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A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases
with exotic spin arrangements such as spin block states [J. Rincon et al., Phys. Rev. Lett. 112, 106405 (2014)].
In this publication we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately
reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC
studies in systems with more challenging geometries, such as ladders and planes. The success of this approach
relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. We also study a
simplified version of the model where the pair-hopping term is neglected and the Hund coupling is restricted to
its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of
these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization
group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with
the latter displaying only mild fermion sign problems. We conclude that these methods are able to capture
quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus
enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field

approximations.
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I. INTRODUCTION

The study of iron-based high critical temperature super-
conductors continues attracting the attention of the condensed
matter community [1-6]. Originally, these materials were
widely perceived as being in the weakly correlated regime,
where Fermi surface nesting effects dominate; however, in
recent times evidence has begun to accumulate indicating
that the effects of electronic correlations cannot be neglected.
This is manifested by substantial bandwidth reductions, by
the detection of localized spins at room temperature, and
by the presence of superconductivity in cases with only
electron pockets at the Fermi surface [3—5]. For these reasons,
and since the iron pnictides and chalcogenides have several
active 3d orbitals, it is very important to study multiorbital
Hubbard models at intermediate Hubbard couplings U using
reliable unbiased many-body techniques. There is, however, a
notorious lack of appropriate computational methodologies for
these demanding studies. In fact, the analysis of multiorbital
Hubbard models at arbitrary couplings and temperatures
is developing into a grand challenge for theoretical and
computational physics.

In this publication, we present a systematic investigation
of the properties of a recently introduced one-dimensional
three-orbital Hubbard model [7,8], using multiple techniques,
including constrained-path quantum Monte Carlo (CPQMC),
determinant quantum Monte Carlo (DQMC), and density
matrix renormalization group (DMRG). Our conclusion is that
CPQMC, when applied in the systematic manner described
here, reproduces well the previously published DMRG results.
As a consequence, CPQMC can address problems in higher
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dimensions, since this approach is not affected by the sign
problem. We also have observed that a simplified Hubbard
model, where the pair-hopping term has been discarded and
the Hund interaction is reduced to its Ising component, leads to
phase diagrams that are very similar to those of the full model.
This simplification improves the performance of DQMC and
other quantum Monte Carlo methods, since it alleviates the
sign problem.

Our main focus is on the so-called orbital-selective Mott
phase (OSMP), a state widely discussed in multiorbital
systems [9-19]. To focus on this state, our study will be
mainly in the regime of robust Hund coupling strength that
is compatible with a variety of investigations for iron-based
superconductors [20-23]. In the OSMP, the occupation of
one or more of the orbitals locks to one electron per orbital
with increasing U/ W (U is the onsite Hubbard repulsion and
W is the electronic bandwidth), while the remaining orbitals
have a fractional filling. For these reasons, this state has an
intriguing combination of spin localized and charge itinerant
degrees of freedom, as shown in several experiments on the
iron-based superconductors [3,4,25,26]. Since the OSMP is
also of potential value in several other correlated multiorbital
systems, our investigations are of relevance beyond the realm
of the iron-based superconductors.

The importance and richness of the OSMP regime is
exemplified by the recent discovery of block states in previous
DMRG studies of the one-dimensional three-orbital Hubbard
model [7,8]. Block states are formed by a small number
of spins (the “block”) that align ferromagnetically within
the block and with an antiferromagnetic coupling between
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blocks. These states have been reported in experimental and
theoretical studies of two-leg ladder selenides belonging to
the iron superconductors family [27-29], and it is intriguing
to speculate on their possible existence in higher-dimensional
systems [30-32]. Moreover, recent investigations [8] unveiled
the presence of three types of OSMP regimes, each differing
with respect to the number of orbitals occupied by an integer
number of electrons. These three OSMP phases are classified
as follows: OSMP1 is the most canonical one, where one
orbital’s filling is locked to one electron per orbital, while the
remaining two orbitals have fractional populations; OSMP2
appears for total electronic densities n between 3 and 4, and
has two orbitals whose occupations are locked to one electron
each, while the third orbital has a fractional filling; finally,
OSMP3 was found for total fillings n between 4 and 5 and has
one orbital locked with one electron, a second orbital locked
with two electrons, and the third orbital has a fractional filling.
For completeness, at small J /U (J is the strength of the Hund’s
coupling), a band insulator (BI) phase was also reported [7],
with two orbitals doubly occupied and one orbital empty. A
related BI and metallic phase (BI4+M) also occurs, where two
orbitals are close to being doubly occupied and the other one
is almost empty. It is important to make sure whether these
phases can be reached by CPQMC and DQMC as well.

The organization of this publication is as follows: the two
models are defined in Sec. II and the technical details of our
computational methods, particularly CPQMC and DQMC, are
described in Sec. III. Section IV contains our main results, and
finally in Sec. V we provide further discussion and present our
conclusions.

II. MODEL

As already explained, we will focus on the one-dimensional
three-orbital Hubbard model previously proposed and studied
with the DMRG technique in Refs. [7] and [8]. This model
displays a robust OSMP regime in the phase diagram and
hence it resembles qualitatively the physics expected to
develop in realistic multiorbital models for the iron-based
superconductors and related systems. In addition, the use
of models that were previously analyzed computationally
facilitates the comparison between our results and previous
literature.

