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Extending the parQ transition matrix method to grand canonical ensembles
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Phase coexistence properties as well as other thermodynamic features of fluids can be effectively determined
from the grand canonical density of states (DOS). We present an extension of the parQ transition matrix method
in combination with the efasTM method as a very fast approach for determining the grand canonical DOS from
the transition matrix. The efasTM method minimizes the deviation from detailed balance in the transition matrix
using a fast Krylov-based equation solver. The method allows a very effective use of state space transition data
obtained by different exploration schemes. An application to a Lennard-Jones system produces phase coexistence
properties of the same quality as reference data.
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I. INTRODUCTION

Thermo-physical properties of fluids, and especially their
phase transitions, are of great importance not only from
a scientific point of view, but also for many engineering
applications. Such properties can be obtained by simulating
the fluids on a microscopic level by a variety of methods.
For known microscopic interactions molecular dynamics as
well as Monte Carlo methods are available. In order to obtain
reliable data, large enough systems have to be simulated,
and even though the increase in computing power has been
tremendous, the task of obtaining good predictions for phase
change properties is still demanding.

One class of methods to tackle this problem is based on de-
termining the density of states (DOS) for the system under con-
sideration first [1–6]. Then from the obtained DOS the thermo-
physical equilibrium properties including phase transitions can
be deduced in a second step. In order to obtain the DOS
a variety of algorithms are available, which can be grouped
into histogram- and matrix-based methods. While histogram
methods “count” the number of states seen during a random
walk through the state space of a system, the matrix methods
collect frequencies of potential transitions between states.

The challenge for both classes of algorithms is the fact that
for determining phase change properties the DOS needs to be
determined not only as a function of the energy but also as
a function of the volume (for a fixed particle number) or as
a function of the energy and of the particle number present
in the system (for fixed volume). This demand for grand
canonical DOS or joint DOS (JDOS) increases the numerical
effort tremendously, and thus highly efficient algorithms are
necessary.

A typical histogram-based method used in this context is
the Wang-Laudau algorithm [1,2,7–10], which uses a running
estimate of the JDOS to steer a random walker through state
space such that the histogram of visits to macrostates becomes
flat. Sometimes this approach has the drawback that the
recursion used to achieve the flatness may get stuck. Another
algorithm which has been used for obtaining JDOS is hyper-
parallel tempering [11]. A direct approach to observe the phase
behavior is through Gibbs ensemble simulations [12–14].
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An alternative approach to determine the JDOS is through
using transition matrix methods [13,15,16]. Here we present
the extension of the parQ method [5,6], a particular transition
matrix approach able to collect data from parallel runs, for
the task of obtaining the JDOS. An interesting side feature of
our approach is the usage of the Wang-Landau algorithm for
obtaining the raw data for the transition matrix estimate. The
advantage here is that, first, the Wang-Landau algorithm does
not need to converge as opposed to its usage in a flat histogram
approach, and, second, if it has converged, it can provide a
JDOS prediction on its own.

The presentation is organized as follows: first, we give an
introduction into the Wang-Landau and the parQ methods,
followed by an extension of the parQ method to the grand
canonical ensemble. This leads to large sparse transition matri-
ces. Then an efficient method for the computation of the JDOS
from sparse transition matrices is presented. Finally we discuss
our results for simulations of a Lennard-Jones system and its
grand canonical DOS as well as the ensuing phase diagram.

II. EXISTING METHODS FOR DOS
AND JDOS DETERMINATION

Histogram- as well as transition matrix-based methods have
in common that a base algorithm performs a Monte Carlo walk
through the state space of the system. The state space can be
either discrete or continuous; for fluids the states are usually
described by the (continuous) coordinates of the particles of
the system. Each microstate has an energy value assigned to
it, here based on the Lennard-Jones interaction potential. The
random walk proceeds by selecting a potential neighbor state
of the current state as defined by the move class. The proposal
probability q(ωc → ωn) for a potential transition from the
current state ωc to the neighbor state ωn characterizes the
move class. Whether the proposed neighbor state is accepted
or not depends then on the acceptance probability a(ωc → ωn),
which can be a function, for instance, of the energies of the
two states (Metropolis) or of the DOS at the respective energies
(Wang-Landau).

