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Phase separation between conductive and insulative materials induced by the electric field
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To demonstrate that phase separation is a main mechanism of pattern formation for one of the spatiotemporal
patterns emerging in the Ag and Sb electrodeposition system, I performed numerical simulations to model the
mixed system of conductive and insulative materials under a steady electric field. For such a dissipative system,
I derived the extended Cahn-Hilliard equation using Onsager’s variational principle. My results demonstrate that
conductive and insulative materials phase separate spatially under the constant-current mode.
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It is expected that spatiotemporal patterns are formed,
which are accompanied by phase separations, under thermo-
dynamically open conditions where energy and/or materials
are continuously supplied to, and dissipated out from, the
system [1,2]. Such a spatiotemporal phenomenon can be
considered as a new class of physical systems, similar to the
currently adopted theoretical frameworks such as reaction-
diffusion systems [3] or relaxation kinetics of phase segrega-
tion [4]. In general, biological life is maintained as neither a
simple reaction-diffusion system nor a monotonous relaxation
system. In this sense, spatiotemporal patterns can exhibit some
similarities with the unrevealed biological phenomenon in its
essential aspect.

The Ag and Sb co-electrodeposition system, in which Ag
and Sb atoms consistently accumulate on an electrode surface
from a solution during electrodeposition [5–10], exhibits
spatiotemporal behavior in a nonequilibrium system. In this
system, various spatiotemporal patterns are formed on the
electrode surface during electrodeposition, depending on the
experimental conditions and distribution of light and dark
regions. However, the mechanism that underlies the emergence
of these patterns has not yet been adequately clarified.
Recently, we investigated the mechanism of pattern formation
for one traveling stripe pattern among the various kinds of
patterns emerging in the Ag and Sb electrodeposition system.
The pattern we investigated was the complex labyrinthine
structure, which intriguingly is formed by metals. According
to our static element analysis, the light and dark stripes of the
pattern are rich in Ag and Sb, respectively [7]. In our previous
report concerning the time evolution of stripe width, the phase
separation of Ag and Sb in the electrodeposition system was
suggested as a plausible pattern formation mechanism of the
complex labyrinthine structure [8]. Our in situ real-time ele-
ment imaging uses radiation to show that Ag separates spatially
with the stripe shape and the Ag-rich stripes propagate [10],
and the result suggests validity for the mechanism mentioned
above.

Ag and Sb possess conductive and (relatively) insulative
properties, respectively. The resistivities of Ag (1.63 μ� cm)
and Sb (40.1 μ� cm) at 20 ◦C differ by a factor of 25 [11]. If the
phase separation between these materials actually contributes
to the mechanism of pattern formation, the phase separation
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might be induced by the difference between their resistivities,
as well as the conventional phase separation induced by
the forces of attraction between the same materials and of
repulsion between different materials. Consequently, in the
resultant pattern, Ag and Sb with very different resistivities
are respectively concentrated in the light and dark stripes [7].
Therefore, in this study, I used numerical simulations to
determine whether the conductive and insulative properties
of Ag and Sb, when subjected to an electric field, induce a
phase separation.

The system considered here is shown in Fig. 1. Two
electrodes are immersed in the electrolyte solution, and Ag
and Sb adsorb on one electrode surface to form a film. The
electromotive force is E and the flowing current in the electric
circuit is I. In this study, the constant-current mode (the
galvanostat mode) is considered, where I0 is a constant. This
mode is considered because the complex labyrinthine structure
of the used materials, whose pattern mechanism is speculated
to be the phase separation, is formed under the constant-
current mode in the experimental system of Ag and Sb
electrodeposition. Under the constant-current mode, the value
of E is automatically adjusted following an environmental
change in order to maintain a constant current value I0. The
entire resistance of the film on the electrode surface is R.
The area from the surface of the film to the counter electrode
corresponds to the electrolyte solution. The resistivity of the
film-forming materials A and B are RA and RB, respectively.
Here, the relation of RA = gRB holds, where g is positive and
more than 1. Thus, material A is insulative and material B
is conductive. For simplicity, one-dimensional electrodes are
assumed and, along the electrode, the x coordinate is used. The
concentrations of the respective materials A and B at position
x and time t are CA(x,t) and CB(x,t).

