges, when the distance r ≡ |r|
is shorter than a hard-core radius σ , for r � σ , and is finite
for larger distances. For such potentials one uses the simple
smoothing function,

s(r) =
{

0, r � σ

1, r > σ,
(76)

which is called the cutoff regularization.
A more elaborate smoothing function can be taken in the

form

s(r) = exp{−βV (r)}, (77)

where, generally, β is a positive parameter. At high temper-
atures, β can be accepted as inverse temperature 1/T , while
at low temperatures, it is to be proportional to the inverse
average kinetic energy that is finite even at zero temperature
due to quantum fluctuations.

B. Lennard-Jones potential

The popular Lennard-Jones potential is

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
. (78)

It has a minimum V (r0) = −ε at r0 = 21/6σ .
The smoothing function can be defined as the modulus

squared of the radial wave function satisfying the zero-energy
Schrödinger equation [18]. In the quasiclassical approxima-
tion, this leads [19] to

s(r) = exp

{
−b0

(
σ

r

)5}
, (79)

where

b0 ≡ 4

5

, 
 ≡ 1√

mεσ 2
.

Here 
 is the de Boer parameter. For instance, in the case of
4He, the Lennard-Jones parameters [20] are ε = 10.22K and
σ = 2.556 Å, which gives 
 = 0.43 and b0 = 1.86.

C. Dipolar potential

There are numerous statistical systems consisting of par-
ticles interacting through dipolar forces, for instance, many
atomic and molecular gases [21], polymers [22], biological
solutions [23,24], and various materials composed of mag-
netic nanomolecules and nanoclusters [25–36]. The dipolar
potential, describing the interaction between two dipoles at
distance r from each other, is

D(r) = 1

r3
[(d1 · d2) − 3(d1 · n)(d2 · n)], (80)

where

r ≡ |r|, n ≡ r
r
, r ≡ r1 − r2.

One often considers the case, where all dipoles are identical
and polarized along a unit vector ed , so that

di = d0ed (d0 ≡ |di |).
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Then potential Eq. (80) reduces to the form

D(r) = d2
0

r3
(1 − cos2 ϑ), (81)

in which ϑ is the angle between n and the dipole direction,

cos ϑ = n · ed .

The dipolar potential, as is easy to check, is not integrable.
Therefore, the use of the bare forms, whether Eq. (80) or (81),
leads to all those problems described above. For instance,
one confronts the so-called polarization catastrophe [37,38].
The necessity of regularizing the dipolar potential has been
understood for a long time, and several smoothing functions
have been suggested for the regularization at short-range
[38–42] as well as at long-range distance [43–46]. One of
the simplest regularizations, making the potential integrable,
results in the effective regularized potential,

D(r,b,κ) = �(r − b)D(r)e−κr , (82)

where �(r) is a unit-step function. This potential is absolutely
integrable. And the absolutely integrable potential guarantees
the existence of the Fourier transform,

Dk(b,κ) =
∫

D(r,b,κ)e−ik·rdr, (83)

with the inverse transform,

D(r,b,κ) = 1

V

∑
k

Dk(b,κ)eik·r.

The Fourier transform Eq. (83), in the case of the polarized
potential Eq. (81), gives

Dk(b,κ) = DkIk(b,κ). (84)

This expression is the product of

Dk = 4π

3
d2

0 (3 cos2 ϑk − 1), (85)

with ϑk being the angle between the vector k and the dipole
direction,

cos ϑk = k · ed

k
,

and of the integral

Ik(b,κ) = 9kb

∫ ∞

1

[
sin(kbx)

(kbx)4
− cos(kbx)

(kbx)3

− sin(kbx)

3(kbx)2

]
e−κbxdx. (86)

The latter, as is seen, depends on two variables, kb and κb, so
that it can be presented as

Ik(b,κ) = Jq(c) (q ≡ kb,c ≡ κb), (87)

with

Jq(c) = 9q

∫ ∞

1

[
sin(qx)

(qx)4
− cos(qx)

(qx)3
− sin(qx)

3(qx)2

]
e−cxdx.

