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Domain-wall theory and nonstationarity in driven flow with exclusion
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We study the dynamical evolution toward steady state of the stochastic nonequilibrium model known as
the totally asymmetric simple exclusion process, in both uniform and nonuniform (staggered) one-dimensional
systems with open boundaries. Domain-wall theory and numerical simulations are used and, where pertinent, their
results are compared to existing mean-field predictions and exact solutions where available. For uniform chains
we find that the inclusion of fluctuations inherent to the domain-wall formulation plays a crucial role in providing
good agreement with simulations, which is severely lacking in the corresponding mean-field predictions. For
alternating-bond chains the domain-wall predictions for the features of the phase diagram in the parameter space
of injection and ejection rates turn out to be realized only in an incipient and quantitatively approximate way.
Nevertheless, significant quantitative agreement can be found between several additional domain-wall theory
predictions and numerics.
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I. INTRODUCTION

In this paper we consider the dynamic evolution of the
totally asymmetric simple exclusion process (TASEP) in
both uniform and nonuniform one-dimensional (1D) systems.
The TASEP, in its original version for uniform chains,
already exhibits many nontrivial properties including flow
phase changes, because of its collective character [1–7],
and is considered paradigmatic of nonequilibrium statistical
mechanical models. We make use of the domain-wall (DW)
approach [8–11], coupled with numerical simulations.

Application of mean-field (MF) Mobius mapping [12,13] to
generalizations of the TASEP such as nonuniform chains and
hexagonal-lattice systems turns out to provide less accurate
steady-state results than for the well-known uniform 1D case.
Also, for dynamics [13], some significant discrepancies be-
tween MF predictions and numerics already arise for uniform
1D systems. Such inadequacies motivate the formulation of a
DW theory (which includes fluctuations altogether absent in
MF) to provide further understanding of the physical processes
underlying this model.

In Sec. II we review the DW theory for uniform chains,
and develop a generalization which applies for 1D systems
with alternating bond rates. In Sec. III we give results of the
numerically calculated DW evolution predicted by theory, as
well as those from direct simulations of the stochastic TASEP
process. In Sec. IV, we summarize and discuss our results.

II. THEORY

A. Uniform chain

We here briefly review basic aspects of the TASEP, and of
its DW representation, for the simplest case, uniform chains
[1–11].

*Robin.Stinchcombe@physics.ox.ac.uk
†sldq@if.ufrj.br

In the TASEP the particle number n� at lattice site � can be
zero or one. Any such “exclusion” configuration of particles
(having at most one particle at any site) can evolve by hopping
of the particle at any occupied site � to the adjacent site � + 1,
provided it is empty. The instantaneous current J� �+1 across
the bond from � to � + 1 depends also on the stochastic attempt
rate, or bond (transmissivity) rate, p�, associated with it. In the
uniform TASEP, p� = p for all “internal bonds” � (i.e., other
than the injection and ejection ones for the open-chain case;
see below). Thus,

J� �+1 =
{
n�(1 − n�+1) with probability p�

0 with probability 1 − p�

. (1)

The “open” chain with additional processes (subject to
the exclusion constraint) of injection at rate α at the left
boundary, and ejection at rate β at the right boundary, is
of particular interest, because of its rich behavior, including
boundary-driven phase transitions and associated static and
dynamic critical behavior. Its properties, particularly densities,
currents, and associated correlation functions, will be studied
in what follows.

One such property is the density profile ρ(�,t) given by the
average of occupations at site � and time t , over all possible
realizations of the evolution up to time t . In general such
quantities evolve in time towards an eventual steady-state form
which, for the open chain, depends on the boundary conditions
through α, β but not on initial conditions.

The simplest approach, MF theory [3,5], already distin-
guishes the different phases, through current and density
averages and especially through the forms of the density
profile. Remarkably MF theory gives the phase boundaries
in the (α,β) plane exactly for the uniform chain [3,5].

A particular example of an MF steady-state density profile
is that for α = β < 1/2, corresponding to the coexistence line
in the low current phase. This profile, for large system size,
provides a “macroscopic” view of the system state, in which
a narrow domain wall separates a domain on the left side,
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with uniform site occupation (local density) ρ− controlled by
the injection rate from another on the right with uniform site
occupation ρ+,

ρ− = α, ρ+ = 1 − β, (2)

and similarly for the mean-field currents in the two domains.
However these steady-state currents do not balance at the

domain wall, if it is stationary. This and other examples at
different (α,β) indicate the need to allow for (stochastic)
motion of the domain wall. This is the motivation for the
DW theory, which can restore the particle conservation and
include fluctuations absent from mean-field theory [8–11].

One postulates that the TASEP process can be represented
by the stochastic hopping of the domain wall. For simplicity
we make all bond rates p� ≡ 1; see Eq. (1).

To be consistent with the particle currents near the wall one
has to allow for possibly asymmetric hopping rates D+, D−
given by

D− = j−

�ρ
= α(1 − α)

1 − α − β
,

D+ = j+

�ρ
= β(1 − β)

1 − α − β
. (3)

Here �ρ ≡ ρ+ − ρ− = 1 − α − β, and the currents j+, j−
within each domain are assumed [8] to take the MF (i.e.,
factorized) form

j− = ρ−(1 − ρ−) = α(1 − α),

j+ = ρ+(1 − ρ+) = β(1 − β). (4)

Despite the simplicity of the approach it does include fluctu-
ations absent from the MF picture and in some cases vastly
improves on the MF description, e.g., in giving certain exact
results for the uniform chain (see, e.g., Sec. III).

