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Entanglement and localization transitions in eigenstates of interacting chaotic systems
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The entanglement and localization in eigenstates of strongly chaotic subsystems are studied as a function of their
interaction strength. Excellent measures for this purpose are the von Neumann entropy, Havrda-Charvát-Tsallis
entropies, and the averaged inverse participation ratio. All the entropies are shown to follow a remarkably simple
exponential form, which describes a universal and rapid transition to nearly maximal entanglement for increasing
interaction strength. An unexpectedly exact relationship between the subsystem averaged inverse participation
ratio and purity is derived that prescribes the transition in the localization as well.
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Entanglement is a central nonclassical feature of quantum
mechanics. It has been the subject of a broad range of studies
from quantum information protocols such as teleportation [1]
to quantum phase transitions [2] and, curiously, system-
environment entanglement gives rise to emergent classical be-
havior [3,4]. Very useful entanglement measures are provided
by the von Neumann and Havrda-Charvát-Tsallis entropies
[5–8]. A critically important aspect is that its production is
often necessary for quantum computing [9]. Nevertheless,
entanglement in eigenstates of interacting strongly chaotic
subsystems is not well understood. A fundamentally interest-
ing question is thus the following: How entangled are strongly
chaotic subsystems as a function of their interaction strength?

Work involving entropy production has a long history.
Simple models have been studied to find the evolution of
entanglement in initially separable states, e.g., a two-state
system coupled to a many-state random Hamiltonian [10].
Entanglement production in coupled systems, whose classical
limits possess integrable to chaotic transitions, have been
studied in Refs. [11–15]. Typically the entanglement is
enhanced if the initial unentangled states are localized in
chaotic rather than regular phase space regions. A cold-
atom experiment that simulates a kicked top displayed this
sensitivity of entanglement to quantum chaos [16]. In the
context of thermalization of isolated systems, entanglement in
a superconducting three-qubit system was found to be strongly
correlated with classical chaos in a recent experiment [17].

This Rapid Communication addresses the entanglement
and localization eigenstate properties of two strongly chaotic
subsystems as a function of their interaction strength. These
subsystems could themselves contain many particles and the
chaos could originate from deterministic nonlinear forces or
from random potentials. One simple example could be just
two particles in a chaotic quantum dot, e.g., shaped like the
Bunimovich stadium [18]. Or the subsystems might have
no obvious classical limit, but possess random-matrix-like
quantum fluctuations, e.g., nonintegrable spin chains [19,20]
with or without disorder. Without interactions, although their
eigenstates are very complex and delocalized, they are unen-
tangled. Coupling the subsystems generates entanglement. In
the strongly interacting limit, entanglement becomes nearly

the maximal possible [21], similar to random states in product
spaces [8,22]. In the context of recent experiments such as
in Ref. [17] it is possible to observe such transitions as
the interactions are tunable and the qubits are driven into a
collective chaotic kicked top system.

Recently, it was found that for increasing interaction
strength a transition in spectral fluctuations from Poisson-
like to random-matrix-like is universal and governed by a
dimensionless transition parameter, � [23]. We derive a
surprisingly accurate analytical approximation of the transition
from unentangled to nearly maximally entangled eigenstates
as a function of the same �. This manifests itself as a simple
exponential form for the von Neumann and Havrda-Charvát-
Tsallis entropies. It is remarkable that the transition in a
whole class of entropies is governed approximately by simple
laws involving a universal transition parameter that is simply
calculable from the interaction potential. Chaotic dynamics,
present even in the noninteracting limit, makes this possible
as it allows the application of a combination of random matrix
theory (RMT) and a recursively invoked perturbation theory.
In addition, there is a localization transition measurable with
the inverse participation ratio (IPR). By subsystem averaging,
an intimate connection to entanglement as quantified by the
purity emerges.

Bipartite systems. Two bipartite models are considered,
an RMT ensemble recently introduced [23] and a deter-
ministic dynamical system consisting of two coupled kicked
rotors [21,24,25]. In both, the unitary Floquet (time-evolution)
operators are of the form U = (U1 ⊗ U2) U12, where U1 and
U2 are subsystem unitary operators on N -dimensional Hilbert
spaces and U12 is the entangling interaction in the tensor
product space of N2 dimensions. The eigenproperties for
either class of models follow from U |φj 〉 = eiϕj |φj 〉. Equal
subsystem dimensionality is studied, but the generalization is
immediate.