Using Onsager’s variational principle [12], the function Q
to be minimized in the dissipative system is the sum of the free
energy of the system and the consumption energy emerging
when the current flows to the film:

Q(CA(x,t)) =
∫ [

ε2

2
(∇CA)2 + W (CA)

]
dx + 1

2
RI 2

0 . (1)

The first term of the right side is the interfacial energy to reduce
the concentration variation and avoid the interface formation,
while ε is a coefficient. W(CA) represents the internal energy
and the entropy of the system. The sum of the first and second
terms is the free energy for the system. The third term shows
the consumption energy emerging from the resistance of the
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FIG. 1. Schematic drawing of the film formed by the insulative
and conductive materials A and B under the constant-current mode.

electrodeposited film under the current. It is a dissipative
energy term [12]. The entire resistance R is written such that
R = 1/

∫
1

r(x) dx, which assumes that local resistances r(x) are
parallelly put onto the x axis (Fig. 1). Here,

r(x) = A0[RACA(x) + RBCB(x)]w, (2)

where A0 is a coefficient and w is a thickness of the film. To
examine the time evolution of the concentration, the extended
Cahn-Hilliard equation of this system was described using the
function Q, as below. Since the concentration is a conserved
quantity, the equation of the continuity holds:

∂CA(x,t)

∂t
= −div

−→
J , (3)

where
−→
J is the mass flux. Moreover, Q can be transformed to

Q(CA(x,t)) =
∫ [

ε2

2
(∇CA)2 + W (CA) + f

]
dx. (4)

f ({r(x,t)}) is a function that spatially averages the consumption
energy of the third term and is defined as∫

f ({r(x)},t) dx = 1

2
RI 2

0 = 1

2

[
1/

∫
1

r(x)
dx

]
I 2

0 . (5)

Here, two conserved conditions of the concentration are
imposed:

∫
CA(x,t) dx = const at all time, (6)

CA(x,t) + CB(x,t) = const at all time. (7)

For convenience, in this study CA(x,t)+CB(x,t) is assumed to
be 1 in Eq. (7).

If it is assumed that
−→
J = −L∇( δq

δCA
) [13], where q is an

integrand of the right side of Eq. (4) [q = ε2

2 (∇CA)2+W(CA)+f ]
and L is a positive constant, the continuity equation (3)
becomes

∂CA(x,t)

∂t
= L∇2

(
δq

δCA

)
. (8)

Inserting q into Eq. (8) gives

∂CA(x,t)

∂t
= L∇2

(
−ε2∇2CA(x) + dW

dCA(x)

)

+L∇2 df ({CA(x)},t)
dCA(x)

. (9)

The Ginzburg-Landau style is used to express W (CA), where
W(CA) = −a[CA(x) − 0.5]2+b[CA(x) − 0.5]4, where a and b
are positive coefficients. W (CA) includes the internal energy
by considering the affinity between the molecules of the
same material and the repellent effect between molecules
of different materials, which drives a conventional phase
separation. Thus, Eq. (9) without the third term of the right
side is the conventional Cahn-Hilliard equation describing
phase separation, also called spinodal decomposition [13,14].
From Eqs. (2) and (5), f used in the third term of the right
side of Eq. (9) is in detail written as follows: f ({CA(x)},t) =
1
2l [1/

∫
1

A0[RACA(x)+RBCB (x)]w dx]I 2
0 , where l is the total length

of x. In my calculation, 80 cells denoting the concentration
at the local position of the electrode with total length l,
two are set on the one-dimensional (x) axis. Based on the
requirement for spatial global coupling of the concentrations
[as derived from the conserved rule of Eq. (6) and for the
total concentration over the entire space to be kept constant],
when the time evolution of concentration CA

i of the ith cell
is calculated, the jth cell is randomly chosen by generating

the random number to calculate the term �f
�CA

i ≈ df
dCA(x) in the

third term of the right side for Eq. (9). It is set that while
CA

i is altered by a small variation �CA
i , CA

j is varied by
�CA

j (= −�CA
j ) via the conservation rule [Eq. (6)]. The local

resistances ri and rj are respectively recalculated depending
on the concentration changes of CA

i and CA
j [Eq. (2)], and

�f = f |CA
i=CA

i+�CA
i−f |CA

i=CA
i is calculated. At each step of

calculating Eq. (9), a concentration fluctuation of size �10−3

is added using a random number. In the calculation for the cells
at the boundary, the periodic boundary condition is introduced.