In an actual implementation of the algorithms discussed
below one needs to set the energy range of interest [Emin,Emax)
at the start. Then for systems with continuous energies (or
huge numbers of discrete states) discretization or lumping
of the energy is needed, i.e., all energies in the range
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RENÉ HABER AND KARL HEINZ HOFFMANN PHYSICAL REVIEW E 93, 063314 (2016)

[Ei − �E
2 ,Ei + �E

2 ) are lumped into bin i. Based on this
lumping the proposal probability q(ωc → ωn) on the level of
microstates leads to an “infinite temperature” transition matrix
Qij , which reflects the transition frequencies between energy
(or macro-) states Ei and Ej if the acceptance probability is
set to one: a(ωc → ωn) = 1.

Below we will focus on two DOS methods employed in this
study, one histogram- and one transition matrix-based. These
are the Wang-Landau algorithm (WL method) including its
extension to determine the JDOS of systems [7,8] and the
parQ method with its extension.

A. The Wang-Landau method

The Wang-Landau algorithm is a flat histogram method for
Monte Carlo simulations that samples a generalized ensemble.
In the standard variant for obtaining the DOS it samples a
previously defined energy range Emin � E < Emax uniformly
by accepting proposed moves with the probability

a(Ei → Ej ) = min

[
1,

�(Ei)

�(Ej )

]
, (1)

where Ei and Ej are the energy levels before and after the
move. Starting from an initial guess of the DOS �(E) it tries
to estimate the exact DOS �̂(E) by modifying �(E) in every
Monte Carlo step by �t+1(En) = �t (En) · f, where f > 1 is
a modification factor and En is the energy after the evaluation
of the acceptance criterion. A histogram H (E) is modified
simultaneously according to Ht+1(En) = Ht (En) + 1. If a
move generates a state outside the predefined energy range,
it is rejected and �(E) and H (E) are updated at the previous
energy [17].

If no initial guess can be made �(E) is set to 1 and H (E)
is set to 0 for all E in the range of interest. The modification
factor is set to f0 = e1 at the beginning of the algorithm [1,2]. It
is modified according to fk+1 = √

fk, when a specific flatness
condition is met. Here k counts the number of refinements. We
finally mention that in an implementation it is advisable to use
ln �(Ei) instead of �(Ei) itself.

Extending the Wang-Landau method to the grand canonical
ensemble allows direct access to several observables depend-
ing on the chemical potential. To achieve this Shell et al. [7]
extended the Wang-Landau algorithm to the grand canonical
(μV T ) and the isothermal-isobaric ensemble (NpT ). For the
μV T and the NpT ensembles they provided formulas for the
acceptance criteria for moves changing either particle number
or volume. They present two sets of formulas, one using the
configurational DOS � and one using the excess DOS �ex,
where for the latter the ideal gas contribution to the DOS �ig

has been factored out. For simulations they used the excess
DOS, as it gives shorter acceptance formulas. In contrast, Yan
et al. [8] provide a reference for the use of configurational
DOS simulations. Both methods differ in the prefactors
applied to the acceptance probabilities of the insertion and
deletion (removal) moves. Using the configurational DOS the
acceptance criteria for particle insertions and removals are

a((Ei,N ) → (Ej ,N + 1))

= min

[
1,

V

(N + 1)�3

�(Ei,N )

�(Ej ,N + 1)

]
(2)

and

a((Ei,N ) → (Ej ,N − 1))

= min

[
1,

N�3

V

�(Ei,N )

�(Ej ,N − 1)

]
. (3)

Here � denotes the de Broglie thermal wavelength. The excess
DOS acceptance criteria, as given by Shell et al. [7], are

a((Ei,N ) → (Ej ,N + 1))