The model is composed of tight-binding and Coulombic
interaction (restricted to be on site) terms: H = H, + Hcoul.
The tight-binding component is

H = — Z t}/V'(CiTUyCiJrlcry’ +Hc)+ Z Aynigy, (1)

ioyy’ oy

where the operator cit,y (¢ioy ) creates (annihilates) an electron
with spin z-axis projection o at orbital y (y =0, 1,2) on
lattice site i. The number operator iS 7y, = CigyCioy. The
hopping amplitudes 7, defined in orbital space connect the
lattice sites i and i+ 1, with the specific values (eV units)
too = t1; = —0.5, tr, = —0.15, tgp = t;p = 0.1, and £y =0,
as schematically illustrated in Fig. 1. The total bandwidth is
W = 4.9]ty| [7]. The orbital-dependent crystal-field splitting
isdenoted by A,,, where weset Ag = —0.1,A; = 0,and A, =
0.8, following Refs. [7] and [8]. The band structure of this
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FIG. 1. Illustration of the hopping parameters of the one-
dimensional three-orbital Hubbard model employed in this publica-
tion. Colored thick lines represent the orbitals y (with y = 0,1,2)
at two lattice sites { and i + 1, and the dashed black lines are
the hoppings. Here #yy, #11, and t, correspond to the intraorbital
nearest-neighbor hoppings, while 7y, and ¢, are the interorbital
hoppings (7, was not plotted here).

model roughly resembles that of iron-based superconductors
because it has hole and electron pockets centered at wave
vectors ¢ = 0 and m, respectively.

The interacting portion of the Hamiltonian is given by the
usual electronic multiorbital terms and is defined as

Heou=U anyniw +U' —17/2) Z iy Riy

iy iy <y’

—2J ) Sy Sy +J Y (PFPy+He). ()

iy<y’ iy<y’

Here, S;, = %Za P cgayaaﬂciﬁy (o represents the Pauli
matrices) is the total spin operator at orbital y on lattice site i,
nj, is the electronic density, and P, = cj, cit, . The first two
terms in Eq. (2) describe the intra- and interorbital Coulomb
repulsion on the same lattice site, respectively. The third term
contains the Hund coupling that favors the ferromagnetic
alignment of the spins in different orbitals of the same lattice
site. The pair-hopping is the fourth term and its coupling
strength is equal to J. Note that U’ satisfies the constraint
U’ = U — 2J, due to the orbital rotational invariance [33].

The model defined by Eqs. (1) and (2) will be referred
to as the “full” model in this publication. We have also
studied a “simplified” model with the same hopping terms
but neglecting the spin-flip portion of the Hund’s interaction
(i.e., only the Ising contribution was used) as well as the
pair-hopping interaction in Eq. (2). In doing so, we analyze the
extent to which these terms affect the phase diagrams of the full
model. Limited influences would be important for the state-
of-art computational techniques since these terms are often
cumbersome to implement and, more importantly, it can pave
the way to simulations under more realistic circumstances,
such as on ladder or two-dimensional geometries.

The corresponding interactions of the simplified model are

Simple /
Hegy =U Z”iw”iw +WU -J/2) Z My Ny’
iy iy<y’
—2J Z SizySiZy/’ (3)
iy <y’

where S, is the z component of the spin operator S, .
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III. METHODS
A. Computational techniques

We studied the full and simplified models numeri-
cally by using three powerful techniques: DMRG [34-36],
DQMC [37,38], and CPQMC [39-43]. Each of these tech-
niques has its strengths and weaknesses. DMRG is widely
recognized as the best technique for quasi-one-dimensional
systems although it is difficult to apply in higher dimensions.
DQMC can be extended to higher dimensions but it suffers
the infamous Fermion sign problem, even in one dimen-
sion [44,45]. Finally, CPQMC does not have sign problems
and can be used in any dimension, but the results depend on
the trial wave function in some cases, as explained below.
Since the CPQMC method has not received as much attention
as the other two approaches mentioned here, it will be tested
more extensively in the present study [46].

We now proceed with several goals in mind. First, we will
test the CPQMC method in various three-orbital Hubbard
model settings. We simulated the one-dimensional systems
employing open boundary conditions (OBC) to facilitate a
comparison with DMRG, which is known to work better under
these boundary conditions. (In principle, the performance of
CPQMC is not expected to degrade with periodic boundary
conditions.) Second, we wish to explore the effect of pair-
hopping and spin-flip interactions by comparing the full and
simplified models. Third, we wish to examine the extent of the
sign problem when DQMC is applied to the simplified model.
Surprisingly, we found that the sign problem is present but
relatively mild. Finally, small discrepancies among the three
techniques, especially for DMRG and CPQMC methods, will
be discussed.

Since we are not modifying the standard DMRG protocol,
here we will only describe in detail the CPQMC methodology,
and, very briefly, the DQMC method. For more details about
CPQMC and its applications to other multiorbital Hubbard
models, we refer the reader to Refs. [40,42,43] and references
therein.

