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Kramers’ rate for systems with multiplicative noise

Alexandre Rosas*

Departamento de Fı́sica, CCEN, Universidade Federal da Paraı́ba, Caixa Postal 5008, 58059-900, João Pessoa, Brazil

Italo’Ivo Lima Dias Pinto and Katja Lindenberg
Department of Chemistry and Biochemistry and BioCircuits Institute, University of California, San Diego,

La Jolla, California 92093-0340, USA
(Received 1 March 2016; published 1 July 2016)

Kramers’ rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is
usually associated with additive noise. We present a generalization of Kramers’ rate for systems with multiplicative
noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and
we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable
potential which corroborate our claim.
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I. INTRODUCTION

A key quantity in many problems involving the escape
from a metastable state, or the transition between two stable
states separated by a high barrier, is the so-called Kramers’
escape rate, that is, the inverse of the average time required to
cross over the barrier. The most common scenario is that of a
potential energy with two minima separated by a high-energy
maximum that can be overcome by thermal fluctuations alone
(for example, “absolute rate theory” for chemical reactions)
or together with a weak signal (the “stochastic resonance”
problem). There is a vast literature on this subject (see, for
example, [1,2] and references therein).

One common way to formulate Kramers’ escape rate prob-
lems is as a Langevin equation for the evolution of trajectories
X(t), often in terms of a single variable (i.e., a one-dimensional
formulation). Most cases involving Kramers’ escape rates in
these formulations are restricted to systems with additive noise.
If the fluctuations in these Langevin equations are Gaussian
and δ correlated, the problem can easily be transformed to
a Fokker-Planck equation (with constant diffusion coefficient
D), that is, to a partial differential equation for the probability
density P (x,t) such that P (x,t)dx is the probability that a
measurement of X(t) yields a result between x and x + dx.
There are many physical, biological, ecological, economics,
etc., problems that admit such a description. In each of these
the meaning of X(t) is, of course, appropriate for that model. In
particular, X(t) need not represent the trajectory of a massive
particle, although it does in some cases. We explicitly add
this remark because this interpretation is often assumed. In
this case, the one-dimensional Langevin equation describes
the trajectory of an overdamped particle.

In the past two decades or so there have been several
attempts to deal with multiplicative noise, often in the context
of stochastic resonance. These attempts have dealt with
such models theoretically [3–13], numerically [13–17], and
experimentally [18,19]. It is interesting to note that there seems
to have been no comparison of any of the theoretical results
with experiments or with simulations.
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We are interested in exploring the Kramers’ escape rate
problem in systems with space-dependent diffusion coeffi-
cients D(x). For such systems (in one dimension), a suitable
change of the variable can map the Fokker-Planck equation
into another Fokker-Planck equation with a constant diffusion
coefficient, for which Kramers’ escape rate can, in principle, be
calculated [20]. However, this change of the variable requires
a nontrivial integration of the inverse of the square root of
the original space-dependent diffusion coefficient, as well as
the calculation of an inverse function, as discussed in the next
section. Except for very particular cases, this procedure is,
in general, quite complex and cannot, in fact, be completed
analytically.

Here we propose an alternative way of obtaining Kramers’
escape rate which does not involve any calculation of inverse
functions and can readily be applied to Fokker-Planck equa-
tions with space-dependent diffusion coefficients. We call this
the “direct approach”. Some specific isolated examples that
use a direct approach but that do not point to a general method
can be found in the literature [10]. In this latter reference, for
instance, the discussion starts with a particular example of a
system with multiplicative noise. A mean escape time (inverse
of Kramers’ rate) is calculated for that example, and the form
obtained for this particular case is generalized in an ad hoc way
to include all examples of this form. In two other approaches,
portions of the multiplicative noise problem are included but
others are not.

In this paper we derive the general form of Kramers’ rate
associated with systems driven by multiplicative noise. In
Sec. II we start with a general one-dimensional Fokker-Planck
equation with space-dependent diffusion and first show in
detail why conversion (by change of variables) to a Fokker-
Planck equation for additive noise is not a practical way to
proceed. Instead, we directly formulate a direct approach to
calculate Kramers’ rate associated with the original Fokker-
Planck equation. In Sec. III we implement this approach and
arrive at an explicit form of Kramers’ rate. We also exhibit
two other rates used for the same problems in the literature
that we assert are not the correct Kramers’ rates. In Sec. IV
we then consider the example of a bistable system with both
additive and multiplicative noise. We calculate Kramers’ rate
for passage from one well to the other using our formula,
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one of the incorrect formulas, and the result obtained by
numerical simulations. That our result is the correct one is
incontrovertible. Finally, we end with a short summarizing
conclusion in Sec. V.