For a chain with N sites and L ≡ N + 1 bonds (including
the injection and ejection ones), the time evolution of the
probability P (�,t) of finding the domain wall at “bond �”
(meaning the bond joining sites � and � + 1) for time t is
given by

dP (�,t)

dt
= D+P (�−1,t) +D−P (�+1,t)−(

D++D−)
P (�,t),

(5)

for internal bonds 1 � � � N − 1. At the boundaries one has

P (0,t)

dt
= D−P (1,t) − D+P (0,t), (6)

dP (L,t)

dt
= D+P (L − 1,t) − D−P (L,t). (7)

The general solution to Eqs. (5)–(7) can be found by assuming
a linear superposition of forms u� eR(u)t . Direct substitution
into Eq. (5) shows that the following relation holds:

R(u) =
(

D− − D+

u

)
(u − 1). (8)

So the steady-state solution Ps(�), i.e., having u such that
R(u) = 0, is

Ps(�) = c1

(
D+

D−

)�

+ c2; (9)

thus (for D+/D− �= 1), the steady-state density profile in-
volves the exponential factor eλs� where

λs = ln

(
D+

D−

)
, (10)

corresponding to the wall being spread over a distance ∼1/|λs |
at one side of the system. The time-dependent part of the
full solution is formed by grouping together the degenerate
factorizable solutions with u and ū = D+/(D−u) [such that
R(ū) = R(u)] into forms:

f (u,t) =
[
Au� + B

(
D+

D−
1

u

)� ]
eR(u)t . (11)

The boundary conditions given in Eqs. (6) and (7) determine
the allowed (discretized) u’s (≡ un) and the ratio of the
coefficients A, B. So,

P (�,t) =
∑

n

(
An u�

n + Bn ū�
n

)
eR(un)t + Ps(�), (12)

where

un = eλd eiqn , ūn = u∗
n, (13)

and

Bn

An

= − (eλd − eiqn )

(eλd − e−iqn )
, (14)

with

λd = ln

√
D+

D− = 1

2
λs, qn = nπ

L
, (15)

and

R(un) = D+ + D− − 2[D+D−]1/2 cos
nπ

L
≡ Rn. (16)

Once the probability P (�,t) has been obtained, the density
profile is given from

ρ(� + 1,t) − ρ(�,t) = �ρ P (�,t). (17)

B. Staggered chain

We next apply a DW approach to the TASEP with
alternating bond rates. The geometry requires a generalization
of the usual macroscopic view, leading to new relationships
of microscopic currents and densities to quantities such
as diffusion rates. Of course macroscopic views apply to
each sublattice separately, but their interpenetration requires
detailed consideration of the particle current between sites on
opposite sublattices. As usual in DW theory these currents
are those in the MF steady state, which are the same on all
bonds (of either sublattice) in a given domain. As in uniform
chains with a domain wall, there remains the distinction
between the uniform MF steady-state densities ρ+ and ρ−
in domains on either side of the wall. But now these densities
also differ between the two sublattices, which we distinguish
by subscripts 1 or 2. The generalized hopping picture and
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FIG. 1. A domain wall (dashed vertical line) dividing a two-
sublattice system with alternating hopping rates p1 and p2, into a
“minus” domain (left) and a “plus” one (see text for definitions of
ρ±

1,2 and J ±
12,21).

the labeling on bonds of hopping rates (p1,p2) and currents
(J±

12,J
±
21), and of particle densities (ρ±

1 ,ρ±
2 ) at sites, are shown

in Fig. 1. The DW diffusion constants, resulting from particle
conservation, for hopping to right or left (+ or −) from a given
type of bond (1 or 2) are given by

D−
2 (ρ+

2 − ρ−
2 ) = J−

12 ≡ p1 ρ−
1 (1 − ρ−

2 ), (18)

D+
1 (ρ+

1 − ρ−
1 ) = J+

12 ≡ p1 ρ+
1 (1 − ρ+

2 ), (19)

D+
2 (ρ+

2 − ρ−
2 ) = J+

21 ≡ p2 ρ+
2 (1 − ρ+

1 ), (20)

D−
1 (ρ+

1 − ρ−
1 ) = J−

21 ≡ p2 ρ−
2 (1 − ρ−

1 ). (21)

Equation (18), for example, follows from the hopping picture
and the labeling of bond rates and currents and site densities
shown in Fig. 1 because in the left hop of the wall shown the
bond left of the wall, with current J−

12, carries ρ+
2 − ρ−

2 across
to the right.

As for the uniform chain, the application of DW diffusion
theory to the staggered chain needs the identification of in-
cipient walls, typically from MF steady-state density profiles,
and their characterization. That involves finding hopping rates,
using Eqs. (18)–(21) with appropriate currents and densities.
These can come from Mobius maps [12,13] involving the
parameters α, β, p1, p2.

A variety of different forms arise, corresponding to the
different regions of the MF steady-state phase diagram. The
MF phase boundaries, as well as coexistence and possible fac-
torization lines, turn out to be only approximate for the
staggered chain [13], and they can be shifted by fluctuations.
Their possible modification by DW diffusion is of particular
interest and we first address that.

For the staggered chain there is no known analog of the
operator algebra which holds for the uniform case, and from
which the existence of factorizable states can be established,
so here our use of the term “factorization” should be taken to
cover the possibility of factorization through a state of uniform
density. This issue will be discussed conclusively in Sec. IV.

The DW diffusion steady-state density profiles (on each
sublattice) which determine such things are related to the
steady-state diffusion probability distribution P� for each
sublattice, through a generalization of Eq. (9). As in the
uniform chain, these P�’s typically include parts exponential

in �. The (coupled) steady-state diffusion equations result in

P� = c1

(
D+

1 D+
2

D−
1 D−

2

)�/2

+ c2 (steady state), (22)

with different constants for the two sublattices.
In the phase diagram the coexistence and factorization lines

are special in having site-independent P�’s. This can only occur
if

D+
1 D+

2

D−
1 D−

2

= 1, (23)

analogous to having overall zero bias.
For converting the condition Eq. (23) to a relation between

α, β, p1, and p2, one needs the MF steady-state densities
(uniform on each domain) for both sublattices, namely, ρ−

1 ,
ρ−

2 , ρ+
1 , ρ+

2 . With the injection and ejection sites both on
sublattice 1,

ρ−
1 = ap2

p1 + a(p2 − p1)
, 1 − ρ+

1 = bp1

p2 + b(p1 − p2)
,

(24)

ρ−
2 = a, 1 − ρ+

2 = b, (25)

where a = α/p2, b = β/p1.
With A ≡ p1 + a(p2 − p1), B ≡ p2 + b(p1 − p2), C ≡

1 − a − b, we find for the diffusion rates

D+
1 = b(1 − b)