= min

[
1,

�ex(Ei,N )

�ex(Ej ,N + 1)

]
(4)

and

a((Ei,N ) → (Ej ,N − 1))

= min

[
1,

�ex(Ei,N )

�ex(Ej ,N − 1)

]
. (5)

Configurational and excess DOS are related by

�(N,V,E) ∝ V N

N !
�ex(N,V,E), (6)

where the factor V N/N! is related to the partition function
of an ideal gas [18], with N ! being attributed to the indistin-
guishability of the particles. The DOS is updated similarly to
the canonical ensemble case:

�t+1(E,N ) = �t (E,N ) · f. (7)

B. The par Q method

The parQ method is a transition matrix method using
appropriately collected transition frequencies between energy
macrostates for determining the DOS. These are transformed
into an “infinite temperature transition matrix” Q, which
was used originally in Ref. [5] to determine thermodynamic
equilibrium properties.

Here we follow Refs. [6,19] to derive the relevant relation
between Q and the DOS �(Ei):

�(Ej ) =
∑

i

Qij�(Ei); (8)

i.e., the DOS �(Ei) is the left eigenvector of Q. Let us
assume that we want to model a thermalization process on
the macrostates using a master equation for a random walker
performing a walk in energy space. Its transition probability
�ij (T ) from energy Ei to energy Ej is given as

�ij (T ) = Q(Ei → Ej ) a(Ei → Ej ,T ), (9)

where the acceptance probability for the Metropolis criterion
is a(Ei → Ej ,T ) = min [1,e−(Ej −Ei )/(kBT )]. Then the proba-
bility p(Ei,t) to be in a macrostate Ei at time t obeys

p(Ej ,t + 1) =
NE∑
i=1

p(Ei,t)�ij (T ), (10)

where NE is the number of energy values (bins) considered.
The stationary distribution p∗(E) of Eq. (10) is the left
eigenvector to the largest eigenvalue 1 of �ij (T ) and must
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be equivalent to the Boltzmann distribution

p∗(Ej ) = 1

Z(T )
�(Ej )e−βEj . (11)

Thus, for t → ∞ we can insert the stationary distribution into
Eq. (10) and obtain

�(Ej )e−βEj =
NE∑
i=1

�ij (T )�(Ei)e
−βEi . (12)

Then taking the limit T → ∞ sets the acceptance probability
a(Ei → Ej ,T ) = 1 and thus leads directly to the central
relation (8), which contains only the proposal probabilities.
As a consequence, having knowledge of the matrix Q allows
one to calculate the DOS and thus thermodynamic properties
of the system.

The problem of obtaining Q or rather a good estimate of it is
now solved by performing a canonical Monte Carlo simulation,
in which moves to neighboring microstates are proposed and
then accepted or not depending on the acceptance probability.
Above we showed that only the proposal probability is of
relevance, and thus during the simulation all proposed moves
are counted in a matrix C:

Cij = Cij + 1. (13)

At the end of the simulation the created counting matrix is
normalized rowwise:

Qij = Cij∑
k Cik

, (14)

which creates the stochastic matrix Q, i.e., the infinite
temperature transition matrix.

As the transition matrix Q has a predefined energy range
one needs to be cautious while handling moves leaving this
range. Every move leading to an Ej outside of our energy range
has to be counted to the diagonal element [17] according to

Cii = Cii + 1. (15)

If a move already starts outside of the considered energy range,
then it is ignored completely.

In order to obtain a good Q estimate it is important that the
state space is sampled in a representative fashion. Usually
simulating at a fixed temperature samples only a narrow
part of the state space. Thus algorithms originally designed
for optimization, like simulated annealing [5,6] or threshold
accepting [20], have been used in previous work. In their
original publication Heilmann et al. [6] applied simulated
annealing with linear and exponential schedules to achieve a
broad sampling of the energy space of an Ising spin glass.
Another approach dubbed WL-TM is proposed by Shell
et al. [21], where the Wang-Landau [1,2] method is used to
achieve broad sampling of Lennard-Jones and Ising systems.
Fenwick [22] presented a third method, using the replica
exchange (parallel tempering) method to run the simulation
in parallel at different temperatures, which are selected in a
way that the resulting energy distributions overlap.