With regards to DMRG, typically 300 states per block were
kept in the iterations and up to 25 sweeps were performed
during the finite-size algorithm evolution (in some cases up
to 600 states were used and up to 37 sweeps were done).
Truncation errors were of the order of O(10~!%). For each
point in the phase diagram shown below, DMRG was run
in the subspaces with zero and maximum total z-axis spin
projections, and their energies were contrasted to address
possible ferromagnetism (we observed that the ground states
are all in either zero or maximum total z-axis spin-projection
subspaces). Typical time of DMRG simulations varies with the
coupling strength U and electron doping n. For example, the
L = 16 system requires 2 ~ 12 h for one point in the phase
diagram, using 24 processors parallelly.

B. Details of the CPQMC method

The CPQMC method is a sign-problem-free auxiliary-field
quantum Monte Carlo method, which projects out the ground
state from a trial state by branching random walks in the
Slater determinant space. A constrained-path approximation
is needed in the CPQMC algorithm to prevent the sign
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problem [40,41]. Applications of CPQMC on various models
and geometries yielded accurate results [40-43,47-51].
In the CPQMC method, the ground state |, ) is obtained by

iteratively applying the projector operator e =27 to a trial state
|[Yr), with (W,|Wr) # 0. In order to implement the Monte

Carlo steps, the projector e~7# is transformed into a summa-

tion of one-body operators, e AT — Z{x} P({x)B({x)), by
using the Hubbard-Stratonovich (HS) transformation [53] and
Suzuki-Trotter decomposition. Here, {x} is a set of Ising-like
auxiliary fields introduced in the HS transformation. {x} can
be interpreted as random variables distributed according to the
probability distribution function P({x}), and B({x}) is an {x}-
dependent one-body operator. The procedure that transforms
the most complicated interactions, such as the Hund’s coupling
and pair-hopping terms, into one-body operators can be found
in Appendix [42,54]. The Monte Carlo sampling of {x} can
be carried out according to P({x}), propagating the wave-
function, written as a Slater determinant |¢™), to a new one
D) via |9 D) = B({x})|p™), with |¢*) = |Wr). The
propagations from |9 to |¢™+D are usually regarded as
open-ended branching random walks in the Slater determinant
space.

In general, thousands of random walkers are employed
in the CPQMC simulation. Because of the linearity of the
Schrodinger equation, the random walks will naturally produce
two sets of degenerate and mutually-canceling solutions, {|¢)}
and {—|¢)}. As a linear combination of {|¢)} and {—|¢)}, the
calculated ground state is basically dominated by the Monte
Carlo noise. To control this problem, the random walks are
constrained in CPQMC such that the condition (Wr|¢) > 0
is fulfilled at each Monte Carlo step, which is also called the
constrained-path approximation [40].

After the random walks have equilibrated, expectation
values can be estimated from the calculated ground state V().
In principle, any observable O could be evaluated by using

(o) = ¥elone) @

(WclWce)

However, such a “brute-force” way usually induces large
fluctuations because in such a procedure (O) contains many
overlapping terms among different walkers, where each walker
was propagated independently and without any knowledge of
others. It is hard to reduce the statistical error, which scales as
N~!/2 by increasing the number of walkers N. For observables
O that commute with the Hamiltonian A , mixed estimator,

(Wr|O|¥e)
@) mixed = T 1. 1. 1 5
(O) mixed Uy [0e) (5)

usually gives high-accuracy results. One can simply prove the
accuracy of mixed estimator as follows,

(Wrle P Oe A |wy)
(Wr|e=28H|Wr)

(WelOlWe) _
(WelWe)
(Wr|Oe 2P |wy)

== ~ == O mixed» 6
Wrle gy O mied ©

(0) =

where |W¢) = e PH|Wr) = e2H | W) when g is large. Since
every walker in |W¢) originates from the initial state |7 ), the
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mixed estimator—as a composition of the overlap between
|Wc) and |Wr) —has very small fluctuations.

For the observables O that do not commute with H, it is
sometimes possible to improve the mixed estimator by a linear
extrapolation [39],

(Ur|O|Vr)
extr — 2 mixed — T o - 7
(O)ext (O) mixed Uy [Up) (7

Another widely used estimator involves the back-propagation
(BP) [40],

(Wrle AT O W)
(WrlelamH |pe)

®)

(O)pp =

where [ is typically in the range of 20 to 40. BP provides
accurate estimates of ground-state properties in the Hubbard
model [40,41] and also shows a high degree of accuracy for
the simplified model in our simulations. For the full model,
however, our calculations suggest that BP can only work for
a limited parameter regime, say U/W < 0.25, where W =
4.9]t00; beyond this parameter regime BP always produces
unacceptably large statistical errors. To explore the whole
phase diagram here, we used the extrapolation method in
Eq. (7) to estimate observables that do not commute with H
for the full model while BP was used for the simplified model.
We tested the results of the BP and extrapolation methods on
the simplified model, and both methods predicted the same
physics, i.e., the calculated energies of BP and extrapolation
schemes are consistent as shown in Fig. 2(a). For this reason,
we believe the extrapolation results capture the correct physics
in the full model.