A

C
, D+

2 = p1p2
b(1 − b)

BC
,

D−
2 = p1p2

a(1 − a)

AC
, D−

1 = a(1 − a)
B

C
. (26)

The sublattice density differences are

ρ+
2 − ρ−

2 = C, ρ+
1 − ρ−

1 = p1p2
C

AB
, (27)

and we have

D+
1 D+

2

D−
1 D−

2

=
[

b(1 − b)A

a(1 − a)B

]2

. (28)

This last result makes the condition Eq. (23) for the coexistence
and factorization lines, in DW theory, become

b(1 − b)[p1 + a(p2 − p1)] = ±a(1 − a)[p2 + b(p1 − p2)],

(29)

giving, respectively,

p1

(
1 − a

a

)
= p2

(
1 − b

b

)
(coexistence), (30)

a + b = 1 (factorization). (31)

It turns out that these determining equations are the same as in
MF theory [where they come from the steady-state equivalence
of bond currents, with the uniform density profiles given by
Eqs. (24) and (25)].

The rather general relations just given for diffusion rates and
associated quantities can need reinterpretation, e.g., to avoid
sign errors in D’s, for certain regions of the phase diagram.
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The intersection of the factorization and coexistence lines
is the critical point

(ac,bc) =
( √

p1√
p1 + √

p2
,

√
p2√

p1 + √
p2

)
, (32)

predicted by both MF and DW theory.
We next turn to dynamical behavior within DW theory,

which needs use of the full coupled discrete diffusion equations
for the domain wall. Omitting the time dependence for
clarity, and recalling that odd- and even-numbered lattice sites
correspond, respectively, to sublattices 1 and 2, these are

dP2�

dt
= P2�−1D

+
2 + P2�+1D

−
1 − (D+

2 + D−
1 )P2�, (33)

dP2�+1

dt
= P2�D

+
1 + P2�+2D

−
2 − (D+

1 + D−
2 )P2�+1. (34)

The solution of Eqs. (33) and (34) involves the following two
(sublattice) superpositions of factorizable components:

P2� =
∑

ζ

Aζ e2�ζ e−tR(ζ ), (35)

P2�+1 =
∑

ζ

Bζ e(2�+1)ζ e−tR(ζ ). (36)

The resulting equations for R(ζ ) and Bζ/Aζ involve the matrix

M =
(

a(0) −a(ζ )

−b(ζ ) b(0)

)
with

{
a(ζ ) = D+

2 e−ζ + D−
1 eζ

b(ζ ) = D+
1 e−ζ + D−

2 eζ
.

(37)

The eigenvalues and eigenvectors of M provide a two-branch
spectrum for R(ζ ), and corresponding values of the ratio
Bζ/Aζ .

A few general remarks can be made here. One is that
specifying R(ζ ) = 0 requires that the determinant ofM should
vanish, which is satisfied if ζ = ζ̄ where

e2ζ̄ = D+
1 D+

2

D−
1 D−

2

. (38)

This is the “complex wave vector” corresponding to the
exponential profiles in steady state; see Eq. (22).

Another remark concerns boundary conditions. These re-
quire that the differences of the profiles from their steady-state
values have to vanish at the boundaries; and they determine
the allowed ζ ’s.

As in the uniform chain [see Eq. (11)] the boundary require-
ments can be satisfied by grouping degenerate factorizable
solutions, having ζ ’s with the same R(ζ ). The eigenvalue
equation for R(ζ ) is

R2 − 
 R + G(ζ ) = 0, (39)

where


 = D+
1 + D+

2 + D−
1 + D−

2 (40)

and, with

� =
√

D+
1 D+

2 D−
1 D−

2 , (41)

G(ζ ) = 2�
[
cosh ζ̄ − cosh(2ζ − ζ̄ )

]
. (42)

So, degenerate ζ ’s all have the same G, and a particular such
group is easily seen to be z, ζ̄ − z, z − π i, ζ̄ + π i − z, e.g.,
with z real.

The generalization obtained by adding ±i q to each of these
provides a group all with the same Re R’s and equal or opposite
Im R’s (proportional to ballistic velocities). Superpositions
involving such a group provide the time-dependent parts of
solutions which can satisfy the boundary conditions. The
remaining requirements are

z = ζ̄

2
, q = qn = nπ

L
, (43)

together with conditions relating the coefficients Aζ , Bζ for
all the ζ ’s of the group. Initial conditions complete the
determination of the coefficients.

The above procedure for dealing with the boundary condi-
tions for the staggered chain is much more complicated than
that in Sec. II A, but the result Eq. (43) is of the same form
as Eq. (15).

So the rate R is provided by inserting G( ζ̄

2 ± i q) into
Eq. (39). Using Eqs. (38)–(42) that gives

G

(
ζ̄

2
± i q

)
=

(√
D+

1 D+
2 −

√
D−

1 D−
2

)2

+ 4
√

D+
1 D+

2 D−
1 D−

2 sin2 qn. (44)

This provides the two-branch spectrum already referred to. In
general ζ̄ is nonzero and the spectrum has a gap, which is
typically small.

Indeed the special case D±
1 = D±

2 ≡ D± has

G

(
ζ̄

2
± i q

)
= (D+ − D−)2 + 4D+D− sin2 qn, (45)

which leads to the one-branch spectrum given in Eq. (16) as
expected, since in this case the relationship of the D’s removes
their sublattice distinction and so corresponds to the uniform
chain.

It can be seen from Eq. (38) that if D+
1 D+

2 = D−
1 D−

2 , cor-
responding to the unbiased case [coexistence and factorization
lines; see Eq. (23)], ζ̄ becomes zero and G = 4D+

1 D+
2 sin2 qn.

Then, at small qn, G becomes small and consequently

R ∼ G



, R ∼ 
 − G



, (46)

for acoustic and optical branches, respectively. The acoustic
branch is gapless in this case, which is analogous to the
unbiased gapless case from D+ = D− in the uniform chain.