III. THE PAR Q METHOD FOR THE GRAND
CANONICAL JDOS

We now present the extension of the parQ method, which
allows us to determine the JDOS. Contrary to the canonical
ensemble, where energy is the only macroscopic variable, we
now have energy E and number of particles N as varying
quantities. The resulting joint DOS �(E,N ) is a function of
both state variables. This makes the assembly of the Q matrix
in the grand canonical ensemble μV T less intuitive and one
has to give some thought about correct sampling, broad state
space exploration across the whole particle number range and
the in-memory matrix layout.

Considering a system limited to n = 100 particles with
the energy range being split up into 1000 bins the resulting
transition matrix would have (100 × 1000)2 = 1010 entries.
By using the restriction made by grand canonical particle
insertion and removal moves, where only one particle can
be added or deleted at a time, we can reduce the matrix
size to a banded block matrix with, e.g., 98×3×10002 +
2×2×10002 = 298×106 entries [19]. In this case the full Q

matrix has a structure as displayed below:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QE
1,1 QE

1,2 0

QE
2,1 QE

2,2 QE
2,3

QE
3,2 QE

3,3 QE
3,4

. . .
. . .

. . .

QE
n−1,n−2 QE

n−1,n−1 QE
n−1,n

0 QE
n,n−1 QE

n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

with QE being a matrix of size NE×NE , where NE is again the
number of energy bins. Note that the number of nonzero entries
in the matrix is crucial for the execution times of the DOS
calculations, as we use sparse matrix algorithms. However,
we stress that the number of nonzero elements depends on
the length of the data-acquisition runs and the type of system
considered, and thus the overall convergence times can vary
considerably.

Each pair of energy and number of particles (E,N ) can be
seen as a separate macrostate. Therefore we have transitions
from (E,N )i to (E,N )j . Each proposed transition is counted
in the same fashion as in the canonical ensemble. As for the
canonical case the method is independent of the acceptance
probability of the underlying sampling scheme, as long as
the proposal probability q(i → j ) is unchanged (or, in other
words, as long as the move class is preserved).

IV. A METHOD FOR THE COMPUTATION
OF THE JOINT DENSITY OF STATES

FROM SPARSE TRANSITION MATRICES

Working in the grand canonical ensemble or the isobaric-
isothermal ensemble, or in general having other order pa-
rameters besides the temperature, increases the size of the
transition matrix enormously. Typically, matrices are of size
50 000×50 000 and larger as well as sparse. The goal is now
to determine the JDOS from this large matrix. One way to do
this is by computing its eigenvector to the eigenvalue one.
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Although the sparsity of the matrix lends itself to the
application of the power iteration method for calculating the
eigenvector and thus the JDOS, it turns out not to be the optimal
choice. One problem is that the number of iterations needed
for the method to converge increases with the number of rows,
and the time it takes to perform a single iteration increases as
well. Thus, calculating the eigenvector of a 500 × 500 matrix
is a matter of seconds on a single processor, whereas it can be
a matter of hours for large grand canonical systems.

Another method to obtain the JDOS from Q, proposed
by Wang and Swendsen [3], is based on the minimization
of detailed balance deviations, i.e., the minimization of the
expression

σ 2
tot =

∑
i,j

(
ln �i − ln �j + ln Qij

Qji

)2

σ 2
ij

. (17)

Instead of using the empirically estimated variances as
proposed by Wang and Swendsen we use the sophisticated
weights proposed by Shell et al. [21], which are given by

σ 2
ij = C−1

ij + C−1
ji +

(∑
k

Cik

)−1

+
(∑

k

Cjk

)−1

. (18)