(88)

Integral Eq. (86) has the property

lim
b→0

lim
κ→0

Ik(b,κ) = 1, (89)

because of which

lim
b→0

lim
κ→0

Dk(b,κ) = Dk. (90)

This means that in the absence of the regularization, for
the interaction potential Eq. (81) we would have the Fourier
transform Eq. (85). However, this transform is defined neither
for k → 0 nor for k → ∞, since potential Eq. (81) is not
absolutely integrable. While the Fourier transform Eq. (84) is
well defined in both these limits,

lim
k→0

Dk(b,κ) = lim
k→∞

Dk(b,κ) = 0. (91)

For the absolutely integrable potential, it is also admissible to
interchange the limiting operation and integration, so that∫

D(r,b,κ) dr = lim
k→0

Dk(b,κ). (92)

While such an interchange is prohibited for not absolutely
integrable potentials. Really, for the nonregularized potential
Eq. (80), that is not absolutely integrable, both sides of the
equation similar to Eq. (92) would not be defined.

In order to emphasize the problems arising when using
not absolutely integrable potentials, let us take Hamiltonian
Eq. (2), with the dipolar interaction potential, and with setting
x → r. Employing the regularized potential Eq. (82), for the
average energy, in the Hartree-Fock approximation Eq. (4), we
have

〈H 〉 = K+1

2

∫
D(r−r′,b,κ)[ρ(r)ρ(r′) ± |ρ(r,r′)|2]drdr′,

(93)

where

K =
∫

〈ψ†(r)K(r)ψ(r)〉dr, ρ(r) = 〈ψ†(r)ψ(r)〉,

ρ(r,r′) = 〈ψ†(r′)ψ(r)〉.
For concreteness, let us consider a uniform system, although
the same problems exist for nonuniform systems, in particular,
in the local-density approximation. For a uniform system, we
get

ρ(r) = ρ, ρ(r,r′) = ρ(r − r′,0). (94)

Then energy Eq. (93) becomes

〈H 〉 = K + 1

2
ρN

∫
D(r,b,κ) dr

± 1

2
V

∫
D(r,b,κ)|ρ(r,0)|2 dr, (95)

with V being the system volume.
If we would keep the nonregularized potential Eq. (80) or

(81) in the last equation, we would confront divergences. If we
use relation Eq. (92) for the nonregularized potentials, then
energy Eq. (95) is not defined, since the limit Eq. (92) depends
on the type of approaching k → 0. But then energy Eq. (95)
does not become a scalar, together with other thermodynamic
characteristics, which is, certainly, senseless. Contrary to this,
Eq. (95) for the regularized potential is well defined.
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VII. ITERATIVE PROCEDURE FOR
EQUILIBRIUM SYSTEMS

The general iterative procedure, described above, is ap-
plicable to any system, whether equilibrium or not. It is
important to show how it can be employed for equilibrium
systems. For the latter, the two-point system characteristics,
such as Green functions and self-energies, depend on the
time difference t12 ≡ t1 − t2. Therefore, one can resort to the
Fourier transforms for the propagator,

G(12) =
∫

G(x1,x2,ω)e−iωt12
dω

2π
, (96)

and self-energy,


(12) =
∫


(x1,x2,ω)e−iωt12
dω

2π
. (97)

Then the first-order self-energy reads as


1(x1,x2,ω) = δ(x1 − x2)
∫

�(x1,x2,ω)ρ(x3) dx3

+ i

∫
�(x1,x2,ω − ω′)G(x1,x2,ω

′)
dω′

2π
,

(98)

in which

�(x1,x2,ω) = �(x1,x2)e−iω0, (99)

with

�(x1,x2) = s(x1,x2)V (x1,x2) (100)

and

s(x1,x2) ≡ lim
t2→t1

s(12). (101)

Here, as usual, the expression ±ω0 implies ±ωτ , with τ →
+0.