In the RMT ensemble, U1 and U2 are independently taken
from the N -dimensional circular unitary ensemble (CUE)
matrices [26], whereas U12 is a diagonal matrix whose
nonzero elements are of the form exp(2πiεξkl), where ξkl

(1 � k,l � N ) is uniformly distributed in (−1/2,1/2]. Here
0 � ε � 1, and ε = 0 represents no coupling, whereas ε = 1
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implies maximal coupling. Such RMT operators are denoted
as URMT(ε).

The subsystem Floquet operators of the dynamical system
are Uj = exp[−ip̂2

j /(2�)] exp[−iV̂j (qj )/�] (j = 1,2), U12 =
exp[−ib V̂12(q1,q2)/�] is the interaction, and b is an interaction
strength. For the kicked rotors, Vj = Kj cos(2πqj )/4π2 and
interaction V12 = cos[2π (q1 + q2)]/4π2. The interaction is
diagonal in the position representation and motivates the
simple form of the RMT model. The classical limit of such
operators is a 4-dimensional symplectic map [24].

The individual uncoupled rotors are strongly chaotic with
Lyapunov exponents ≈ln(Kj/2) for large {Kj } [27]. The val-
ues K1 = 9 and K2 = 10 lead to islands of regularity too tiny
to influence the quantum spectra perceptibly. Any other values
of Ki � 5 can be equivalently used. Quantizing unit area
phase-space tori gives Hilbert spaces of dimension N for each
rotor and the scaled Planck constant h = 1/N . Including an in-
teraction as above has been studied in different contexts [21,25]
where more details are given. The quantum boundary con-
ditions are chosen to break both parity and time-reversal
symmetries. The Floquet operators are denoted as UKR(b).

Universal transition of entropies. The mean square interac-
tion matrix element divided by the mean level density squared,
�, was given as [23]

�[URMT(ε)] = ε2N2

12
, �[UKR(b)] = N4b2

32π4
. (1)

The nearest neighbor spacing is Poissonian for � = 0 and tran-
sitions to the CUE result for � ∼ 1. The transition parameter
and universal transitions have been observed previously when
fundamental or dynamical symmetries are broken [28–33]. We
show that � also governs the entanglement and localization in
the eigenvectors |φj 〉, with � = 0 corresponding to unentan-
gled states, while for � ∼ 1 the states are nearly maximally
entangled.

As a full system state is pure, its entanglement is charac-
terized by the reduced density matrix eigenvalues [9]. Denote
it for the first subsystem with the eigenstate labeled j as ρj =
tr2(|φj 〉〈φj |). With this notation, the von Neumann entropy
S1 = −tr1(ρj ln ρj ) is considered a unique measure [5] as it
quantifies the entanglement that can be distilled by local oper-
ations. The so-called Havrda-Charvát-Tsallis entropies [6–8]

Sk = 1 − Pk

k − 1
(2)

are related to the kth order moments Pk = tr1(ρk
j ). The purity

P2 (corresponding to the linear entropy S2) is often used as
a simpler measure of entanglement than the von Neumann
entropy, which emerges in the k → 1 limit. The eigenstate
|φj 〉 is unentangled if and only if (iff) the reduced density
matrix ρj is pure, in which case all the Sk vanish.

It is shown that the transition with � is captured by the
entropies in a remarkably simple form:

〈Sk(�)〉 =
[

1 − exp

(
− α(k)〈

S∞
k

〉√�

)]
〈S∞

k 〉, (3)

where

α(k) = π



(
k − 1

2

)

(k)

,
〈
S∞

k

〉 = 1 − CkN
1−k

k − 1
, (4)
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FIG. 1. The average eigenstate entropies 〈Sk〉 for von Neumann,
and k = 2,3,4 as a function of

√
�. The lowest curve is for von

Neumann, and the approach to asymptotic values is faster for larger
k values. The triangles are for URMT and the circles for UKR with
N = 50. The lines correspond to Eq. (3). The inset is a magnification
of the small-� region.

which are solutions of the equations

∂Pk

∂
√

�
= −(k − 1) α(k)

Pk − P ∞
k

1 − P ∞
k

. (5)

The Ck are Catalan numbers, the 〈·〉 represent an ensemble
or spectral average, and P ∞

k = CkN
1−k are moments of the

Marcenko-Pastur distribution that determines the large N

density of the eigenvalue of ρj in the fully interacting RMT
limit [34]. The asymptotic entropies 〈S∞

k 〉 are reached at the
end of the transition, and whereas Eq. (4) is valid for k > 1,
〈S∞

1 〉 = ln N − 1
2 .