Instead of a direct minimization of (17) with respect to ln �i

we make use of the fact that minimizing σ 2
tot is equivalent to

finding approximate solutions to an overdetermined equation
system of the form

M · x = b. (19)

Here the rectangular matrix M contains as many rows as there
are pairs (Qij ,Qji). The row for the kth pair is

Mki = σ−1
ij and Mkj = −σ−1

ij , (20)

which makes the matrix M highly sparse. The corresponding
entry in vector b is given by

bk = −σ−1
ij ln

Qij

Qji

. (21)

Standard implementations in libraries to solve the above
problem like the GNU Scientific Library [23] assume that M

is a dense matrix and are therefore not helpful due to their run
time and the amount of memory needed. Hence methods for
handling these sparse matrices are needed.

One existing method that is able to handle such matrices
is the LeastSquares command of Mathematica setting the
parameter “Method” to “Direct”. We will refer to this method
as MLS.

Here we propose another method based on Eq. (19) and
on a fast, Krylov method-based, linear equation system solver.
We multiply Eq. (19) by MT to obtain

(MTM)x = MTb. (22)

Although in general solving this equation may be prone to
high numerical errors, as MTM typically has a large condition
number, we found that choosing the right solver allows for a
fast and still high-quality calculation of the JDOS.

The resulting matrix M typically has a size in the order
of 500 000 × 50 000 or larger, with only two entries per row.
Performing the multiplication MTM reduces the size back to

the size of the original square transition matrix. The resulting
equation system can then be solved in a matter of seconds or
minutes.

We will refer to our method as efasTM and emphasize that
it can be applied to any transition matrix inversion.

V. JOINT DENSITY OF STATES OF A LENNARD-JONES
SYSTEM IN THE GRAND CANONICAL ENSEMBLE

In this section we analyze the performance of efasTM with
respect to the quality of the obtained JDOS as well as with
respect to the run times needed as compared to other methods.
In order to do so we determine the JDOS for a Lennard-Jones
system using different techniques.

The particles in the system interact with each other via the
Lennard-Jones potential

V (rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
, (23)

where ε sets the energy and σ the length scale. It is capable of
reproducing the complete thermodynamic behavior of classic
fluids while being one of the simplest models available. The
Lennard-Jones system exhibits solid-liquid [24] and vapor-
liquid [25] phase transitions as well as a Mackay/anti-Mackay
transition [26,27] at low temperatures. The latter can be
observed for clusters of different sizes [28–30]. Thereby the
cluster overlayer melts, changing its Mackay packaging [31]
to a less dense liquid-like packaging.

The Lennard-Jones potential V (r) used here and in the
simulations below is cut off at radius rc = 2.5σ . The potential
is neither shifted by the energy at the cutoff radius V (rc) nor
tail-corrected. From here on we choose ε and σ as the units of
our energy and length scales, respectively.

We performed simulations in the grand canonical μV T

ensemble, which used moves in energy space (i.e., particle
displacements) as well as particle insertions and removals.
The number of particles N in a fixed volume of size 53 was
allowed to fluctuate between 1 and 110 particles. Periodic
boundary conditions were used.

The overall energy range was set to E ∈ [−700,10] and
split into 500 bins. In addition per-particle energy ranges were
bounded (see Ref. [19]) in order to keep the Q-matrix size
under control.