Form the above discussion, we know that the trial state |\Wr)
always plays an important role in the CPQMC algorithm, both
in the constrained-path approximation and in the observable
estimate. It is natural to conclude that the quality of the
CPQMC calculation depends on |W7) to a certain extent.
In order to get more accurate results and faster convergence
speed, our CPQMC simulations were divided into three steps:

(1) use the Hartree-Fock (HF) technique to construct a set
of trial states with different magnetic orders;

(2) use each of these HF states to carry out a set of
independent CPQMC simulations;

(3) obtain the final ground state from the completed
CPQMC calculations by selecting the state with the lowest
energy [52].

Following this strategy, each data point shown below
(corresponding to a specific set of parameters U, J, and
n) requires dozens of CPQMC simulations. The underlying
reason for such massive efforts is that, in our three-orbital
CPQMC calculations, different trial states often converge to
different solutions, each lying very close to one another in
energy. Figure 2(b) exemplifies a typical situation we observed:
states with different magnetic orders are reached after starting
from very different trial states, but sometimes their energies
are so close that the system could be characterized to display
the incorrect magnetic order. This may be different from
the CPQMC calculations in the single-orbital models where
the simulations seem to be insensitive to the trial wave
function [40,47,48].
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FIG. 2. (a) Results for the simplified model Eq. (3) using L = 16,
n=4,J/U = 0.25, and the CPQMC method. Shown is the energy
per site obtained both by back propagation (BP) and by extrapolation
(Extr) schemes. The agreement is clearly excellent. (b) The relative
energies (with |#gy] = 0.5 as unit of reference) of the simplified model
obtained from the CPQMC method. Results are shown for various
trial states and reported with respect to the energy of the Block state
with the spin configuration 11| |, atn =4, J/U = 0.25, and using
an L = 16 system. FM and AFM are ferromagnetic and staggered
antiferromagnetic states, respectively. B, B2, and B1 represent the
block states with the spin configurations 114 {44, TP,
and PP, Tespectively.

In addition, we found that the system was hard to converge
to the ferromagnetic (FM) phase in the CPQMC calculation
if it was initially starting from the S7,, =0 sector. To
properly study the FM candidate, apart from the simulations in
St = 0, we also forced the system to start from the highest-
Sea at a given filling. For instance, for two-thirds total filling
(on average four electrons per site) on an L-site system, we
set the number of electrons with up- and down-spin to be 3L
and L, respectively, when searching for possible FM phases.

In a typical large-scale CPQMC simulation, we set the
average number of random walkers to be 4800 and the time
stepis fixed at At = %. For each walker, 2000 Monte Carlo
steps were sampled before measurements were performed,
and 20 blocks of 480 Monte Carlo steps each were used
to ensure statistical independence during the measurements.
Closed-shell fillings were employed in the simulations. To
judge the accuracy of the CPQMC method, we compared
the CPQMC energies against those employing the Lanczos
method on a small L = 4 system and also DMRG method on
an L = 16 system: the maximum energy difference is within
1% upto U/ W = 3.0.

Finally, note that because of the large computational time
required for each set of parameters, MPI parallelism [55,56]
was integrated into the CPQMC algorithm. In the Monte Carlo
procedure |¢p™) — | +D)  each random walker |¢™) is
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independently propagated by B({x}). Therefore, it is natural
to implement such a procedure in parallel by distributing
the random walkers over multiple processors. The average
observables for each processor were collected and averaged
when necessary. This method was found to scale almost
linearly. For instance, 4800 random walkers can be distributed
evenly among 24 processors, and the computational time for
one of these CPQMC simulations is approximately 2 h. This
can then be compared to the nearly 2 days of computational
time when using only a single Intel Xeon E5-2680v3 core of
the same type.

C. Details of the DQMC method and sign problem

DQMC is a numerically exact auxiliary-field method, ca-
pable of handling the Hubbard interactions nonperturbatively.
The method [37,38,57], and its extension to multiorbital
systems with interorbital density-density interactions relevant
for this publication, can be found in Refs. [58,59]. We refer
the reader to these papers and references therein for further
details.

The bottleneck of DQMC is the Fermion sign problem [45],
which limits the range of accessible temperatures in many
models. Generally speaking, severe Fermion sign problems
would occur in the DQMC simulations of the multiorbital
models with interorbital Hubbard and Hund’s interactions
and, worse, the severity of the problem increases when the
off diagonal terms of the interaction are included [54,60,61].
A recent study [44], however, has found that the sign
problem in the single-band Hubbard model depends strongly
on the geometry of the system. Similarly, it turns out that
the simplified model [see Eq. (3)] has a manageable sign
problem on the one-dimensional lattice considered here. This
is illustrated in Fig. 3, where we plot the average sign value
as a function of U while holding J = U /4 fixed. Here, results
are shown for an L = 16 chain and at an inverse temperature
of B = 73.5/W, which is lower than temperatures that can be
usually reached in the analogous two-dimensional model. One
can see that the average value of the sign is quite high for most
values of U, indicating that low-temperature properties can be
accessed. It is interesting to observe that the sign problem is at
its worst when U/ W ~ 0.4, which is near the phase boundary

1.0} ¢
08!
a
506/
(/)]
Vo4l
02!
0.0

0.01 0.1 1
U/W

FIG. 3. DQMC results for the average value of the Fermion sign
for the simplified model. Results are shown for average fillings
n = 3.5 (red A) and 4.0 (green (), and at an inverse temperature
of B=T73.5/W.
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between the metallic and orbital-selective Mott phases for this
model (see Sec. IV B).