II. THE FOKKER-PLANCK EQUATION

Our starting point is the Fokker-Planck equation with space-
dependent drift and diffusion,

∂P (x,t)

∂t
= − ∂

∂x
[F (x)P (x,t)] + ∂2

∂x2
[G(x)P (x,t)]. (1)

This Fokker-Planck equation is associated with the Langevin
equation

Ẋ = −U ′(X) + g(X)ξ (t) + η(t), (2)

where U (X) is the “deterministic” potential, the prime denotes
a derivative with respect to the argument, ξ (t) and η(t) are
mutually uncorrelated Gaussian δ correlated noises of zero
mean,

〈ξ (t)ξ (t ′)〉 = 2DMδ(t − t ′),
(3)

〈η(t)η(t ′)〉 = 2DAδ(t − t ′),

and the space-dependent diffusion coefficient G(x) [called
D(x) in the Introduction] is given by

G(x) ≡ DMg2(x) + DA. (4)

With the Stratonovich interpretation for multiplicative noise,
which we subsequently use, we have

F (x) = −U ′(x) + 1
2G′(x). (5)

With the Itô interpretation, F (x) = −U ′(x). The Fokker-
Planck equation yields the probability density P (x,t) that at
time t a measurement of the random variable X(t) yields the
value x.

The multiplicative noise problem can be transformed to one
associated with additive noise via a change of variables from
x to y and, correspondingly, from X(t) to Y (t). The change of
variables is (see, for example, [20])

y(x) =
∫ x

[
D

G(x ′)

]1/2

dx ′, (6)

where the lower limit and D can both be chosen arbitrarily. One
can then write the Fokker-Planck equation for the probability
distribution

P̃ (y,t) =
[
G(x)

D

]1/2

P (x,t) (7)

as follows:

∂P̃ (y,t)

∂t
= − ∂

∂y
[F̃ (y)P̃ (y,t)] + D

∂2

∂y2
[P̃ (y,t)]. (8)

D can thus be identified as the diffusion constant in the additive
noise version. The explicit definition of D is obtained from
Eq. (6) as

D =
(

dy

dx

)2

G(x). (9)

The new drift term is given by

F̃ (y) =
√

D

G(x)

[
F (x) − 1

2
G′(x)

]
, (10)

and the new Langevin equation is

Ẏ = F̃ (Y ) + ζ (t), (11)

where ζ (t) is another Gaussian δ-correlated noise with zero
mean and

〈ζ (t)ζ (t ′)〉 = 2Dδ(t − t ′). (12)

The problem with this approach is that in order to write the new
drift term F̃ explicitly as a function of y we need to perform
the integral in Eq. (6) and calculate the inverse function in
order to obtain x(y) and use it in Eq. (10). Except for very
simple cases, this task is analytically impossible. We therefore
follow an alternative route.

Our approach is to directly calculate Kramers’ rate asso-
ciated with the original Fokker-Planck equation, Eq.(1), with
the space-dependent diffusion term. We follow a path similar
to that used in Ref. [20] but allow the diffusion contribution
to vary in space. We will later compare our results with two
others that have appeared in the literature and that we assert
are incorrect, as confirmed in at least one of the two cases by
numerical simulations (the other case has a fundamental flaw
and does not need to be compared, as will be discussed later).

As in the constant diffusion case, we want to calculate the
escape rate from a deep well over a high barrier, so that the
probability current over the top of the barrier is very small and
the probability density in the well is almost time independent.
In other words, the system behaves as if it were in a steady
state. Consequently, the probability density inside the well is
well described by the steady state probability density

Pss(x) = K

G(x)
exp

[∫ x F (x ′)
G(x ′)

dx ′
]

= Ke−Ueff (x), (13)

where K is a normalization constant, the lower limit of the
integral is arbitrary, and the upper limit x is deep inside the
well. We have defined the effective potential Ueff(x) as

Ueff(x) = ln[G(x)] −
∫ x F (x ′)

G(x ′)
dx ′. (14)

The condition that the well is deep is contained in the inequality

Ueff(xmax) � Ueff(xmin), (15)

where xmax (xmin) is the position of the maximum (minimum)
of Ueff(x), that is, the top of the barrier (bottom of the well).