An implementation of the Wang-Landau algorithm was
used to randomly walk through the system’s state space and to
achieve a broad sampling. As the standard flatness condition is
not functional for the structure of the JDOS a slightly modified
flatness condition, which checks whether the number of visited
bins stays constant for 10 000 time steps and for a minimum
number of visits to each bin, has been used. After 2 × 109 time
steps and 14 refinements, reaching f = 6.10352×10−5, the
resulting JDOS was determined at the end of the Wang-Landau
data acquisition. We made no early attempt to determine the the
JDOS from the collected C matrix as it would suffer from the
inaccuracies of the transition matrix as described in Ref. [21].
During the run, the proposed moves were monitored and stored
in a C matrix, from which the Q matrix was determined. We
implemented the combination of Wang-Landau algorithm and
parQ transition matrix method in the open source Monte Carlo
simulation tool MCCCS Towhee [32].
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FIG. 1. Density of states of a Lennard-Jones system in the grand
canonical ensemble. The simulation covered the energy range E ∈
[−700,10) and the particle number range N ∈ [1,110]. Additionally
the energy range per particle number has been restricted (see Ref. [19]
for details). For each data set a selection of particle numbers
N = 10,20, . . . ,110 is shown from right to left in increasing order.
Wang-Landau sampling has been used to achieve broad sampling. The
corresponding DOS is shown for reference. Additionally, transition
data have been recorded, which has been analyzed with different
methods. First, the power iteration at double precision and at about
four times the precision of “double precision” has been used. Both
methods give equal results and match the Wang-Landau DOS up to
N = 90. For N ∈ {100,110} strong deviations are visible at the low
energy bound. Using the efasTM method gives results comparable to
Wang-Landau.

In Fig. 1 we present a comparison of the DOS from this
simulation of Lennard-Jones particles in the μV T ensemble.
The obtained Wang-Landau result for the JDOS has been
included for comparison (violet line). The transition matrix
recorded during the simulation has been evaluated using the
efasTM method (red line) and the power iteration method
in machine precision (green line) as well as using arbitrary
precision arithmetics with a 64 digit precision (about four
times of machine precision, blue line).

We find that the precision used to perform the power method
has no influence on the outcome. Both variants give results on
par with densities of states obtained from the Wang-Landau
method and the efasTM method for particle numbers up to
N = 90.

Focusing on larger N in Fig. 1 we observe that this
agreement between the JDOS is lost; instead a clear deviation
in the JDOS at low energies for the power iteration occurs.
In contrast, looking at the efasTM results, we only find a
slight differences for N = 110. In conclusion we find excellent
agreement between the Wang-Landau and the efasTM results.
One possible explanation for the quality of the efasTM
approach is, that the raw data of the Q matrix are modified
with the weights given by Shell et al. [21] [see Eq. (18)].
Besides differences in the quality of the JDOS we also find
large differences between efasTM and the power iteration with
respect to the computing times needed to obtain those results.

Table I gives an overview of how much CPU time was
needed in total, incorporating parallel execution of parts of
the algorithm, as well as the wall time needed altogether. The

TABLE I. Timings of three different methods to calculate the
DOS from large sparse transition matrices. Wall time and total CPU
time differ, as some parts of the algorithms are executed in parallel.
Note that efasTM outperforms the other two methods by at least one
order of magnitude.

Method Wall time Total CPU time

efasTM 35 s 38 s
MLS 484 s 2390 s
Power iteration 4263 s 4845 s

computations have been performed using the highly optimized
algorithms of Mathematica. We find, that the efasTM method
performs an order of magnitude faster than the MLS method.
Looking at the total CPU time the speedup is nearly two orders
of magnitude. For the power iteration we find that the efasTM
method is more than two orders of magnitude faster.

To analyze the scaling properties of the efasTM algorithm
further we determined the execution times as a function of the
number of nonzero Q-matrix elements. These are shown in
Fig. 2.

As the time for the data acquisition for the Q matrix was
typically about an order of magnitude larger then the time
for obtaining the DOS from the Q matrix using the power
iteration method the time savings in our case was about 10%.
However, we stress that the relation between data acquisition
time and DOS calculation time depend very much on the
implementation and parallelization.