Next, if Q is expressed as

dQ

dt
=

∫
δq

δCA

∂CA

∂t
dx (10)

and the continuity in Eq. (3) is substituted into Eq. (10), I
obtain

dQ

dt
=

∫
δq

δCA

(−div
−→
J ) dx (11)

Furthermore, if the right side of Eq. (11) is integrated by parts,
assuming zero flux at the boundary limit, it becomes

dQ

dt
=

∫
∇ δq

δCA

· −→
J dx. (12)

If the precondition formula
−→
J = −L∇( δq

δCA
) used in Eq. (9)

is substituted into Eq. (12), the condition of dQ/dt �0 holds.
Namely, if Eq. (9), which is introduced with a prior condition
of

−→
J = −L∇( δq

δCA
), is calculated, Q is inevitably minimized

with time, and Onsager’s variational principle that the sum of
the free energy and the dissipative energy should be minimized
with time [13] is fulfilled.

Comparing the above extended Cahn-Hilliard equation
[Eq. (9)] and the conventional Cahn-Hilliard equation without
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FIG. 2. Time evolution of the calculation derived from the numerical simulation using Eq. (9). Step time is �t = 3.0 × 10−7. Maximum
steps are 6.0×105. a = 0.5. b = 1.0. ε = 0.05. The initial concentration of CA, Cint = 0.5. L = 1.0. (a)–(f) The conventional Cahn-Hilliard
equation without the consumption energy [the last term in Eq. (9)] emerging by the resistance of the film. (a) 0th step. (b) 1.0×105th step. (c)
2.0×105th step. (d) 3.0×105th step. (e) 5.0×105th step. (f) 6.0×105th step. At 5.6×105th step, the phase separation is completed and, until
the 6.0×105th step, the condition is stable. (g)–(l) The extended Cahn-Hilliard equation (9) including the consumption energy emerging by the
resistance of the film under the constant-current mode. I0 = 2.1. A0wRA = 5.0. A0wRB = 1.0. Therefore, the ratio of resistivity of RA to RB is
5.0. (g) 0th step. (h) 2.50×104th step. (i) 5.00×104th step. (j) 7.50×104th step. (k) 1.00×105th step. (l) 1.25×105th step.

the third term, at the time when the phase separation does
not yet occur in the conventional Cahn-Hilliard equation
[Fig. 2(a)], the phase separation already begins in the extended
Cahn-Hilliard equation with the third term of the consumption
energy [at the 2.5×104th step, Fig. 2(h)]. This indicates that
the consumption energy of the third term induces the phase
separation of the materials by utilizing the difference between
resistivities of the materials. The characteristic peculiar to
the extended Cahn-Hilliard equation is a tendency to reach
0.0 in a local minimum of CA [Fig. 2(l)], comparing it to
the conventional Cahn-Hilliard equation [Fig. 2(f)]. In the
conventional Cahn-Hilliard equation, the local minima values
of CA (the positions of x are around 0.3, 0.9, and 1.6) are
∼0.1 after the phase separation is completed at the 6.0×105th
step [Fig. 2(f)]. However, the extended Cahn-Hilliard equation
[after the 1.25×105th step of Fig. 2(l)] has five infinitesimals
(the positions x are around 0.25, 0.6, 1.1, 1.5, and 1.9) and the
positions of the infinitesimals are +2 greater than those in the
conventional Cahn-Hilliard equation. In addition, the values at
the infinitesimals reach zero.

Figure 3 shows the time evolution of the total resistance R
calculated in the numerical simulation shown in Figs. 2(g)–
2(l). As time passes, material A is spatially separated from the
uniform distribution, and at some positions the concentration
CA becomes 0.0. The positions x are around 0.25, 0.6, 1.1, 1.5,
and 1.9. The arrows of Fig. 3 indicate that the concentration
distribution has one or two additional local minima of CA.
Every time CA reaches 0.0 at the local position, the value of
R suddenly becomes lower. Consequently, the consumption
energy 1

2 RI2
0 of the last term in Eq. (1) substantially decreases.

It turns out that the dissipative energy is minimized.
If the ratio of resistivities for RA to RB is set to be larger than

that in Fig. 3, when the local minimum value of CA reaches
zero, the calculated results indicate they possess an explosive
behavior and become unstable. Due to the high resistivity ratio,
this further enhances a dramatic decrease in the value of 1

2 RI2
0

when CA reaches zero, as mentioned above.