The acoustic branch provides the small-q modes which
dominate the late-time dynamical behavior. The higher-q
modes of that branch and the modes of the other branch decay
rapidly as in the “fast equalization” of sublattices previously
studied in MF dynamics [13].

In gapless cases or typical cases with a small gap the
late-time modes have small q. So, for these the ratio Bζ/Aζ

will be close to a(0)/a(ζ̄ /2). This, being independent of qn,
makes (P2�+1 + P2�−1)/2P2� independent of �. This implies
that, according to DW diffusion theory, at late times the DW
distribution functions on the two sublattices are proportional.

012105-4



DOMAIN-WALL THEORY AND NONSTATIONARITY IN . . . PHYSICAL REVIEW E 94, 012105 (2016)

Now the densities on the sublattices can be found from
the distribution functions using the following straightforward
generalization of Eq. (17) for the uniform case:

ρ2�+1(t) − ρ2�(t) = (ρ+
1 − ρ−

2 ) P2�(t), (47)

ρ2�(t) − ρ2�−1(t) = (ρ+
2 − ρ−

1 ) P2�−1(t). (48)

With these, noting that in general ρ+
1 − ρ−

2 �= ρ+
2 − ρ−

1 , the
result above for the probability distributions becomes the
statement that the late-time difference of density profiles is
very nearly constant in �.

III. NUMERICS

A. Introduction

For a chain with N sites and L = N + 1 bonds (including
the injection and ejection ones), an elementary time step
consists of L sequential bond update attempts, each of these
according to the following rules: (1) select a bond at random,
say, bond ij , connecting sites i and j ; (2) if the chosen bond
has an occupied site to its left and an empty site to its right,
then (3) move the particle across it with probability (bond
rate) pij . If the injection or ejection bond is chosen, step 2
is suitably modified to account for the particle reservoir (the
corresponding bond rate being, respectively, α or β).

Thus, in the course of one time step, some bonds may be
selected more than once for examination and some may not be
examined at all. This constitutes the random-sequential update
procedure described in [14], which is the realization of the
usual master equation in continuous time [14]. For uniform
chains the exact steady-state profiles given by the operator
algebra described in [4], which are an important baseline in
our numerical work, correspond to random-sequential update
as recalled in [14].

For specified initial conditions, we generally took ensemble
averages of local densities and/or currents over Nsam =
105–106 independent realizations of stochastic update up to
a suitable time tmax, for each of those collecting system-wide
samples at selected times.

Estimation of uncertainties involves running Nset indepen-
dent sets of Nsam samples each; from the spread among the
averaged quantities for the distinct sets, one then estimates the
rms deviation of each relevant quantity. As is well known [15],
such rms deviations are essentially independent of Nset as long
as Nset is not too small, and vary as N

−1/2
sam . We generally took

Nset = 10. Such stochastic fluctuations are the source of the
error bars displayed in Figs. 6 and 8–10 below.

B. Uniform chain

We started by testing the predictions of DW theory for
selected steady-state properties of uniform chains. In this case,
the exact steady-state density profiles ρs(�) are known [4] for
any (α,β) and arbitrary number of sites N .

For (α,β) = (0.3,0.4), in which case Eq. (3) gives D+ = 0.8
and D− = 0.7, we attempted to fit the exact profiles according
to Eqs. (9), (10), and (17) to the form

ρs(�) = a + b exp[λs (� − �0)] (49)

with a, λs , and �0 as adjustable parameters; for α < β one
keeps b = +1 (fixed) as is appropriate for α + β < 1. Results

FIG. 2. Adjusted values of λs of Eq. (10) for fits of Eq. (49) to
exact steady-state profiles, for uniform chains of N sites, against 1/N .
The full line is a parabolic spline through large-N results (see text).

for selected values of N between 15 and 400 are displayed
in Fig. 2, where the uncertainties shown relate exclusively to
the intrinsic features of multiparametric nonlinear regression.
The quality of fit improves for increasing N , as shown by the
shrinking standard deviations for λs ; also, the central estimates
tend to stabilize for N � 100, suggesting a parabolic form with
no linear term in N−1 to describe the asymptotic behavior
for large N [shown as a full (red) line in Fig. 2]. This gives
limN→∞ λfit

s = 0.151(1), to be compared with the prediction
of Eq. (10), λDW

s = 0.13353 . . . .
For dynamics, we initially investigated the coexistence line

(CL) between low- and high-density phases, at α = β < 1/2,
where both λs of Eq. (10) and λd of Eq. (15) vanish. In order to
avoid crossover effects due to proximity to the critical point at
(α,β) = (1/2,1/2) we took (α,β) = (1/4,1/4). Keeping only
the n = 1 term in Eq. (12), the very-late time density difference
profiles δρ(�,t) ≡ ρ(�,t) − ρs(�) behave, on the approach to
steady state, as

δρ(�,t) = −2(1 − 2α)

π
sin

π�

L
e−c(L) t , (50)

where the numerical prefactor comes from adjusting the An,
Bn of Eq. (12) to an empty-lattice initial condition, and the
inverse relaxation time is given, using Eqs. (3) and (16) for
L/π 	 1, by

c(L) = R1(L) = α(1 − α)

1 − 2α

(
π

L

)2

. (51)

Note that Eq. (51) coincides with the Bethe ansatz result of [16]
[see their Eq. (21)].

For fixed L, we ran simulations starting from an empty
lattice; then, for a set of suitable t values we fitted nu-
merically generated difference profiles to the sine depen-
dence in Eq. (50), thus producing a sequence of effective
time-dependent amplitudes, which was in turn fitted to an
exponential time dependence to extract estimates of the c(L)
of Eq. (51). Finally, we examined the behavior of the {c(L)}
against L. Results are shown in Fig. 3.
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FIG. 3. For (α,β) = (1/4,1/4), plot of L2 c(L) against 1/L,
where the c(L) are adjusted values of the exponential time decay
of {δρ}(L); see Eqs. (50) and (51). The full (red) line is a linear fit to
the data. The long-dashed line marks the DW theory prediction.