Above we judged the quality of the JDOS results obtained
by efasTM by comparing it with the JDOS from the Wang-
Landau method. In principle it would of course be better
to check which of the results is closer to the true DOS.
Unfortunately we cannot resort to such a comparison with
exact results, as those do not exist. As an additional check
we thus compare quantities computed from the joint DOS to
literature data. Here we focus on the liquid and vapor phase
transition of the Lenard-Jones system. To do so, we below
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FIG. 2. The execution time for determining the JDOS from the
Q matrix according to the efasTM method is shown as a function of
number of nonzero elements in the Q matrix. The data show a clear
linear relationship with a slope of 3.42409×10−5 and a negligible
axis intercept. Note that the number of nonzero elements depends on
the length of the Wang-Landau data-acquisition run.
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present appropriate formulas and algorithm to determine the
liquid and vapor coexistence lines.

VI. CALCULATING PHASE COEXISTENCE PROPERTIES

Being able to predict the outcomes of measurements is
of huge interest in material research in industry and science.
Having a precise estimate of the DOS available alleviates this
task. The formulas below are taken from Yan et al. [8] and use
the configurational DOS.

For instance, having obtained � as a function of energy E

and particle number N , the grand canonical partition function


(T ,μ) =
∑
N

∑
E

�(E,N ) e−βE+Nβμ (24)

can be calculated as a function of temperature T and chemical
potential μ. From this, we can obtain quantities like the the
mean particle number and its second moment:

〈N〉 = 
−1
∑
N

∑
E

N �(E,N ) e−βE+Nβμ, (25)

〈N2〉 = 
−1
∑
N

∑
E

N2 �(E,N ) e−βE+Nβμ, (26)

both being functions of T and μ as well.
A liquid and a vapor phase are in phase coexistence, if the

pressure in both phases is equal, i.e., pvap = pliq. The pressure
is a function of the logarithm of the grand canonical partition
function, i.e.,

p(T ,μ) = kBT

V
log 
(T ,μ). (27)

To separate the two phases we have to find an Nmid such that
the pressure can be separated into

pvap(T ,μ) = kBT

V
log

∑
N�Nmid

∑
E

�(E,N ) e−βE+Nβμ (28)

and

pliq(T ,μ) = kBT

V
log

∑
N>Nmid

∑
E

�(E,N ) e−βE+Nβμ. (29)

To find Nmid we define the probability

P (N,T ,μ) = 
−1
∑
E

�(E,N ) e−βE+Nβμ (30)

to observe particle number N at a fixed T and μ independent
of E. Now, for any given temperature we have to guess
an initial value for μ such that p(N ) exhibits two distinct
peaks. Then, the local minimum in between the two peaks
can be determined, i.e., Nmid = argminN p(N ) under the given
constraints. Next, μ has to be tuned to satisfy pvap = pliq while
recalculating Nmid in every optimization step. The procedure
ends when a stable μ0 has been reached.

The coexistence densities may then be obtained via

ρvap(T ) = 1

V

∑
N�Nmid

∑
E N�(E,N ) e−βE+Nβμ0∑

N�Nmid

∑
E �(E,N ) e−βE+Nβμ0

(31)

and

ρliq(T ) = 1

V

∑
N>Nmid

∑
E N�(E,N ) e−βE+Nβμ0∑

N>Nmid

∑
E �(E,N ) e−βE+Nβμ0

, (32)

where the chemical potential μ0 depends on T and is obtained
from the previous procedure.

We will now apply this technique of calculating coexistence
curves from the JDOS by using the JDOS data obtained
above for the Lennard-Jones system. The results are shown
in Fig. 3. Here the left figure shows a contour plot of P (ρ,T )
based on Eq. (30), using ρ = N/V , at the chemical potential
μ0 of phase coexistence. The colors scale linearly from
blue (P (ρ,T ) = 0) to red (P (ρ,T ) = 0.04), whereas white
indicates larger values of P (ρ,T ). The DOS used is the one
obtained by the efasTM method, represented by the red curves
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FIG. 3. The left frame (a) shows a density plot of the function P (ρ,T ) [see Eq. (30)] for DOS data obtained via efasTM. For every value of T