On the other hand, under the constant-voltage mode (the
constant-potentiostat mode), the function Q to be minimized
in the dissipative system is

Q(CA(x,t)) =
∫ [

ε2

2
(∇CA)2 + W (CA)

]
dx + 1

2

E2
0

R
, (13)

where E0 is the constant voltage applied to the electrode. Under
the constant-voltage mode, the flowing current I is altered with
circumstantial changes, to maintain a constant voltage E0. If it
is assumed that Q = ∫

[ ε2

2 (∇CA)2 + W(CA) + f E] dx, then

1

2

E2
0

R
= 1

2

∫
1

r(x)
dx E2

0 =
∫

E2
0

2r(x)
dx =

∫
f E dx,

f E = E2
0

2r(x)
, (14)

where f E is expressed in terms of a local resistance r(x). Based
on the above relation, the extended Cahn-Hilliard equation
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FIG. 3. Time evolution of the entire resistance R of the film under
the constant-current mode, using the extended Cahn-Hilliard equation
[Eq. (9)]. The parameters are the same as those of Figs. 2(g)–2(l).

010203-3



RAPID COMMUNICATIONS

YUKO NAGAMINE PHYSICAL REVIEW E 94, 010203(R) (2016)

under the constant voltage mode is written as

∂CA(x)

∂t
= L∇2

(
−ε2∇2CA + dW

dCA

)
+ LE2

0

2
∇2 d(1/r(x))

dCA

.

(15)

Equation (15) indicates that under the constant-voltage mode,
there is no spatial global coupling. This is quite different from
the constant-current mode. If the detailed expression of r(x) is
substituted into Eq. (15), I obtain

∂CA(x)

∂t
= L∇2

(
−ε2∇2CA + dW

dCA

)

+ LE2
0

2A0w
∇2 −(RA − RB)

[(RA − RB)CA + RB]2
, (16)

where −(RA − RB) is negative because RA = gRB. The term
for 1

[(RA−RB)CA+RB]2 is positive and is a monotonically decreasing
function against CA. If CA(x) locally protrudes or dents on the x
axis, the values of ∇2 1

[(RA−RB)CA+RB]2 are convex with a positive
sign on the maximum position or concave with a negative
sign on the minimum position, against x, in conjunction with
the CA(x) distribution. However, since the sign for −(RA −
RB) LE2

0
2A0w is negative, then −(RA−RB) LE2

0
2A0w∇2 1

[(RA−RB)CA+RB]2

[i.e., the last term of Eq. (16)] becomes concave (with a
negative sign on the minimum position) or convex (with a pos-
itive sign on the maximum position) inversely with the CA(x)
distribution. Namely, if CA(x) fluctuates spatially, deviating
from the uniform distribution, the third term (the dissipation
term) acts on the system to keep a uniform distribution of
CA(x). Under the constant-voltage mode, the difference of
the resistivities between the conductive and the insulative
materials has the tendency to suppress phase separation.
Actually, in the numerical simulation using Eq. (15), a phase
separation was not observed even when the parameters were
varied.

To conclude, this study suggests a new formulation, an
extended Cahn-Hilliard equation, using Onsager’s variational
principal, to investigate the dynamics of the concentration
distribution under a dissipative system. My calculations

demonstrate that a phase separation of the conductive and
insulative materials is induced under the constant-current
mode, but is suppressed under the constant-voltage mode.
According to our experimental observations of the Ag and Sb
electrodeposition system, the complex labyrinthine structure,
which I model using a numerical simulation, emerges in
the wide range of the current values under the constant-
current mode. Under the constant-voltage mode, the complex
labyrinthine structure rarely appears [6,15]. This experimental
tendency supports the results of my numerical calculations
using the extended Cahn-Hilliard equation. Conversely, the
results have differences from the experimental result. While
the width of the phase-separated stripe becomes constant with
time in the numerical result under the constant-current mode,
the stripe width became bigger with time in the experimental
system [8]. It might be caused by the condition for numerical
simulation that this model does not account for the continuous
adsorption of metal atoms from the electrolyte solution to the
electrode surface processed in the real experimental system of
the Ag and Sb electrodeposition.

Furthermore, in this study, two-dimensional numerical
simulation considering a real electrode surface shape is not
carried out [16,17]. However, the previous theoretical model
postulates the diffusion-reaction system which is driven by
the oxidation reduction of one element, for example, Fe, as
a mechanism of a pattern formation. The reaction-diffusion
system could not explain the phase separation of two elements,
for example, Ag and Sb, which is one of experimental results
of the complex labyrinthine structure [7]. The result obtained
by this model is the first step to proving that phase separation
is a main mechanism of the complex labyrinthine structure.
Moreover, when considering other systems, my model has the
potential to be applied to other phenomena, such as cases where
ion doping enhances the block copolymer alignment under an
electric field [18]. Furthermore, this model could also explain
the spatiotemporal pattern formation in biological systems,
such as the division of a cell nucleus.

My work was supported, in part, by Grants-in-Aids for
Challenging Exploratory Research, JSPS KAKENHI (No.
25610106).
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