The flow of probability outward across a point x at time t ,
∂S(x,t)/∂x, is related to the rate of change of the probability
at that point, ∂P (x,t)/∂t , by the continuity equation:

−∂S(x,t)

∂x
= ∂P (x,t)

∂t
. (16)

In terms of the effective potential, the probability current is
given by

S(x,t) = −G(x)e−Ueff (x) ∂

∂x
[eUeff (x)P (x,t)]. (17)
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Since we are considering a quasi-steady state regime, we have

−∂S(x,t)

∂x
= ∂P (x,t)

∂t
� 0 ⇒ S(x,t) � S0. (18)

Therefore, rearranging Eq. (17) and integrating from xmin to
a given point x = q on the other side of the high potential
barrier, we have

S0

∫ q

xmin

eUeff (x ′)

G(x ′)
dx ′ = −[eUeff (q)P (q,t)

− eUeff (xmin)P (xmin,t)]. (19)

Note that once a trajectory crosses the barrier, the time it takes
to arrive anywhere in the other well is very short. Hence, the
precise location of q does not matter. Assuming that at time t

most of the probability is still in the initial well so that P (q,t)
is small, we have

S0 = eUeff (xmin)P (xmin,t)∫ q

xmin

eUeff (x ′)

G(x ′)
dx ′

. (20)

The probability p of finding the system in the initial well is

p =
∫ x2

x1

P (x ′,t)dx ′, (21)

where x1 and x2 are two points around xmin such that the
probability of finding the system outside of the interval [x1,x2]
is vanishingly small. Since for weak noise the system rapidly
decays to the bottom of the well, the probability of finding
the system far away from xmin is exponentially small, and x1

and x2 need not be carefully specified. Deep in the well the
probability density is quasi-stationary, so we can use Eq. (13),

P (x,t) � Pss(x) = Pss(xmin)eUeff (xmin)e−Ueff (x). (22)

Here we have explicitly exhibited the normalization constant
K = Pss(xmin)eUeff (xmin). We can then write the probability p as

p = P (xmin,t)e
Ueff (xmin)

∫ x2

x1

e−Ueff (x ′)dx ′. (23)

Equations (20) and (23) are the main results of this section
and will be used in the next section to calculate Kramers’ rate.

III. KRAMERS’ RATE

The characteristic time TK that the system spends in the
initial well is given by the ratio of the probability of the system
being in the well over the probability flow over the barrier away
from the well. This time is the inverse of the escape rate rK

from the well:

TK = 1

rK

= p

S0
=

∫ x2

x1

e−Ueff (x ′)dx ′
∫ q

xmin

eUeff (x ′)

G(x ′)
dx ′. (24)

The subscript K stands for Kramers. The integrand of the
second integral can be rewritten as

eUeff (x)

G(x)
= exp[Ueff(x) − ln G(x)] = eÛeff (x), (25)

where we have defined

Ûeff(x) = −
∫ x F (x ′)

G(x ′)
dx ′. (26)

Hence, we have that

TK = 1

rK

=
∫ x2

x1

e−Ueff (x ′)dx ′
∫ q

xmin

eÛeff (x ′)dx ′. (27)

Each of the potentials U (x) and Û (x) has a deep well
where most of the probability distribution resides and a high
barrier crossed due to thermal fluctuations. It follows that the
integrand of the leftmost integral is highly peaked around
the minimum of Ueff , already labeled xmin, and that of the
rightmost integrand is highly peaked around the maximum of
Ûeff , defined as x̂max. It is therefore valid to expand each of the
potentials around the appropriate extremum and retain terms
up to second order, yielding

Ueff(x) ≈ Ueff(xmin) + U ′′
eff(xmin)

2
(x − xmin)2,

(28)

Ûeff(x) ≈ Ûeff (̂xmax) + Û ′′
eff (̂xmax)

2
(x − x̂max)2.

Using these expansions in Eq. (27) and extending the limits
of integration to go from −∞ to +∞ (which can safely be
done because the integrands are highly peaked), we arrive at
Gaussian integrals that can readily be performed analytically,
leading to Kramers’ rate,

rK = (2π )−1
√

−Û ′′
eff (̂xmax)U ′′

eff(xmin) exp[−Ûeff (̂xmax) + Ueff(xmin)]. (29)

If a more accurate result is desired, one can easily keep terms up to fourth order in the expansion (28). Equation (29) is the
principal result of this paper.

Several papers in the literature have presented incorrect calculations of Kramers’ rate (or the average escape time) over a
barrier for systems with multiplicative noise. For instance, [4–9,17] present the following expression for Kramers’ rate (the
notation is adapted to ours for comparison):

r∗
K = (2π )−1

√
−U ′′(x+)U ′′(x0) exp[−Ueff(x+) + Ueff(x0)], (30)

where x+ and x0 are the maximum and minimum of the deterministic potential U (x) of Eq. (2). We will show in a particular
example that the inverse of the mean escape time obtained by performing an average over realizations of the direct integration of
the Langevin equation, Eq. (2), for that example does not agree with this expression but is well approximated by Eq. (29).
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The other expression we found in the literature appears in Ref. [13], where it is said that the escape rate can be calculated
using the effective potential Ueff instead of the deterministic potential that appears in the additive noise case,

r
†
K = (2π )−1

√
−U ′′

eff(xmax)U ′′
eff(xmin) exp[−Ueff(xmax) + Ueff(xmin)]. (31)

This expression has an additional fundamental flaw: it does
not reduce to the additive noise result when one has both
additive and multiplicative noise, and the multiplicative noise
is allowed to vanish at the end of the calculation. Instead, in
this limit the escape rate appears divided by the additive noise
diffusion constant. Therefore, we will not discuss this case any
further.