The error bars shown in the figure result from the cumulative
effects of (i) statistical fluctuations in the local densities for
each specified � and t , coming from the stochastic sampling
process; (ii) intrinsic uncertainties following from adjusting
difference profiles for fixed t to a single sine dependence while
fully neglecting higher-order terms in Eq. (12) [see Eq: (50)];
and (iii) additional intrinsic uncertainties related to assuming
the time dependence of the effective amplitudes found in (ii) to
follow a single exponential form over a relatively broad time
interval. We have seen that (ii) and (iii) are of much larger
quantitative importance than (i). For instance, the c(L) of Fig. 3
have uncertainties varying between 2 and 5%, while relative
fluctuations in the associated difference densities δρ(�,t) are
of order 1% or less (provided that one analyzes sites not very
close to the system edges, where the δρ approach zero). Similar
considerations apply to the respective sources of the error bars
exhibited in Figs. 4, 11, and 12 below.

One sees that the numerical estimates of c(L) become
closer to the prediction of Eq. (51) with increasing L.
The extrapolated value is limL→∞ L2 c(L) = 3.6(1), to be
compared to α(1 − α)π2/(1 − 2α) = 3.7011 . . . for α = 1/4.

Next we examined the time evolution of difference densities
for α + β < 1, away from the CL. In this case DW theory gives
the late-time difference densities as

δρ(�,t) ∝ exp(λd�) sin
π�

L
e−R1(L) t , (52)

with λd and R1(L) as given, respectively, in Eqs. (15) and (16).
At (α,β) = (0.3,0.4), using Eqs. (3) and (16) for L/π 	 1

one gets R1 = 0.003337 · · · + 7.3857 . . . /L2. Again, this
agrees with the Bethe ansatz result of [16] [see their Eq. (19)].

We produced numerical estimates of R1 by implementing
a procedure similar to that described above for the CL. In
contrast to that case, λd is now an additional quantity to
be considered. It is known [13] that the predicted shapes
of late-time profiles are very sensitive to the presence of an
exponential term in their spatial dependence. Thus, in order to

FIG. 4. For (α,β) = (0.3,0.4), plot of R1(L) against 1/L, where
the R1(L) are adjusted values of the exponential time decay of
{δρ}(L); see Eqs. (16) and (52). The full (red) line is a parabolic
fit to the data (see text).

concentrate on the analysis of time decay rates we took λd as
an adjustable parameter. However, the following remarks are
in order. We saw that (i) for fixed system size L, the best-fitting
values from numerics systematically decreased for increasing
times t in the nonstationary regime; and (ii) while, for assorted
L and t one generally found 0.07 � λfit

d � 0.10, an average
over L of long-time extrapolations of the behavior referred to
in (i) gives 〈λfit

d 〉 = 0.06(1). This is to be compared with the
prediction λDW

d = 0.06676 . . . and [using λd = (1/2)λs ] also
to the final result for fits of steady-state profiles to Eq. (49),
namely, (1/2)λfit

s = 0.0755(5).
Our results for numerical estimates of R1 are shown

in Fig. 4. The figure also shows a parabolic fit of the
numerical data inspired in the large-L limit of Eq. (16). With
R1(x) = R 0

1 + R 2
1 x2 one gets R 0

1 = 0.0041(4), R 2
1 = 4.6(2),

the former value being only two error bars away from the DW
prediction.

Still for (α,β) = (0.3,0.4) we compared both the stationary
and nonstationary behavior of density profiles, as given by
DW theory, with corresponding results from, respectively, the
exact steady-state solution and numerical simulations. To this
end, we solved the discrete-time version of Eq. (5),

P (�,t + dt) = D+dt P (� − 1,t) + D−dt P (� + 1,t)

+ [1 − (D+ + D−)dt]P (�,t), (53)

with similar adaptations to Eqs. (6) and (7). Fixing dt amounts
to a simple renormalization of the computational time scale
with the proviso that the condition (D+ + D−)dt < 1 must
be obeyed, to prevent negative probabilities cropping up upon
iteration. We used dt = 0.5, which suffices for the present case.

The density profiles can be evaluated at all times via [11]

ρDW(�,t) =
(

�∑
k=0

Pk(t)

)
ρ+ +

(
L∑

k=�+1

Pk(t)

)
ρ−, (54)

with ρ+, ρ− from Eq. (2).
Figure 5, for a system with N = 29 sites, shows the exact

steady-state profile [4] compared with two variants of the
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FIG. 5. For (α,β) = (0.3,0.4), N = 29, points are exact steady-
state density profiles [4]; lines are results of long-time evolution of
Eqs. (5)–(7). (I): D+, D− from Eq. (3). (II): D+/D− = eλs , λs =
0.160 (see text).

long-time limit of the evolution of Eq. (53) and the corre-
sponding versions of Eqs. (6) and (7). In curve (I) we used
D+ and D− following Eq. (3), while in curve (II) we took
D+/D− = eλs , with λs = 0.160 being the central estimate
from the fit of the N = 29 exact profile to Eq. (49).

One sees that in both cases, although the general trends
are captured by DW results, some small but significant
discrepancies remain especially close to the system’s right
end. One expects such effects to become less relevant with
increasing system size [11].

We examined the approach to stationarity, by evaluating the
difference densities predicted by DW theory, i.e., δρDW(�,t) ≡
ρDW(�,t) − ρDW

s (�). In Fig. 6 they are compared to those
coming from simulations. As mentioned previously, the latter

FIG. 6. For (α,β) = (0.3,0.4), N = 29, difference-density pro-
files. Points are simulation results at t sim = 160. The continuous
(red) line is a result of evolution of Eqs. (5)–(7) at tDW = 2t sim. The
long-dashed line is from MF theory of [13]. See text for description
of initial conditions.

use the exact steady-state profiles as the baseline to be
subtracted from finite-time numerical results.