Figure 1 shows the von Neumann entropy along with
S2,S3,S4. The agreement with the RMT ensemble and kicked
rotors is surprisingly good. The entropies Sk start from zero
and from Eq. (3) it follows that that they reach their asymptotic
value for a scaled interaction strength �c ∼ (〈S∞

k 〉/α(k))2.
Thus for S2, �c ∼ 1, while for k � 1, 〈S∞

k 〉 ∼ 1/k and
using the Stirling approximation results in α(k) ∼ π/

√
k

and therefore �c ∼ k−1. However, for the slowest transition,
the von Neumann entropy, �c ∼ (log N )2, as the entropy
〈S∞

1 〉 ∼ log N . Thus for the measure of entanglement the
scaled interaction strength at which the transition is complete
depends on the effective Planck constant.

IPR and purity. Localization is a measure of how spread
a state |ψ〉 is in a given basis. The IPR is defined as
I (ψ) = ∑N2

n=1 |〈n|ψ〉|4 where |n〉 is some complete basis.
The maximum of I (ψ) is unity for the most localized state
and the minimum is 1/N2 for the most delocalized. For a
randomly chosen state of a full bipartite system I (ψ) makes
small fluctuations around 2/(N2 + 1) [35].

Often I (φj ) of a particular eigenstate |φj 〉 is evaluated using
a product basis such as the kicked rotor’s position basis. This
basis dependence can be removed by subsystem averaging.
Using the Haar measure independently on the subsystems
gives a direct relation to the purity

〈I (φj )〉prod = 2

(N + 1)2
(1 + P2). (6)
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The Schmidt decomposition [9] is useful for deriving this
result. Thus a subsystem-averaged localization transition
between the noninteracting and fully interacting cases is
governed by the purity. Averaging the IPR over all basis
states, including entangled ones, gives 〈I 〉global = 2/(N2 + 1)
[35].

Indeed, averaging of Eq. (6) with φj sampled according to
the Haar measure on the full bipartite space of states renders
the left-hand-side 〈I 〉global, which implies that 〈P2〉global =
2N/(N2 + 1), consistent with Ref. [36]; this provides an
alternative derivation of a random state’s average purity.
For noninteracting systems, P2 = 1, and hence 〈I (φj )〉prod =
4/(N + 1)2 ≈ 2〈I 〉global; thus in a very precise sense typical
states of noninteracting bipartite systems are half as localized
as those of strongly interacting ones. Weakly interacting
systems will start to bridge the gap; however, with this direct
connection to localization the following focusses on entan-
glement transitions. Note that localization and entanglement
have been related before, but in very different ways [37–39];
subsystem averaging when extended to multipartite systems
may prove to be very interesting.

Reduced density matrix eigenvalues. Explicit results for the
entropies in Eq. (3) begin by deriving perturbative expressions
for the eigenvalues of the reduced density matrix. Let |ψ1

k 〉|ψ2
l 〉

be eigenstates of U1 ⊗ U2 with k,l ∈ {1,2, . . . ,N}. The mean
eigenangle spacings of the subsystems are 2π/N , while that
of the full system is 2π/N2. Eigenstates that differ in only
one index are separated on average by 2π/N , thus crucially
the nearest levels of any given state differ in both indices.
The extent over which this holds is of the order of N

levels. With a weak perturbation Uε , states will mix with
neighboring ones, but due to this property they will to an
excellent approximation remain Schmidt decomposed in the
unperturbed basis, which for any bipartite pure state is of the
form

∑N
j=1

√
λj |φ1

j 〉|φ2
j 〉 [9], where λj > 0 (

∑
j λj = 1) are

the eigenvalues of the reduced density matrices and |φ1,2
j 〉 are

their eigenvectors.
Within the limits alluded to above, the |φ1,2

j 〉 are the

unperturbed states |ψ1,2
k 〉 with a relabelling of indices such

that they now order states of the combined system, and the
intensities in the unperturbed basis are the eigenvalues of either
of the reduced density matrices. Note that the eigenvalues
of the reduced density matrix of the first subsystem, say
ρj , will be ordered according to λ1 � λ2 > · · · , and before
the perturbation is turned on, only λ1 is nonzero and equal
to 1. On turning on the perturbation this changes until they
are statistically distributed according to the Marcenko-Pastur
distribution for fully interacting systems [34].