IV. A PARTICULAR EXAMPLE

As a test case, consider a simple bistable system under the
influence of both additive and multiplicative noise, described
by the Langevin equation

Ẋ = aX − bX3 + Xξ (t) + η(t), (32)

where a and b are positive constants and ξ (t) and η(t) are
mutually uncorrelated Gaussian fluctuations with zero mean
and correlations given in Eq. (3). Using the Stratonovich
formalism, the functions F and G in the Fokker-Planck
equation, Eq. (1), now are

F (x) = ax − bx3 + DMx, (33)

G(x) = DMx2 + DA. (34)

For this simple model, the escape rate expressions (29) and (30)
can be calculated analytically, leading to

rK =
√

[DM (a − DM ) + bDA]
(
a2 − D2

M

)
2πDAb

exp

[
DM (a − DM ) − [DM (a + DM ) + bDA] ln

(
DM (a−DM )

bDA
+ 1

)
2D2

M

]
(35)

and

r∗
K = a√

2π
exp

[
− [DM (a + DM ) + bDA] ln

(
aDM

bDA
+ 1

) − aDM

2D2
M

]
. (36)

In the limit of vanishing multiplicative noise, DM → 0, both
expressions give the same familiar result for the average
escape rate, [a/

√
2π ]e−a2/4bDA , but when the multiplicative

noise increases, so does the difference between rK and r∗
K . In

Fig. 1, we show an example of how the two results differ and
compare this with the outcome of the numerical integration of
the Langevin equation, Eq. (32). This numerical integration
was performed as follows. The initial condition in all the

 0

 0.001

 0.002

 0  0.1  0.2  0.3  0.4

r K

DM

FIG. 1. Transition rates vs multiplicative noise strength parameter
DM , calculated directly from the integration of the Langevin equation
(averaged over 1000 samples; crosses), from Eq. (35) (top curve), and
from Eq. (36) (bottom curve). The values of the other parameters are
a = 5.0, b = 1.0, and DA = 0.5.

integrations was set at one of the minima of the effective
potential Ueff(x), and the trajectory was allowed to evolve
according to the Langevin equation until it reached the other
minimum. We recorded the time it took the trajectory to arrive
at the other minimum as the escape time. We repeated this
process for 1000 runs and calculated the average time it took
the system to go from one minimum to the other. We equated
Kramers’ rate with the inverse of this mean escape time.
Since the potential is symmetric, the time it takes from either
minimum to the other is the same.

It is clear from Fig. 1 that the agreement between our
result, Eq. (35), and the result of the integration of the
Langevin equation is excellent and that both differ from
the result (36). The difference between our results and the
direct integration at high values of DM is a consequence of
the fact that here the multiplicative fluctuations are large or,
correspondingly, the barrier is no longer so high. We note
that for this example the analytic transition rates obtained in
Ref. [10] also fall essentially on top of our analytic curve
in Fig. 1 (result not shown), but that our analytic result (29)
differs from theirs. Specifically, direct comparison leads to the
conclusion (in our notation) that, instead of using the minimum
of Ueff(x) and the maximum of Ûeff(x), (the potentials shifted
from the deterministic potential by the multiplicative noise),
in their steepest descent implementation they work with
the extrema of the deterministic potential. We expect the
differences in the results not to be major not only for this
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particular example but more generally when the shifts are
small, which is the case when the barrier is high relative to the
fluctuations.

V. CONCLUSION

In this paper we have derived an explicit expression for
Kramers’ transition rate from one potential well over a
potential barrier for systems with multiplicative noise. Our
starting point was a one-dimensional Fokker-Planck equation,
and our basic assumptions were similar to the two hypotheses
usually made in the purely additive noise case, namely, that
the system is in the adiabatic limit (that is, the relaxation to
equilibrium is much faster than any other process) and that
the (effective) potential barrier is high. We explained why our
result differs from one that has been incorrectly used in the

literature. We have shown via an explicit example that the
integration of the Langevin equation corroborates our result.
Our findings can be used to explain existing numerical results
in a variety of escape problems involving multiplicative noise.
One particularly interesting problem that we are now able to
reproduce with our theory is that of stochastic resonance in the
presence of multiplicative noise [21].
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