In the second order, the self-energy becomes


2(x1,x2,ω) = 
1(x1,x2,ω) + �(x1,x2,ω) + 
(x1,x2,ω),

(102)

with the correcting term

�(x1,x2,ω) = δ(x1−x2)
∫

�(x1,x3,ω)[1 − s(x1,x3)]ρ(x3)dx3

+ i

∫
�(x1,x2,ω − ω′)[1−s(x1,x2)]

×G(x1,x2,ω
′)

dω′

2π
(103)

and


(x1,x2,ω) = −
∫

�(x1,x3,ω
′)G(x4,x3,ω

′′ − ω′)[G(x1,x4,ω − ω′)G(x3,x2,ω
′′)�(x4,x2,ω − ω′′)

±G(x1,x2,ω − ω′)G(x3,x4,ω
′′)�(x2,x4, − ω′)] dx3dx4

dω′dω′′

(2π )2
. (104)

To specify these expressions, it is necessary to define the
zero-order propagator. The latter, e.g., can be defined as the
expansion

G0(x1,x2,ω) =
∑

k

Gk(ω)ψk(x1)ψ∗
k (x2) (105)

over the set of orthonormalized wave functions given by the
eigenproblem

K(x)ψk(x) = Ekψk(x), (106)

where K(x) is the single-particle Hamiltonian entering Eq. (2).
The index k here denotes the set of quantum numbers. It can be
momentum for uniform systems or a set of discrete quantum
numbers for finite quantum systems [47]. In expansion
Eq. (105), the coefficient function is the Green function in
the energy representation,

Gk(ω) = 1 ± nk

ω − ωk + i0
∓ nk

ω − ωk − i0
= P

1

ω − ωk

− iπ (1 ± 2nk)δ(ω − ωk), (107)

with the energy distribution,

nk = 1

exp(βωk) ∓ 1
, (108)

where

ωk ≡ Ek − μ (βT = 1). (109)

Here P is the symbol of principal value.
Then the first-order self-energy Eq. (98) is


1(x1,x2,ω) =
∑

k

nk[�kk(x1)δ(x1 − x2)

±�(x1,x2)ψk(x1)ψ∗
k (x2)], (110)

where

�kp(x) ≡
∫

ψ∗
k (x ′)�(x,x ′)ψp(x ′) dx ′. (111)

In the second-order self-energy Eq. (102) for the correcting
term, we have

�1(x1,x2,ω) =
∑

k

nk{Bkk(x1)δ(x1 − x2)

±�(x1,x2)[1 − s(x1,x2)]ψk(x1)ψ∗
k (x2)},

(112)

with

Bkp(x) ≡
∫

ψ∗
k (x ′)�(x,x ′)[1 − s(x,x ′)]ψp(x ′) dx ′. (113)
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And the last term in Eq. (102), on the complex ω plane, has
the form


1(x1,x2,ω) =
∑
ijk


ijk(x1,x2)

ω − ωijk

, (114)

in which Im ω 
= 0,

ωijk ≡ ωi + ωj − ωk = Ei + Ej − Ek − μ, (115)

and


ijk(x1,x2) = �ik(x1)[nj (ni − nk) ± ni(1 ± nk)]

× [�jk(x2)ψj (x1)ψ∗
k (x2)

±�ki(x2)ψj (x1)ψ∗
j (x2)]. (116)

The symmetry of �(x,x ′) has been used.
On the real ω axis, we get


(x1,x2,ω) =
∫

�(x1,x2,ω
′)
[

1 ± n(ω′)
ω − ω′ + i0

∓ n(ω′)
ω − ω′ − i0

]
dω′

2π
, (117)

which can be represented as


(x1,x2,ω) = P

∫
�(x1,x2,ω

′)
ω − ω′

dω′

2π

− i

2
[1 ± 2n(ω)] �(x1,x2,ω), (118)

with the spectral function

�(x1,x2,ω) = i[
(x1,x2,ω + i0) − 
(x1,x2,ω − i0)].

(119)

The latter, employing Eq. (114), becomes

�(x1,x2,ω) = 2π
∑
ijk


ijk(x1,x2)δ(ω − ωijk). (120)

Therefore, Eq. (117) takes the form


(x1,x2,ω) =
∑
ijk


ijk(x1,x2)Gijk(ω), (121)

with the notations

Gijk(ω) = 1 ± nijk

ω − ωijk + i0
∓ nijk

ω − ωijk − i0
(122)

and

nijk ≡ 1

exp(βωijk) ∓ 1
. (123)

Thus, the second-order self-energy contains the real part,

Re 
2(x1,x2,ω) = 
1(x1,x2,ω) + �(x1,x2,ω), (124)

and the imaginary part,

Im 
2(x1,x2,ω) = − 1

2
[1 ± 2n(ω)] �2(x1,x2,ω). (125)

It is again worth stressing that in all expressions above
nowhere do we meet the bare interaction potential V (x1,x2)
that would produce divergences, but everywhere we have only
the smoothed potential �(x1,x2).