IV. RESULTS

A. CPQMC results for the full Hubbard model

The phase diagram of the full model Eq. (2) obtained using
the CPQMC method is presented in Fig. 4. The most striking
result of this study is the clear resemblance of Fig. 4 with the
phase diagram reported previously in Fig. 1 of Ref. [7] using
the DMRG method. In particular, the paramagnetic metallic
(PM) phase, the antiferromagnetic Block (B) phase, and the
FM phase that dominate in the realistic Hund’s coupling
region J/U ~ 0.25 appear in very similar portions of the
phase diagram. Also in excellent agreement with Ref. [7],
the B and FM phases are in the OSMP regime as indicated
by their relative orbital occupations, as shown in Fig. 5(a).
In the B and FM phases, orbital 2 has n, = 1 while the
population of the other two orbitals is noninteger for all
values of U/ W that we investigated. In Fig. 5(b) we show
the magnetic structure factor in the localized band, defined
as Sp(q) = 1/L Y 5, € Y9"™S; 5 - Sy, Which provides
evidence for the “block” spin order 11| 11J|. Here, a
sharp peak develops at wave vector 7/2, similar to the results
reported with DMRG [7]. In addition, the CPQMC method
was also implemented using periodic boundary conditions
and the Block phase was also found (our emphasis on OBC
is for the comparison with DMRG). Also, the exotic low
J/U region with a previously discussed BI and BI+M are
found using both techniques. These results demonstrate that
the most important aspects of the phase diagram are captured
by CPQMC, not only qualitatively but also quantitatively
in a one-dimensional system, suggesting that CPQMC can
potentially be a reliable tool to study ladder and square lattice
geometries for a wide parameter space that is difficult to
address with other techniques.
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FIG. 4. The phase diagram of the full three-orbital Hubbard
model Eq. (2) obtained using the CPQMC technique, employing
chains with L =24 sites and open boundary conditions. The
electronic density is n = 4, and the notation for the many phases is
explained in the text. Symbols indicate values of (J/ U, U/ W), where
explicit CPQMC results were obtained. Dashed lines are guides to
the eye. This phase diagram is in good agreement with the DMRG
results reported in Ref. [7] for the same model.

063313-5



GUANGKUN LIU et al.

20 ‘ ‘ i
¥=0 : :
| e * P gms ma
1.5 v=1 uuu BHa
?-. ' '

c PM - B FM
1.0*7=2Mf
ajn=4 3 3

0.5 ( ) :

0.01 0.1 1

5 U/wW

.| ®

L= 8

_al _ L=12 e
ool sy [k
a2l - L=32+

0.75 1

0 025 05
g/n

FIG. 5. CPQMC results for the full three-orbital model Eq. (2).
(a) Electronic density n,, of each orbital y versus U/ W atn = 4 and
J/U = 0.25, using an L = 24 system with OBC; (b) Spin structure
factor of the localized orbital y = 2 in the OSMP Block regime at
the couplings indicated, for several lattice sizes L and OBC.

There are two major differences between the CPQMC and
DMRG results: First, CPQMC favors n and n; to be almost
exactly 1.5 in the OSMP regime, while in the previous DMRG
study those orbitals had populations close to but not precisely
equal to 1.5. The consequences of this small difference remains
to be studied; second, we could not observe the Mott insulating
regime with ny =n, =1 and ng =2 using the CPQMC
method, which is stabilized in DMRG beyond U/W ~ 4.
Since in CPQMC algorithm the HS fields were just flipped
site-by-site, one possible reason for such a mismatch would be
lacking of global flipping of the HS fields at large U/ W, which
is also a well-known problem in DQMC calculations [24].
Because the intermediate coupling region is the physically
relevant region for the iron-based superconductors, this issue
is not of immediate concern.

Let us focus now on the phase diagram varying the
total electronic density n = %Ziay nisy at a fixed realistic
J/U = 0.25, relevant for the iron-based superconductors. The
CPQMC results are shown in Fig. 6, and they should be
contrasted against the DMRG phase diagram presented in
Fig. 1 of Ref. [8]. Once again there are strong similarities, and
the important PM, B (including incommensurate IC), and FM
phases are present in both cases and in approximately similar
regions of the phase diagram. This includes the realistic U/ W
regimes relevant for the iron superconductors. Note that the B
phase regime not only includes the structure with wave vector
7 /2 mentioned before, but also more extended structures with
larger FM blocks involving 4 and 8 sites, or directly involving
incommensurate states. The real-space spin-spin correlations
for several typical points in the B phase regime can be found
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FIG. 6. The phase diagram of the full three-orbital model Eq. (2)
obtained from CPQMC on an L = 16 system with OBC, and fixed
J/U = 0.25. The meaning of the many symbols is explained in the
top legend and in the main text. The numbers 1 and 2 in the figure
represent the OSMP1 and OSMP?2 phases, respectively, in the notation
of Ref. [8]. The dashed lines are guides to the eye. The notation B
(block) encompasses different configurations: the block states atn =
3.25andn = 3.5 are dominated by the spin configuration M1 | | |
and MMM LU L L L, while the block state at n = 4 contains
the spin configuration 11 | .

in Fig. 7. In both phase diagrams, this generalized B phase
regime is more robust upon hole doping (n < 4) away from
the n = 4 state than upon electron doping (n > 4).