We started the DW evolution with the domain wall at the
right end of the system; consistently with this, the numerical
simulation was started with uniform average density 〈ρ〉 =
ρ− = 0.3. With the elementary time step dt = 0.5 for the DW
evolution, as mentioned, the correspondence between times
scales is tDW = 2t sim. The features shown in Fig. 6 turn out
to be typical of late-time profiles (say 100 � t sim � 250),
namely, the very good agreement between DW and simulation
results for � � 20, and the small but significant mismatch on
the upturn for larger �, with the δρDW profile approaching
zero faster than that given by simulation. The dashed line in
Fig. 6 shows the corresponding difference profile predicted
by the MF theory of [13]. It is seen that there is everywhere
a large discrepancy between the latter and simulation results.
For a similar (but simpler) case, namely, (α,β) = (0.3,0.7),
see Fig. 7 of [13].

C. Staggered chain

We consider chains with alternating rates p1 = 1/2, p2 = 1
for all internal bonds (i.e., excluding the injection and ejection
ones). The ratio p2/p1 = 2 is of special interest since its mean-
field Mobius mapping description coincides with that of a
hexagonal-lattice nanotube with uniform bond rates [12,13].
For consistency with the condition expressed above Eqs. (24)
and (25), the total number N of sites must be odd.

Equations (30)–(32) give, for p1 = 1/2 and p2 = 1,

β = α

1 + α
(coexistence), (55)

α + 2β = 1 (factorization), (56)

(αc,βc) =
(√

2 − 1,1 −
√

2

2

)
(critical point). (57)

As explained in Sec. II B, the above are concurrent predictions
from MF and DW theory. Figure 7 shows the overall features of
the predicted phase diagram in the α-β parameter space. In line
with the uniform case, one does not expect the continuation of
the CL beyond (αc,βc) [long-dashed line in Fig. 7] to have a
physical interpretation.

An important feature of driven asymmetric flow on stag-
gered chains [13] is that no exact results for steady-state
profiles or currents are known, e.g., from operator algebra,
unlike the case of their uniform-system counterparts [4]; thus
guidance must come from numerically generated data. Never-
theless, some general properties which are known for uniform
chains are expected to hold here as well, such as the existence
of a low-current phase for suitably low (α, β) and a high-
current one for (α, β) large enough. For example, the steady-
state current at (α,β) = (1/5,1/6), approximately halfway
along the predicted CL, is J  0.13. To determine the maximal
current Jmax, we considered the simpler case of staggered
chains with periodic boundary conditions (rings), for which
particle-hole symmetry arguments show that Jmax corresponds
to a site-averaged density 〈ρ 〉 = 1/2. From numerical simu-
lations for system sizes with 〈ρ〉 = 1/2, N = 20, 30, 40 one
gets limN→∞ Jmax(N ) = 0.1628(1), to be compared with the
MF prediction J MF

max = p1p2/(
√

p1 + √
p2) = 0.17157 . . . .
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FIG. 7. Phase diagram predicted by both MF and DW theory
for the staggered chain with bond rates p1 = 1/2, p2 = 1; see
Eqs. (55)–(57) and text. CL denotes the coexistence line; FL is the
factorization line.

The verification of constant �-independent difference be-
tween sublattice steady-state profiles, predicted in Eqs. (47)
and (48), is illustrated in Fig. 8. Note that already for
t = 240 there is a good degree of convergence towards
a constant difference between sublattice profiles, although
some systematic and significant discrepancies still survive.
This feature has been found to hold generally for various
(α,β) spanning all expected phases. The numerical values
of the difference δs (as defined in Fig. 8) vary in the range
0.04 � δs � 0.15.

We first examined steady-state properties at points well
within the predicted low-current phases, i.e., for small α, β

and suitably far from the predicted CL β = α/(1 + α), α <

FIG. 8. Sublattice density profiles for the staggered chain with
N = 41 sites, at (αc,βc) of Eq. (57), starting at t = 0 with an empty
lattice. The profile for t = 2000 corresponds to the steady-state
regime to very good accuracy. Densities for even-numbered sites
(blue triangles) have been shifted upwards by δs = 0.126.

αc = √
2 − 1. We took (i) (α,β) = (0.1,0.22) and (ii) (α,β) =

(0.3,0.115). In both cases DW theory predicts an exponential
shape for the sublattice steady-state densities, amenable to
fitting via Eq. (49) above, with b = +1 for the former and
b = −1 for the latter (as they are located on opposite sides of
the CL).

From Eqs. (22) and (26) one gets, respectively, λs =
0.65777 . . . for (i) and −0.479014 . . . for (ii). Fitting steady-
state profiles from sublattice 1 for chains with N = 41 sites
to Eq. (49) gives, respectively, λfit

s = 0.645(15) for (i) and
−0.594(8) for (ii). Motivated by the uniform-chain case
depicted in Fig. 2, in both cases we checked for a systematic
N dependence of λfit

s . We took N = 29 and 57. For both (α,β)
pairs the adjusted parameters stay within at most two error
bars from the corresponding N = 41 values quoted above. So
one can conclude that for the former case there is very good
agreement between theory and simulation, while in the latter
a discrepancy of order 20% is present.

For uniform chains, the coexistence of low- and high-
density phases on the CL can be directly observed (see, e.g.,
Fig. 8 of [17]); a secondary characteristic of the CL is that
the steady-state (ensemble-averaged) density profile is, to a
very good approximation, linear [4] on it. We have probed the
existence of the latter feature for staggered chains, by scanning
the (α,β) parameter space near the predicted CL. Figure 9
shows steady-state profiles for both (α0,β0) = (1/5,1/6) (on
the predicted CL) and at (α1,β1) = (α0 − 2ε,β0 + ε), ε =
0.005. It is seen that at the latter point one gets a rather good fit
to a straight-line profile, while there is pronounced curvature
at the former. The straight line shown is a least-squares fit to
the (α1,β1) data.

Similarly, for the predicted factorization line on staggered
chains, it has been shown by direct evaluation [13] that the
corresponding correlation functions do not vanish there. For
further discussion of this point, see Sec. IV and the Appendix.