Consider the usual perturbation theory scenario: H =
H0 + ε V for a bipartite system, with H0 being a separable
Hamiltonian and V providing the interaction. An unentangled
eigenstate of H0, say |ψ1

k 〉|ψ2
l 〉, becomes entangled and up to

second order the eigenvalues of ρj become

λ1 = 1 − ε2
∑

k′l′ =kl

|Vkl,k′l′ |2
(Ekl − Ek′l′)2

,

λ2 = ε2 |Vkl,k′′l′′ |2
(Ekl − Ek′′l′′ )2

. (7)

With no special selection rules, the matrix elements in the
numerators can be replaced by relevant random variables as
indicated below. It follows that the case when the energy level
at k′′l′′ is closest in energy to that at kl typically leads to
the second largest eigenvalue λ2. It is sufficient to begin by
identifying the largest two eigenvalues of ρj .

As the noninteracting subsystems are themselves chaotic,
the complex matrix elements have Gaussian densities of
characteristic variance v2. Thus, the w = |Vkl,k′l′ |2/v2 can
be treated as random variables with densities e−w. With D

being the mean level spacing, the scaled energy differences
s ′ = (Ekl − Ek′l′)/D behave as a Poissonian spectrum of
unit mean spacing. The dimensionless transition parameter
� = ε2v2/D2 then naturally determines the effective strength
of the interaction.

Consequently, the largest eigenvalue’s average can be
evaluated from

〈λ1〉 = 1 −
∫ ∞

0

∫ ∞

0

(
1 − s ′

√
s ′2 + 4�w

)
R2(s ′)e−wds ′dw.

(8)

Here a regularization of 2�w/s ′2 to (1 − s ′/
√

s ′2 + 4�w)
is necessary to remove divergences as the spacing goes to
zero. It amounts to treating two levels that are coming very
close together as a degenerate two-level subspace [32]. A
different quantity, whose perturbation theory leads to a similar
expression, has been studied in the context of parametric
eigenstate correlators and the fidelity with a broad variety
of physical applications [32,40–43]. R2(s) is the sum of all
spacing distributions and is unity for the Poissonian spectrum.
The resulting integrals can be done exactly and give

〈λ1〉 = 1 −
√

π�. (9)

Curiously, there are no higher order corrections.
From Eq. (7), λ2 is a fluctuating random variable of the

form �w/s2, with s being the nearest neighbor’s spacing. In
a Poissonian spectrum, the nearest neighbor spacing density
exp(−s) is well known but misleading, as for a given level
there are two nearest neighbors and it is the smaller one which
is relevant. With

s = min(s1,s2), Pmin(s) = 2 exp(−2s) (10)

is the required density. The second largest eigenvalue’s average
is best evaluated by regularization similar to that of the first,

〈λ2〉 =
∫ ∞

0

∫ ∞

0

(
1 − s√

s2 + 4�w

)
e−2se−wds dw. (11)

Although possible to give the integrals in terms of special
functions, it is more useful to show the small � expansion

〈λ2〉 =
√

π� + 2�[γ + ln(4�)] − 8
√

π�3/2 + O(�2),
(12)

where γ is Euler’s constant. To within perturbation theory
〈λ1 + λ2〉 = 1 + O(� ln �), and it is justifiable to lowest order
to consider the changes in the eigenvalues of the reduced
density matrix as due to resonances between two nearest
neighbors.

Purity and entanglement. With the perturbative expansion
for the reduced density matrix eigenvalues the results for
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the entropies Eq. (3) and the differential equation Eq. (5)
can be derived. A perturbed state where at most only two
of its reduced density matrix eigenvalues are dominant is
given by

√
λ1|ψ1

k 〉|ψ2
l 〉 + √

λ2|ψ1
k′′ 〉|ψ2

l′′ 〉. The average purity
〈P2〉 = 〈tr(ρ2

1 )〉 = 〈λ2
1 + λ2

2〉 can be calculated based on the
regularization method used above. With only two levels
λ1,2 = (1 ± 1/

√
1 + x)/2 where x = 4�w/s2, leading to

〈P2〉 = 1 − 1

2

∫ ∞

0

∫ ∞

0

4�w

4�w + s ′2 e−w2e−2s ′
dw ds ′. (13)

The (truly) nearest neighbor spacing Pmin(s) in Eq. (10) is
used as before, which reflects the presence of other levels
apart from these two. Again the integrals can be evaluated in
terms of special functions, but the expansion suffices,

〈P2〉 = 1 − π3/2

2

√
� + O(� ln �). (14)

The following are direct consequences: 〈λ2
1,2〉 = 1 −√

π� (1 ± π/4) + O(� ln �). A bit more effort leads to the
generalization

〈Pk〉 = 〈
λk

1 + λk
2

〉 = 1 − (k − 1)α(k)
√

� + O(� ln �), (15)

where α(k) is given in Eq. (4) and grows with increasing k.
Hence, the entropies are 〈Sk〉 ≈ α(k)

√
� for small �.