Evidence for the presence of an OSMP region using the
CPQMC technique is provided in Fig. 8, where the OSMP1
notation is used for the OSMP phase found at n = 4 with only
one orbital locked at one electron per orbital. These results for
the individual orbital populations versus U/ W are also very
similar to those in Ref. [8].

Two additional discrepancies between the DMRG and
CPQMC results are worth noting. First, as in the previous
figures at n = 4, CPQMC has difficulty reaching very large
values of U/W. For this reason, the so-called OSMP2 and
OSMP3 phases reported in Ref. [8] have not been observed

6.0 8-spin -
4.0 4-spin &
2-spin &

2 4 6 8 10 12 14 16
[

FIG. 7. Spin-spin correlations obtained using the CPQMC tech-
nique for the two-spin block (n =4, U/W = 1.0, J/U = 0.25),
four-spin block (n = 3.5, U/W = 1.5, J/U = 0.25), and eight-spin
block (n =3.25,U/W = 2.0, J/U = 0.25) states, using an L = 16
system and the full model.
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FIG. 8. CPQMC results for the full three-orbital model Eq. (2).
The electronic density n, of each orbital y versus U/W is shown
for n =3.25 and J/U = 0.25. The results were obtained using an
L = 16 system with OBC. Phases OSMP1 and OSMP?2 are defined
in the text.

here (with the exception of one point at n = 3.25). OSMP2 is
characterized by having two orbitals whose average occupation
is locked to n, =1, while OSMP3 has one orbital with
n =1 and another with n = 2. Second, a small region of
antiferromagnetism with wave vector ¢ = & is found upon
electron doping the n = 4 state in a region where DMRG
suggests that only the PM, FM, and B phases should have
similar energies. The CPQMC result is surprising and probably
spurious, as there is no reason for a spin staggered state to be
stabilized by doping.

To summarize this section, the CPQMC method has
captured the most important aspects of the phase diagram of
the full model Eq. (2) previously studied with DMRG. For
this reason, CPQMC is a promising technique to study phase
diagrams of multiorbital models in ladder or square lattice
geometries, where DMRG faces a considerable challenge due
to the fast growth of the required number of states and where
DQMC has significant sign problems.

B. Results for the simplified Hubbard model

Our second goal is to test if the simplified version Eq. (3) of
the full Hamiltonian, i.e., without the pair-hopping term and
restricting the Hund interaction to its Ising component, leads to
phase diagrams similar to those of the full model. If this were
the case, this simplified model would be technically easier to
study with computational methods than the full model.

1. DMRG results

Letus start with the U/ W versus n phase diagramat J /U =
0.25 obtained using DMRG. The results are shown in Fig. 9
and should be contrasted against those reported for the full
model in Ref. [8], as well as with the CPQMC results in Fig. 4.
The similarities in the phase diagrams produced by the full and
simplified models is clear: the PM, Block/IC, FM, and AFM
phases appear all approximately in the same locations in both
models (note that, as expected, the absence of spin-flip terms
in the Hund component reduces the critical U/ W for magnetic
order particularly atn = 4 and 5 when Fig. 9 is compared with
the phase diagram of Ref. [8]). These results suggest that the
simplified model captures the same physics as the full model,
with the advantage that it is technically easier to study.
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FIG. 9. DMRG results for the simplified three-orbital model
Eq. (3). Shown is the phase diagram using an L = 16 system, OBC,
and working at fixed J/U = 0.25. The many symbols were explained
in the top caption of Fig. 6. The labels 1,2, and 3 represent the OSMP1,
OSMP2, and OSMP3 states in the notation of Ref. [8] (also explained
in the text).

This conclusion is also supported by the orbital occupations.
Figure 10 illustrates the behavior of the electronic density
versus U/ W at J/U = 0.25 at the representative electronic
densities n = 3.5, 4.0, and 4.5. The presence of the OSMP1,
OSMP2, and OSMP3 phases is clear.

. OSMP1 ‘OSMP2
a)n=35: :

1-5 ,H..\TL_HH

Lon

PM |
5‘1—*~*4’¢~¢«4&a~¢poo—
. OSMP1 MI

(o)n=4

5 ‘ ‘ ‘

e {1 ooy oo o o 00|
PM . OSMP1 OSMP3
(c)n=45 ]
0.1 1 10 100
U/wW

FIG. 10. DMRG results for the simplified three-orbital model
Eq. (3), working at J/U = 0.25 and using an L = 16 system with
OBC. Shown is the electronic density n, of each orbital y versus
U/Wat(a)n =3.5,(b)n =4.0,and (c) n =4.5.
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2. DOMC results

In principle, the DQMC technique applied to a multiorbital
Hubbard model can suffer from a severe sign problem, partic-
ularly when interorbital Hubbard and Hund’s interactions are
included. In addition, the HS decoupling of the complicated
interactions characteristic of a multiorbital Hubbard model,
such as, for example, the pair-hopping term, significantly
exacerbates the Fermion sign problem; however, when DQMC
is implemented for the simplified model we have found that
the sign problem is relatively mild in one dimension and
only particularly bad in the vicinity of one value of U/ W
(close to the PM-OSMP1 transition) as shown in Fig. 3. Thus,
DQMC simulations are possible for this simplified model
down to relatively low temperatures. Unfortunately, obtaining
DQMC results is still computationally demanding even for
this simplified case. Our study here is, therefore, restricted
to selected values of n at J/U = 0.25 (note also that at the
low temperatures of focus here the DQMC grand canonical
ensemble results can be compared with the zero temperature
CPQMC and DMRG canonical ensemble results).