VIII. ITERATIVE CALCULATION OF OBSERVABLE
QUANTITIES

What one finally needs from any theory is the possibility
of calculating observable quantities. It is, then, necessary to
show how the suggested iterative procedure can be employed
for such calculations. One of the most important quantities is
the internal energy,

E = 〈H 〉 + μN. (126)

Therefore, calculating this quantity is an instructive example
demonstrating how the procedure works.

In terms of Green functions, the Hamiltonian average can
be represented as

〈H 〉 = ± i

2

∫
lim
(21)

[
i

∂

∂t1
+ K(x1) − μ

]
G(12) dx1, (127)

and the total number of particles as

N = ±i

∫
lim
(21)

G(12) dx1. (128)

Here, for brevity, we use the notation of the limit,

lim
(21)

≡ lim
x2→x1

lim
t2→t1+0

.

In that way, energy Eq. (126) can be written in the form

E = ± i

2

∫
lim
(21)

[
i

∂

∂t1
+ K(x1) + μ

]
G(12) dx1. (129)

For an equilibrium system, the latter yields

E = ± i

2

∫
e+iω0[ω + K(x) + μ]G(x,x,ω)

dω

2π
dx.

(130)

We have to substitute into Eq. (130) the approximate Green
functions obtained by means of the above iterative procedure.
In the process of these calculations arises the following delicate
point. In the integral over frequency ω, there appear the
products of the functions Gk(ω) defined in Eq. (107), including
the products of the Green functions with coinciding poles,
such as Gn

k (ω), where n = 1,2, . . .. Direct integration over
such expressions Gn

k (ω) results in divergent integrals. This
is caused by the fact that Green functions are distributions
(generalized functions), which are not well defined for the
products with coinciding poles [48,49]. Such products require
additional definition. The method of dealing with the integrals
over the products of Green functions with coinciding poles,
used in the present paper, is described in the Appendix.

The initial zero approximation for the energy corresponds
to the use of the Green function Eq. (105), which gives

E(0) =
∑

k

nkEk. (131)

The first-order propagator reads as

G1(x1,x2,ω) = G0(x1,x2,ω)

+
∑
kp

Gk(ω)Gp(ω)Mkpψk(x1)ψ∗
p(x2),

(132)
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where

Mkp =
∑
m

nm(�kmmp ± �kmpm), (133)

with the matrix elements

�mkpn ≡
∫

ψ∗
m(x)�kp(x)ψn(x) dx. (134)

Then the first-order energy becomes

E(1) = E(0) + 1

2

∑
k

nkMkk[1 − 2β(1 ± nk)Ek]. (135)

The second-order propagator takes the form

G2(x1,x2,ω) = G1(x1,x2,ω) + �G(x1,x2,ω)

+
∑
mn

∑
ijk

Gm(ω)Gn(ω)Gkji(ω)
mn
ijkψm(x1)

×ψ∗
n (x2). (136)

Here the correcting term is

�G(x1,x2,ω) =
∑
mn

Gm(ω)Gn(ω)�mnψm(x1)ψ∗
n (x2), (137)

in which

�mn =
∑

k

nk(Bmkkn ± Bmknk) (138)

and

Bmkpn ≡
∫

ψ∗
m(x)Bkp(x)ψn(x) dx, (139)

with the matrix elements Bkp(x) being defined in Eq. (113).
The last term in propagator Eq. (136) contains


mn
ijk = [nj (ni − nk) ± ni(1 ± nk)]�mikj (�kjin ± �jkin).