the chemical potential μ has been tuned to reach phase coexistence. The colors scale linearly from blue (P (ρ,T ) = 0) to red [P (ρ,T ) = 0.04],
whereas white indicates larger values of P (ρ,T ). The red points lying on top are the mean densities of the vapor and liquid phases. The two
points at T = 1.24 K indicate that the algorithm failed to find the correct density for separating liquid and vapor phase. In the right frame (b),
the red points correspond to those shown in the left plot. The blue stars correspond to DOS data, obtained via power iteration from the same
transition matrix as the red points. We find a strong deviation in the liquid region for T < 1, which can be traced back to the deviations in the
DOS. The red line is an Ising form fit to the red points, whereas the black dashed line is a fit to data from Yan et al. [8].
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in Fig. 1. The red dots indicate the coexistence densities ρvap

and ρliq determined according to Eqs. (31) and (32). Above
the critical temperature Tc = 1.1876(3) [33] known from other
methods, the distribution P (N,T ,μ) in principal should loose
its bimodality. However, due to numerical fluctuations as well
as finite size effects the algorithm still finds local maxima of
the probability P (N,T ,μ) above Tc. The two out-of-line points
at T = 1.24 indicate these minima are spurious.

In the right frame of Fig. 3 the red points correspond to those
in the left frame. The blue points are obtained by applying the
phase coexistence calculation to the power iteration data (blue
dotted curves of Fig. 1). We find that the deviations already
found in the previous figure lead to large deviations in the
points representing the liquid phase.

The lines are obtained by fitting the function [25,34]

ρ± = ρc + a

∣∣∣∣T − Tc

Tc

∣∣∣∣ ± b

∣∣∣∣T − Tc

Tc

∣∣∣∣
β

, (33)

with density ρc at critical temperature Tc and free parameters a,
b, and β to the data. For β we use the 3D Ising order-parameter
exponent β = 0.3258 [35]. For the critical temperature we
use the result of Wilding et al. [33], who determined it to
be Tc = 1.1876(3) for a system of infinite size by finite size
scaling. The remaining parameters ρc, a, and b have been
obtained via numerical fitting.

The red line in Fig. 3 is a fit to the efasTM data (red
points). For reference, a fit to phase coexistence data from Yan
et al. [8] has been added (black dashed line). We find that both
coincide in the fluid region very well and differ only slightly
in the vapor region. Hence, we find that the parQ method in
combination with the Wang-Landau sampling for the grand
canonical ensemble can produce reliable results, on par with
literature data obtained by pure Wang-Landau sampling. The
parQ approach has the additional benefit of much easier
parallelization than the windowing or stratification approaches

used for Wang-Landau simulations. One can perform any
number of independed simulations in parallel and combine the
resulting C matrices to obtain a single combined Q matrix.

VII. SUMMARY

One effective method to determine thermo-physical proper-
ties of fluids is based on DOS methods. These methods allow
access to those properties including phase transitions as they
provide information on the material at different temperatures
and pressures. In order to achieve this one needs to know the
JDOS, i.e., the DOS as a function of the energy and the density
(or particle number). Determining the JDOS is numerically
demanding with respect to accuracy as well as run time. We
presented a transition matrix-based method by extending the
parQ method to grand canonical ensembles. The advantage of
the method compared to the classical Wang-Landau histogram
method is that data from nonconverged runs can be used. In
addition data from different state space exploration methods
can be combined, allowing a flexible approach with adaptive
changes in the exploration method without loosing data. We
developed the efasTM method as a method for obtaining the
JDOS from the transition matrix data, which for the Lennard-
Jones example system analyzed showed run time up to a factor
of 100 faster than other standard methods. An interesting open
question is whether these speed-ups can be sustained also for
other systems. As a quality check we compared our results
for the JDOS with Wang-Landau data and found a very good
agreement. As a second quality check we compared phase
coexistence data obtained from the JDOS with reference data
from Yan et al. and found again excellent agreement. Thus
the parQ method for grand canonical ensembles together with
efasTM presents a viable alternative for determining the JDOS,
especially as it allows an easy parallelization and an efficient
usage of known state space data.
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