For larger �, regimes develop with more than two dom-
inant eigenvalues of the reduced density matrix. To account
for these through the full transition, a derivation of an
approximate differential equation is useful. Effectively, the
perturbation theory can be invoked in a recursive way. The
already superposed state can undergo further mixing with an
unentangled state that comes energetically close, to produce,
say,

√
λ′

1(
√

λ1|ψ1
k 〉|ψ2

l 〉 + √
λ2|ψ1

k′′ 〉|ψ2
l′′ 〉) + √

λ′
2|ψ1

k′′′ 〉|ψ2
l′′′ 〉,

where λ′
1,2 have the same statistical properties as the unprimed

quantities. The purity becomes P ′
2 = λ′2

1 λ2
1 + λ′2

1 λ2
2 + λ′2

2 , and
the change can be written as P ′

2 − P2 = −(1 − λ′2
1 − λ′2

2 )P2 +
λ′2

2 (1 − P2). Replacing the λ′2
1,2 quantities by their averages

leads to P ′
2 − P2 = −α(2)

√
�P2 + O(�). The differentially

small � limit gives the differential equation ∂P2/∂
√

� =
−α(2)P2. Incorporating finite-N corrections in the large-�
(and large-N ) limit, where P ∞

k = Ck/N
k−1, leads to the more

correct form, Eq. (5). Its solution is an exponential decay from
Pk = 1 at � = 0. It is most compactly expressed in terms
of the entropies and leads to Eq. (3). While this is based
on a recursively applied perturbation theory for deriving a
differential equation and known asymptotics, its accuracy is
surprisingly good; see Fig. 1.

Summary and outlook. As an interaction is introduced,
strongly chaotic subsystems develop entanglement in a
universal and simple exponential manner. It seems very
remarkable that a universal transition from unentangled to
typical entanglement proceeds in such a manner with rates
that are directly calculable from deterministic interactions.
Many intermediate results are also striking: Distributions of
the two significant eigenvalues of the reduced density matrix
for small interactions turn out to be universal (only the average
of the second largest eigenvalue is displayed in Eq. (11)
due to space constraints). The ability to control them and to
proceed to a nonperturbative regime where a statistical law
like Marcenko-Pastur’s holds and every eigenvalue becomes
equally important seems particularly striking too.

Furthermore, an exact relation is derived between the
subsystem averaged IPR and purity that links entanglement
and eigenstate localization properties. By applying ergodicity,
its spectrally averaged variant can be used as a sensitive
detector of nonergodic behaviors. Extensions to many in-
teracting chaotic systems, while not straightforward, would
be extremely interesting from the perspectives of dynamical
systems, quantum information, and condensed matter theory.
Another naturally interesting problem concerns the situation
when each separable subsystem shows mixed phase space
dynamics, and the results given here represent an important
limit to compare with. It is reasonable, for example, to expect
that at any given interaction strength the entropies derived
herein are an upper bound in typical systems such as in the
coupled standard maps.
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[25] M. Richter, S. Lange, A. Bäcker, and R. Ketzmerick, Visualiza-
tion and comparison of classical structures and quantum states
of four-dimensional maps, Phys. Rev. E 89, 022902 (2014).

[26] M. L. Mehta, Random Matrices, 2nd ed. (Academic Press,
London, 1991).

[27] B. V. Chirikov, A universal instability of many-dimensional
oscillator systems, Phys. Rep. 52, 263 (1979).

[28] A. Pandey and M. L. Mehta, Gaussian ensembles of random
Hermitian matrices intermediate between orthogonal and uni-
tary ones, Comm. Math. Phys. 87, 449 (1983).

[29] J. B. French, V. K. B. Kota, A. Pandey, and S. Tomsovic,
Statistical properties of many particle spectra V: Fluctuations
and symmetries, Ann. Phys. 181, 198 (1988).

[30] O. Bohigas, S. Tomsovic, and D. Ullmo, Manifestations of
classical phase space structures in quantum mechanics, Phys.
Rep. 223, 43 (1993).

[31] O. Bohigas, M.-J. Giannoni, A. M. Ozorio de Almeida, and
C. Schmit, Chaotic dynamics and the GOE-GUE transition,
Nonlinearity 8, 203 (1995);

[32] N. R. Cerruti and S. Tomsovic, A Uniform Approximation for
the Fidelity in Chaotic Systems, J. Phys. A 36, 3451 (2003);
A uniform approximation for the fidelity in chaotic systems, 36,
11915 (2003).
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