FIG. 9. Steady-state sublattice density profiles for the staggered
chain with N = 41 sites, at (α0,β0) = (1/5,1/6) [on the predicted CL,
see Eq. (55)] and (α1,β1) = (α0 − 2ε,β0 + ε), ε = 0.005. Density
values at points on sublattice 2 are shifted upwards by δs0 = 0.102,
δs1 = 0.1045. The straight line is a fit to (α1,β1) data.
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FIG. 10. Steady-state sublattice density profiles for the staggered
chain with N = 41 sites, at the predicted critical point (αc,βc)
[see Eq. (57)] and (αc,βc − ε), ε = 0.04. Density values at points
on sublattice 2 are shifted upwards by δs = 0.126 and δs = 0.123,
respectively for (αc,βc) and (αc,βc − ε).

However, we have seen that a secondary feature, in this case
the flatness of steady-state density profiles which holds exactly
in the uniform case, can be approximately found close to the
predicted location of the critical point, as illustrated in Fig. 10.
Leaving out the three leftmost sites, and the rightmost one,
on sublattice 1 of the profile corresponding to (αc,βc − ε),
which are strongly influenced by the boundary conditions at
the chain’s ends, one has a gentle slope for the central section,
amounting to a 0.3% density variation in all. This is to be
compared with the 6% difference found for the same section
of the chain at (αc,βc).

For dynamics we used similar procedures to those of
Sec. III B, with pertinent adaptations. For chains with N = 17,
21, 29, 41, 57, 81, and 109 sites [ L = N + 1 bonds] and late
times we evaluated the difference densities δρ(�,t) = ρ(�,t) −
ρs(�). In order to prevent lingering effects of the sublattice fast-
equalization process from introducing systematic distortions,
we restricted ourselves to sites on sublattice 1 (odd-numbered).
For each of a number (between 5 and 10) of suitable sites
� along the chain, and a set of suitably late times for each
site, we fitted the simulation data to a single exponential,
thereby producing estimates of the rate R1 = R1(L) [see
Eqs. (39)–(44) with n = 1 ]:

δρ(�,t) = a(�) e−R1t . (58)

In what folllows, the values used for the numerically obtained
R1(L) are unweighted averages of the exponential-fit results
over the several �’s used.

We first investigated the approach to steady state in the
neighborhood of the predicted CL [see Eq. (55)], where one
expects to find signatures of a gapless spectrum. Motivated
by the shapes of steady-state density profiles shown in Fig. 9,
we took (α,β) = (α0 − 2ε,β0 + ε), with (α0,β0) = (1/5,1/6)
on the predicted CL, ε = 0.005. The results for R1(L) are
displayed in Fig. 11. The full (red) line R1 = aL−2 + b shown
has adjusted parameters a = 2.60(3), |b| < 4 × 10−5. One

FIG. 11. For (α,β) = (α0 − 2ε,β0 + ε), with (α0,β0) =
(1/5,1/6) on the predicted CL of Eq. (55), ε = 0.005, plot of R1(L)
against 1/L2 where points (blue squares) are adjusted values of the
exponential time decay of δρ(�,t); see Eq. (58). The full (red) line is
a straight-line fit of numerical data for L � 30 (see text).

sees that for largish L � 30 essentially pure 1/L2 behavior
has taken over, as attested by the smallness of b. With the
diffusion coefficients calculated from Eqs. (26) and plugged
into Eqs. (39)–(44) with n = 1 , one gets the predicted gap to be
g0 = 1.83 × 10−4 at (α0 − 2ε,β0 + ε), and limL→∞(g(L) −
g0)L2 = 2.785 . . . , the latter to be compared with the adjusted
slope a. If one uses instead the parameters at (α0,β0), for which
g0 ≡ 0, the result is limL→∞ g(L)L2 = 2.8196 . . . .

We also investigated (α,β) = (0.1,0.22), where the agree-
ment between theory and numerics for steady-state profiles

FIG. 12. For (α,β) = (0.1,0.22), plot of R1(L) against 1/L where
points (blue squares) are adjusted values of the exponential time decay
of δρ(�,t); see Eq. (58). The (red) triangles are the predictions of
Eqs. (26), together with Eqs. (39)–(44). The dot-dashed (magenta)
line is a linear fit to large-L numerical data (see text).
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has proved to be very good (see above). For these values
of (α,β), Eqs. (26) together with Eqs. (39)–(44) give g0 =
0.024907 . . . , and limL→∞(g(L) − g0)L2 = 2.2518 . . . . Our
numerical results are shown in Fig. 12. An ad hoc linear fit of
the five largest-L data against 1/L (shown in Fig. 12) gives
g0 = 0.013(2), albeit with chi-squared per degree of freedom
(χ2

d.o.f ) = 0.03 due to the rather broad error bars. Assuming
that, in qualitative agreement with theory, the asymptotic finite-
size correction is in fact A/L2 with A > 0, the above extrapola-
tion for g0 can be seen as a loose lower bound for that quantity.

IV. DISCUSSION AND CONCLUSIONS

We initially discuss uniform chains. In general, the results
of Sec. III B confirm that DW theory is a good approximation.
It must be noted, however, that even for steady state some
discrepancies remain: see the discussion of numerical data
displayed in Figs. 2 and 5. Of course this is because, although
the exact steady-state profiles (away from factorization and
coexistence lines) do behave to a large degree like the expo-
nentials predicted by Eq. (9), they are not identical to them.

Regarding the approach to steady state, DW theory accu-
rately predicts the existence and numerical value of the gap,
at least in the low-current phase (and is in accordance with
Bethe ansatz results [16] and simulations, including the main
finite-size corrections); see Figs. 3 and 4. The good quantitative
agreement between DW evolution and finite-time simulations,
already illustrated in [11], is here highlighted and given further
prominence by the stark contrast of DW results with the sizable
disagreement exhibited by MF treatments against numerics;
see Fig. 6 and [13]. Indeed, this strongly indicates that fluctu-
ations (incorporated, albeit approximately, by DW theory, and
ignored by MF treatments) are the crucial ingredient for the
proper description of the approach to steady state.

For staggered chains, we recall that the features of the phase
diagram predicted by DW theory coincide with those obtained
from application of MF concepts. They are qualitatively
similar to those established for uniform chains, exhibiting
the special factorization line and coexistence line along
which steady-state density profiles are expected not to display
exponential behavior; see Eqs. (22), (23), (29), and (30).