(140)

This propagator yields the second-order approximation for
the energy,

E(2) = E(1) + �E + 1

2

∑
n

∑
ijk


nn
ijk

(
EnC

ijk
n + Dijk

n

)
,

(141)
with the correcting term

�E = 1

2

∑
k

�kknk[1 − 2βEk(1 ± nk)]. (142)

Here the notations

Cijk
n ≡ Inn − I

ijk
n

ωn − ωijk

(143)

and

Dijk
n ≡ ωnInn − ωijkI

ijk
n

ωn − ωijk

(144)

are used, in which

Ikk = −βnk(1 ± nk), I ijk
p = np − nijk

ωp − ωijk

. (145)

Also, notation Eqs. (115) and (123) are employed.

IX. ILLUSTRATION OF SMALLNESS OF
CORRECTING TERMS

As is seen from the above expressions, the correcting terms
for the internal energy contain the matrix elements

Bkppk =
∫

|ψk(x)|2|ψp(x ′)|2�(x,x ′)[1 − s(x,x ′)] dxdx ′

and

Bkpkp =
∫

ψ∗
k (x)ψ∗

p(x ′)�(x,x ′)[1

− s(x,x ′)]ψk(x ′)ψp(x) dxdx ′,

which should be compared with the matrix elements

�kppk =
∫

|ψk(x)|2|ψp(x ′)|2�(x,x ′) dxdx ′

and

�kpkp =
∫

ψ∗
k (x)ψ∗

p(x ′)�(x,x ′)ψk(x ′)ψp(x) dxdx ′.

In order to show that the correcting terms are usually much
smaller than the main terms, let us consider a uniform system,
for which the natural orbitals are the plane waves,

ψk(r) = 1√
V

eik·r.

The role of the variable x is played by the spatial variable r.
The bare interaction potential is V (r − r′) and the smoothing
function is s(r − r′), respectively, the smoothed effective
potential also depends on the difference r − r′, being �(r −
r′). Moreover, the standard situation is when the interaction
potentials depend on the absolute value |r − r′|, which we
shall keep in mind, so that �(r) = �(r), where r ≡ |r|.

Then the matrix element �kppk reduces to

�0 = 4π

∫ ∞

0
�(r)r2 dr, (146)

and the matrix element Bkppk reduces to

B0 = 4π

∫ ∞

0
�(r)[1 − s(r)]r2 dr. (147)

The main contribution from the exchange elements �kpkp and
Bkpkp is usually smaller than that from the direct elements
�kppk and Bkppk , respectively, so that it is sufficient to compare
the values of Eqs. (146) and (147).

For illustration, let us consider the Lennard-Jones potential
Eq. (78), with the smoothing function Eq. (79). Hence, the
smoothed effective potential is

�(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
exp

{
−b0

(
σ

r

)5}
. (148)

Then, for Eq. (146) we find

�0

16πεσ 3
= 1

5

[
�(9/5)

b
9/5
0

− �(3/5)

b
3/5
0

]
, (149)
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while for Eq. (147) we find

B0

16πεσ 3
= 1

20

[
(4−21/5)

�(9/5)

b
9/5
0

−(4−27/5)
�(3/5)

b
3/5
0

]
,

(150)

where the relation �(x − 1) = �(x)/(x − 1) is used.
Taking, for concreteness, the value b0 = 1.86 correspond-

ing to 4He, we obtain

B0

�0
∼ 0.1.

This demonstrates that the correcting terms are an order
smaller than the main terms, hence, to a good approximation,
the former can be omitted.

X. RULES FOR DEFINING SMOOTHING FUNCTIONS

The general iterative procedure is formulated with a
necessary requirement that smoothing functions, regularizing
interaction potentials, be such that the regularized effective
potentials be integrable, which can be written as the condition∣∣∣∣

∫
V (x1,x2)s(x1,x2) dx2

∣∣∣∣ < ∞. (151)

This implies that, when the bare interaction potential diverges,
this divergence has to be compensated by the tendency of the
smoothing function to zero, hence

s(x1,x2) → 0, V (x1,x2) → ∞. (152)

From the other side, if the bare potential becomes small, there
is not need in the regularization, so that the smoothing function
should tend to one:

s(x1,x2) → 1, V (x1,x2) → 0. (153)

These are the general conditions imposed on any smoothing
function, for which the iterative procedure has sense.