In Fig. 11(a) DQMC results at n = 4 are shown, illustrating
the presence of the OSMP1 phase. In addition, the spin
structure factor arising from the localized orbital y =2
indicates a peak at wavevector ¢ = 7, in agreement with
the other techniques, and characteristic of the Block phase
with FM blocks involving two spins. Similar results are
obtained at n = 3.5, as shown in Fig. 12. In this case, the

DQMC
2.0 ; ‘ ‘ :
Y0 :
.—._.H\Iw
150 24 ‘ 1
PM 'OSMP1
c1.0¢ o——o—M 1
05 172 5 !
(@) n=4 |
0.0 =501 01 ]
u/w
1.20 ‘
_0.80¢}
RS
%0.40 t
UMW = 0.01 &
1 U/W = 0.80
0.00 :

0 025 05 075 1

q/n

FIG. 11. DQMC results for the simplified three-orbital model
Eq. (3) in the OSMP1 regime, using a chain with L = 16 sites
and open boundary conditions. The temperature is 8 = 73.5/W. (a)
Electronic density n, for each orbital y versus U/W at n =4 and
J/U = 0.25. (b) Spin structure factor for the localized orbital y = 2
at the values of U/ W indicated and J/U = 0.25. The peak atg = %
denotes a tendency toward spin blocks with two aligned spins in

each.

PHYSICAL REVIEW E 93, 063313 (2016)

DQMC
2.0 ‘ ‘ .
Y=0 |
15 &—& 89 !
y=1 ol
S1.0¢ PM j 1
Y=MMP1
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FIG. 12. DQMC results for the simplified three-orbital model
Eq. (3) in the OSMP1 regime, using a chain with L = 16 sites
and open boundary conditions. The temperature is 8 = 73.5/W. (a)
Electronic density n, for each orbital y versus U/ W atn = 3.5 and
J/U = 0.25. (b) Spin structure factor for the localized orbital y = 2
at the value of U/ W indicated and J/U = 0.25. The peak at g = 37”
indicates a tendency towards spin incommensurate order.

spin structure factor peaks at wave vector g = 3T”, also in

agreement with the other techniques (although not strictly
rigorous due to finite-size effects, we refer to this type of
magnetic spin states as incommensurate). Note that the spin
structure factor is not so sharp due to the elevated temperature
in the DQMC calculations. We also note that the locking of
orbital occupancies was generally observed at much higher

@ 2',/’ PO . N e 3®
@TE & ¢ & & o o7
e e 1 o .
R NN S S
S A = = E @ @ t: ®
... m ] H.-
) e 0 ¢o--0. .- o 0 O
e 6 ¢ o o o o )
e o e o
01fe o o . e e o
3.0 3.5 4.0 4.5 5.0
n

FIG. 13. CPQMC results for the simplified three-orbital model
Eq. (3). Shown is the phase diagram using an L = 16 system, OBC,
and working at fixed J/U = 0.25. The meaning of the many symbols
is in the top caption of Fig. 6. The labels 1, 2, and 3 represent the
OSMP1, OSMP2, and OSMP3 states in the notation of Ref. [8] (also
explained in the text). The notation B (block) is generic, as explained
in the text, and does not refer only to ferromagnetic blocks of just
two spins. Dashed lines are guides to the eye.
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FIG. 14. CPQMC results for the simplified model Eq. (3),
working at J/U = 0.25 and using an L = 16 system with OBC.
Shown is the electronic density n, of each orbital y vs. U/ W at (a)
n =3.25and (b) n = 4.75.

temperatures than where the onset of the magnetic correlations
in Sy(q) was investigated.

3. CPOMC results

To finalize our analysis of the simplified model, let us now
examine the results obtained with the CPQMC method. The
U/ W versus n phase diagram at J/U = 0.25 is presented in
Fig. 13. The agreement with the DMRG phase diagram Fig. 9
and with the DMRG results of Ref. [8] is excellent, showing
once again that this method is promising and could work in
higher dimensions as well. Note that the (likely spurious)
antiferromagnetic phase centered at n = 4.5 at the frontier
with the PM regime is no longer present in this simplified
model.

Finally, Fig. 14 indicates that CPQMC can capture the
physics of the three-orbital selective Mott states of relevance,
i.e., OSMP1, OSMP2, and OSMP3.