Numerical evidence that factorization (as characterized
by the vanishing of the associated steady-state correlation
functions) does not hold as predicted was already found in [13]
for uniform-rate nanotubes. For such systems the MF Mobius
mapping equations are identical to those for the staggered
chain with p1/p2 = 2. Here we verified numerically that,
similarly, correlations do not vanish for staggered chains, e.g.,
at (αc,βc) of Eq. (57). Furthermore, by considering suitably
short chains (see the Appendix), we were able to prove that
there can be no factorizable states except if p1 = p2.

The proof just referred to adds to the body of evidence
displayed in the pertinent results of [13], as well as in Figs. 9
and 10. All the above strongly suggest that for staggered chains
the predictions of DW theory regarding factorization, phase
coexistence, and criticality come about only in an incipient
and quantitatively approximate way.

Notwithstanding the statements just made, we note that DW
theory for staggered chains gives reasonably good fits to the
steady-state exponential λs in regions where it is predicted to

differ appreciably from zero; see data for (α,β) = (0.1,0.22)
and (0.3,0.115). Additionally, the DW theory predictions
extracted from Eqs. (47) and (48), regarding �-independent
difference between sublattice steady-state profiles, are well
verified by numerics; see Figs. 8–10. In Fig. 8 one can also see
evidence of the fast processes having almost completely died
out at t = 240, though convergence toward steady state takes
significantly longer.

Concerning the DW description of the approach to steady
state for staggered chains, its approximate character is well
illustrated by the data shown in Fig. 11. There, we have been
able to find a point on the phase diagram, rather close to but
not on the predicted coexistence line, where the vanishing
of the gap is verified to rather good accuracy. Similarly, the
numerically evaluated coefficient of the leading finite-size
correction is within 8% of the DW theory prediction. For
an example of a case where the gap is definitely nonzero,
namely, (α,β) = (0.1,0.22), the numerical data exhibit rather
broad error bars; nevertheless, with the help of some plausible
assumptions one can conclude (see Fig. 12) that the limiting
gap value is of the same order of magnitude as predicted by
theory, apart from a factor of order 2 at most.

Before concluding, some further points merit discussion
here. The main one concerns length and time scales. For
the applicability of the macroscopic view underlying the
DW approach one needs an appropriate separation and
ordering of such scales, particularly length scales (system size,
domain size, domain-wall width, and lattice spacing). Such
requirements are typically well satisfied in the uniform chain
systems investigated here. But for the staggered chains the
two-sublattice feature makes them questionable. This may well
be the basic reason for the imperfect DW account of this case.

The time scales are important not only for the theory but
also in guiding simulations. These scales are set by diffusion
rates and bias velocities, together with characteristic lattice
or system lengths in gapped or gapless spectra, and lattice
traversal times (from real and imaginary parts of the decay
rate R1). The latter ballistic effects are evident in certain
of the current investigations (e.g., in filling of the lattice
from the injection side in the case of empty lattice initial
conditions, see Fig. 8 above), but have already been detailed
elsewhere (see, e.g., Figs. 2, 3, and 5 of [11], as well as Figs. 2
and 7 of [13]).
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APPENDIX: INVESTIGATION OF POSSIBLY
FACTORIZED STEADY STATES

We investigate the possibility of factorized steady states
for the staggered chain TASEP using direct application of the
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transition matrix. The method is feasible for open boundary
systems of small size.

We consider systems with N sites, hence 2N possible
configurations, at small N .

We can write down the 2N × 2N transition matrix W
the elements Wij of which give the rates of transition from
configuration j to configuration i. The Wij are functions of
the boundary injection and ejection rates (α,β) and of the
internal hopping rates: p for the uniform case, or p1 and p2

for the staggered case.
Any state can be written as a column vector in which the ith

element, ui say, is the probability of configuration i. Steady
states have vectors which are eigenvectors of W with zero
eigenvalue. So the possibility of a steady state with any sort of
factorization can be tested by applying W to its column vector.

For a fully factorizable state the ui can be written in the form
xn yN−n where n is the number of particles in configuration i,
and x + y = 1.

It is easy to check that, for the uniform case at small N ,
such a state is indeed a steady state subject to α, β, p satisfying
α + β = p and to having x = 1 − y = α/(α + β).

Of course, the exact steady-state solution of the TASEP
on a uniform chain [4] already includes this result. However,
nothing comparable is known for the staggered case.

In the latter case the DW approach suggests a steady state
which is factorizable on each sublattice, for a + b = 1, where
a = α/p2, b = β/p1.

To verify or refute this, our procedure will be to apply the
staggered-chain transition matrix to a corresponding column
vector having elements which are products of x, y, X, Y , with
x, y corresponding to particle or vacancy at an odd-index site
and X, Y likewise for even sites.

Already one obtains conclusive results from size N = 3.
This involves an 8 × 8 dynamic matrix W which has off-
diagonal elements α, β, p1, p2, or zero, and diagonal elements
such that all column sums are zero. Written on a basis in which
the first vector element corresponds to all sites occupied, the
second element has the first two sites occupied and the last

empty, and so on until the last element corresponds to all sites
empty, W is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β 0 0 α 0 0 0 0

β −p2 0 0 0 α 0 0

0 p2 −p1−β 0 0 0 α 0

0 0 p1 −α−β 0 0 0 0

0 0 β 0 −p1 0 0 α

0 0 0 β p1 −p2−α 0 0

0 0 0 0 0 p2 −α−β 0

0 0 0 0 0 0 β −α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)

The application of W to the state which is factorizable on
each sublattice separately has to give a zero vector for that
state to be a steady state. The resulting vector is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xX(αy − βx)

X[βx2 − p2xy + αy2]

x[p2yX + αyY − (p1 + β)xY ]

x[p1xY − (α + β)yX]

Y [βx2 − p1xy + αy2]

y[βxX + p1xY − (p2 + α)yX]

y[p2yX − (α + β)xY ]

yY (βx − αy)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

So these elements are all zero only if

p1 = p2 = α + β, x = X = α

α + β
, y = Y = β

α + β
.

(A3)

This means that the staggered chain with p1 �= p2 has
no factorizable states, not even with factorization on each
sublattice separately.
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