It is straightforward to notice that there is a physical quan-
tity satisfying these conditions—this is the pair correlation
function,

g(x1,x2) = 〈n̂(x1)n̂(x2)〉
ρ(x1)ρ(x2)

, (154)

with the density operator,

n̂(x) ≡ ψ†(x)ψ(x).

Therefore, the smoothing function can be associated with the
pair correlation function taken in some approximation.

A simple way of constructing a smoothing function s(x1 −
x2), as a correlation function, is by defining it through the wave
function χ (x) of the relative motion of two scattering particles,

s(x) ∝ |χ (x)|2,
keeping in mind the boundary condition Eqs. (152) and (153).
For example, if the bare potential diverges at short distance as

V (r) � 4ε
(σ

r

)n

(r → 0),

then we find

s(r) = exp

{
−b0

(
σ

r

)(n−2)/2}
, (155)

where

b0 ≡ 8

(n − 2)


(

 ≡ 1√

mεσ 2

)
.

Substituting here n = 12, we get the smoothing function used
above for the Lennard-Jones interaction potential.

XI. EXTRAPOLATION TO LARGE COUPLING
PARAMETERS

The correlated iterative procedure, described in the previous
sections, makes it possible to find successive approximations
for observable quantities, without confronting divergences at
any step, despite that the bare interaction potential can be
nonintegrable. As follows from the structure of the terms
arising in this iterative procedure, the difference between
the iterative cases, starting with either a bare nonintegrable
interaction potential V (12) or with an integrable smoothed
potential �(12), is in the appearance of correcting terms
containing the expression 1 − s(12) in front of the smoothed
potential �(12). Estimating the correcting terms, we have
shown that they are small, as compared to the main terms,
when the smoothing function is chosen as an approximate
pair correlation function. The smallness becomes evident, even
without numerical calculations, when the particle interactions
are small, since when �(12) → 0, then s(12) → 1, hence the
product �(12)[1 − s(12)] quickly tends to zero.

Thus, it is possible to find the successive terms of the
iterative procedure. But the following question remains: Can
we get a convergent series of such terms?

Suppose that it is admissible to replace the bare noninte-
grable potential by an integrable smoothed potential, as has
been discussed above. But the iterative procedure yields the
approximations having the structure of series in powers of the
smoothed potential.

It is worth recalling that series in powers of interactions
practically always are divergent. This is well known for
the standard perturbation theory with Green functions, even
when the interaction potentials are perfectly integrable [16].
Moreover, even the simplest example of an anharmonic os-
cillator, being treated with the standard Rayleigh-Schrödinger
perturbation theory, results in series that are divergent for any
finite value of the coupling parameter. Perturbative or iterative
series are well known to be asymptotic, having sense only for
asymptotically small coupling parameters.

Then the general and natural question is: Having a series in
powers of a weak coupling parameter, is it feasible to extrap-
olate it to large values of the coupling parameter? The answer
is “yes”; however, such an extrapolation requires involving
additional methods based on self-similar approximation theory
[50,51].

To be more precise, let us define the dimensionless coupling
parameter as the ratio of the effective interaction strength to
effective kinetic-energy strength,

g ≡ m

4πa

∫
�(r) dr, (156)
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where a is mean-interparticle distance. In the case of a
spherically symmetric potential, this reduces to

g ≡ m

a

∫ ∞

0
�(r)r2 dr. (157)

Suppose we are calculating an observable quantity that is
the statistical average of a self-adjoint operator, for instance,
this can be the internal energy, as is considered above. Let
us denote this observable as f (g), which is a function of the
coupling parameter g. The kth order series in powers of the
coupling parameter has the general form

fk(g) = f0(g)

(
1 +

k∑
m=1

amgm

)
, (158)

where f0(g) is the known initial approximation. For realistic
problems, such series are practically always divergent for any
finite value of g. Moreover, for the majority of interesting
problems, one is able to calculate only the second-order
approximation,

f2(g) = f0(g)(1 + a1g + a2g
2), (159)

since the higher-order approximations become untreatably
cumbersome.

We know that, if the coupling parameter is not too large,
the described iterative procedure, using an effective smoothed
potential, is perfectly admissible, since the correcting terms, as
is shown above, are small. This is in agreement with the studies
[52,53] showing that, under weak interactions, the results are
weakly dependent on the shape of the used potential. But the
question remains: How can the obtained result be extrapolated
to large values of the coupling parameter?

The effective extrapolation from small g to large g can be
done involving the self-similar approximation theory [50,51]
in the frame of self-similar factor approximants [54–56]. We
shall not go into the details of the self-similar approximation
theory, whose thorough exposition has been done in the
published papers [50,51,54–56], but let us just apply it to
the second-order expansion Eq. (159). Then the second-
order factor approximant, extrapolating the weak-coupling
expansion Eq. (159) to finite values of g, reads as

f ∗
2 (g) = f0(g)(1 + Ag)n, (160)

with the parameters

A = a2
1 − a2

a1
, n = a2

1

a2
1 − a2

.

As an example of a nonintegrable potential, let us take the
hard-core potential V (r) that is zero for r > σ and becomes
infinite for r � σ . It is known [52,53] that in the low-energy
region this potential can be replaced by the pseudopotential,

�(r) = 4π
as

m
δ(r), (161)

in which as is scattering length equal to the diameter σ of the
hard core. With this potential Eq. (161), the coupling parameter

Eq. (157) becomes

g = as

a
= ρ1/3as, (162)

where ρ is average density, such that ρa3 = 1.
As an example, let us consider the ground-state energy of

a dilute Bose system, introducing the dimensionless energy,

E0 ≡ 2ma2
s

E

N
(T = 0). (163)

For asymptotically weak coupling g → 0, the ground-state
energy of a uniform system is found [57–60] to be

ELHY(g) = 4πg3

(
1 + 128

15
√

π
g3/2

)
. (164)

In the asymptotic region, where g → 0, the pseudopotential
Eq. (161) is known [52,53] to well describe the system with
hard-core interactions. But can the use of such an effective
potential be somehow extrapolated to finite values of the
coupling parameter? Actually, dealing with a uniform system,
one needs to consider only the region g ∈ [0,0.6], since at
the critical value gc = 0.65, the system crystallizes, becoming
nonuniform [11].

To realize the extrapolation by means of self-similar factor
approximants, we consider a uniform Bose system at zero
temperature with the effective interaction potential Eq. (161),
calculate the ground-state energy, with the separated factor
f0(g) = 4πg3, in the second order [10], with respect to z ≡
g3/2, and employ the self-similar approximation theory, which
yields

E0(g) = 4πg3(1 + 2.93379g3/2)1.64103. (165)

This formula exactly reproduces the Lee-Huang-Yang
Eq. (164) for small g and practically coincides with the Monte
Carlo simulations [11] for all coupling parameters in the region
0 � g � 0.6, where the system can be treated as uniform.

This example demonstrates that the use of an effective
integrable interaction potential, complimented by self-similar
approximation theory, can accurately reproduce the properties
of systems with nonintegrable interaction potentials, such
as the hard-core potential, in a wide range of coupling
parameters, hence extrapolating the series for asymptotically
small coupling parameters to their finite values.

XII. CONCLUSION

In the paper, statistical systems are considered composed of
atoms interacting through nonintegrable interaction potentials.
The treatment of such potentials, as is well known, confronts
several problems, such as the impossibility of using the
standard mean-field approximations, for instance, Hartree,
Hartree-Fock, or Hartree-Fock-Bogolubov approximations,
the impossibility of introducing coherent states, the difficulty
in breaking the global gauge symmetry, required for describing
Bose-Einstein condensed and superfluid systems, and the
absence of correctly defined Fourier transforms that are needed
for characterizing uniform systems as well as nonuniform
systems in the local-density approximation.

An efficient iterative procedure for describing such sys-
tems is developed, starting from a correlated mean-field
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approximation, with a regularized interaction potential, allow-
ing for a systematic derivation of higher orders, and meeting no
problems arising when employing nonregularized potentials.

The admissibility of using, instead of bare interaction
potentials, leading to divergences, some kind of pseudopo-
tentials is known for many quantum systems in a mean-field
approximation [47]. The principal result of the present paper
is in proving that it is possible to develop a regular iterative
procedure for deriving higher-order approximations above
the mean-field one and meeting no divergences at any step.
It is also shown that the iterative procedure, based on the
nonintegrable bare interaction potential, can be reorganized
in such a way, where the first-order approximation coincides
with the mean-field approximation with a regularized potential
and the higher orders are close to those that correspond to the
standard iterative procedure based on the regularized potential.
This justifies the use of the regularized potentials not only in
the mean-field approximation, but in the higher orders of the
iterative procedure as well.

The iterative procedure is specified for equilibrium systems
and its application is illustrated by the calculation of observ-
able quantities, such as internal energy. For the case of the
Lennard-Jones interaction potential, it is demonstrated that
the correcting terms, distinguishing the iterative procedures
starting with a nonintegrable bare potential and with an
integrable effective potential, are small.

Complimenting the iterative procedure by self-similar
approximation theory, it is possible to extrapolate the results,
derived for weak coupling, to large values of coupling param-
eters. For instance, the obtained formula for the ground-state
energy of a uniform Bose system practically coincides with the
results of accurate Monte Carlo simulations in the whole region
of the coupling parameter, where the system is uniform, and
yields the expression exactly reproducing the Lee-Huang-Yang
limit for weak coupling.
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APPENDIX

In the process of calculation of observable quantities, one
meets the integrals over the products of Green functions, which
should be treated with caution, since, under coinciding poles,
such integrals diverge. One meets the integrals of the type

Imn = ±i

∫ ∞

−∞
e+iω0Gm(ω)Gn(ω)

dω

2π
,

Jmn = ±i

∫ ∞

−∞
e+iω0ωGm(ω)Gn(ω)

dω

2π
,

Iijk = ±i

∫ ∞

−∞
e+iω0Gi(ω)Gj (ω)Gk(ω)

dω

2π
,

Jijk = ±i

∫ ∞

−∞
e+iω0ωGi(ω)Gj (ω)Gk(ω)

dω

2π
.

In the expressions for observable quantities, these integrals
often enter having the diagonal form with respect to their
indices, which implies the coinciding poles of the Green
functions in the integrands. However, for coinciding poles,
the integrals diverge, since the products of distributions with
coinciding poles are not well defined. This problem can be
treated in two ways.

One possibility is to consider, under integration, the poles
as being different, which gives

Ikp = nk − np

ωk − ωp

, Jkp = ωknk − ωpnp

ωk − ωp

,

Iijk = Rijk + Rjki + Rkij ,

Jijk = ωiRijk + ωjRjki + ωkRkij ,

where

Rijk = ni(1 ± nj )(1 ± nk) ± (1 ± ni)njnk

(ωi − ωj )(ωi − ωk)
.

And then to accomplish the limiting procedure to equal indices,
which results in the following limits, for two coinciding poles,

Ikk ≡ lim
p→k

Ipk = −βnk(1 ± nk),

Jkk ≡ lim
p→k

Jpk = nk[1 − βωk(1 ± nk)],

Injn ≡ lim
m→n

Imjn = Inn − Inj

ωn − ωj

,

Jnjn ≡ lim
m→n

Jmjn = ωnInn − ωjInj

ωn − ωj

,

and for three coinciding poles,

Ikkk ≡ lim
p→k

Ikpk = 1

2
β2nk(1 ± nk)(1 ± 2nk),

Jkkk ≡ lim
p→k

Jkpk = −βnk(1 ± nk)

[
1 − 1

2
βωk(1 ± nk)

]
.

The other, faster, way is to define the product of m Green
functions with coinciding poles as

Gm
k (ω) ≡ 1 ± nk

(ω − ωk + i0)m
∓ nk

(ω − ωk − i0)m
.

Then employing the integration

±i

∫ ∞

−∞
e+iω0f (ω)Gm

k (ω)
dω

2π

= 1

(m − 1)!

dm−1

dωm−1
k

[f (ωk)nk],

and using the derivatives

dnk

dωk

= −βnk(1 ± nk),
d2nk

dω2
k

= β2nk(1 ± nk)(1 ± 2nk),

one comes to the same expressions as in the first way.
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