V. DISCUSSION AND CONCLUSIONS

We have studied a three-orbital Hubbard model defined in
one dimension using three powerful many-body computational
techniques: CPQMC, DMRG, and DQMC. The specifics of
the model, and in particular its hopping amplitudes, were
chosen to match those of a previous DMRG investigation [7]
in order to have available results to judge the accuracy of
the three methodologies employed here. Our investigations
allow us to reach three concrete conclusions: (i) The CPQMC
technique, when applied as described in Sec. III, produces
results in good agreement with the more powerful (in one
dimension) DMRG method. This test paves the way for
future CPQMC investigations in ladders or two-dimensional
systems, where DMRG or DQMC are difficult to apply; (ii)
The simplified model defined here, without the pair-hopping
term and keeping only the Ising term in the Hund interaction,
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captures quantitatively the phase diagrams of the full model,
and in particular the important OSMP regime with its Block
and FM phases. Thus, this simplified model can be used as an
alternative to the full Hubbard model in future investigations;
(iii) The DQMC technique works well for the simplified model
since the sign problem is not severe in one dimension. While
this conclusion will not hold in higher dimensions, we note
that there are several strongly correlated electronic materials
with quasi-one-dimensional dominant structures. Our results
demonstrate that simplified multiorbital Hubbard models and
DQMC methods can now be used to explore their properties at
finite temperatures and interaction strengths U/ W and J/ U,
thus opening a broad area of research.

In summary, our investigation paves the way toward
computational studies of multiorbital Hubbard models in
chains, ladders, and planes. The analysis of these models is
a rapidly growing area of interest within strongly correlated
electrons because of their importance in active fields such as
iron-based high critical temperature superconductors, as well
as in a variety of transition metals oxides such as manganites,
where previous work also unveiled a variety of competing
states in their phase diagrams [33,62-65].
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APPENDIX

To decouple the Hund’s coupling and pair hopping terms in
Eq. (2) into practical forms, we rewrite the interaction portion
of the full Hamiltonian as follows:

Heow = Y (H{ + H} + Hi+ H}), (A1)
i ToT
Hy=J Z(ciy¢ciy’¢CiV¢CiV'T
y#Y
+ol,pel, i), (A2)
Hi=U"=1) Y fiohiy.o. (A3)

oy<y
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HY=UY niysniy,, (A4)
Y

Hi = U/ Z Ni,y,oMi,y',—c» (AS)
oy<y’'

where y (y = 0,1,2) denotes the orbitals. Note that Hi, H3i,
and Hj can be decoupled by the standard discrete Hubbard-
Stratonovich (HS) transformation [53]. However, Hli needs a
special treatment [54], and it can be decoupled as

i 1
—AtHy _ Aa( fir— fiy) ,a(Nip+Niy )+bNiy Ny,
st L 5 gt e
a==%l1
with

fi,a = Ciy’gci,y’,(r + Ciy”o'ci,y,(f’ (A7)
Ni,a = Ni,y,o + Niy' .o — 2ni,y,ani,y’,av (AS)
A= 1log(e? 4" + Vet AT — 1, (A9)

a = —log[cosh(A)], b = log[cosh(J AT)], (A10)

where @ = %1 is the newly introduced auxiliary field, and y
continues denoting the different orbitals.

Due to the property that N7, = Nj,, the factor ¢"VtMi in
Eq. (A6) can be further decoupled into a product of single
eV _like terms using the discrete HS transformation [53].

The main challenge now will be how to treat the factor
e**fin=fi) in Eq. (A6). Let us recall that in the standard QMC
algorithm the matrix form of an exponential interaction term,
such as the Hubbard repulsion e=275, for example, always
has the form

eATH — 4 A (A11)

where A is a sparse matrix with and only with nonzero diagonal
elements, and [ is the identity matrix. Because A only contains
det(@/|e”>""5 )
) det(¢’|$)

the matrix inverse ((¢'|e"27"|¢))~!, which are necessary

intermediate quantities used in the QMC algorithm, can be
efficiently calculated using a fast updating tactic [38], while
direct calculations of determinant and matrix inverse would be
too time-consuming to use in QMC simulations (|¢) represents
the random walker).

The matrix form of e*fir = g*@(clyciyotte) — 1 4 B is
very different from the standard case shown in Eq. (Al1)

diagonal elements, the determinant division and
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because B contains two nonzero diagonal and another two
nondiagonal elements:

bmm e bmn
B = : oo , (A12)
bnm e bnn
where bmm = bnn = % - 17 bmn = bnm = M’ and

2
m,n refer to the matrix element indexes. To calculate
det(g’|e*fiv |¢)
det(e’|$)
((¢'|e**/=|$))~! by using the fast updating algorithm [38],
these formulas need further modifications. Consider the treat-
ment of the determinant division, for example. Here, we first
insert two identity matrices / = UU ™! into the determinant
det(¢/'|UU~' **fio YU~ |p)

the determinant division and matrix inverse

division; i.e.,

. The unitary matrix U

det(¢'|¢)
always has the form

1 ... 0

_\2 V2

2 2

U=1: : ST B (A13)

V2 L2

2 2
0 . 1

where we can find the expected four ¥2 related elements
mentioned above, while all other diagonal and nondiagonal
elements are just 1 and 0, respectively.

It can be easily proved that

det(¢'|e**i|¢)  det(¢/|UU '’ UU"|¢)
det(¢’|) det(¢’|¢)
_ det(y/|U~ e Uy
det(¢’|o)

_ det{y'|(1 + BHY)

det(¢’|¢)
where (Y| = (¢'|U, |[¥') = U |¢). And U o U =T +
B’ in Eq. (A14) has the desired form of Eq. (A11), with B’
only containing diagonal elements. Now the standard CPQMC
algorithm can be applied using the new formula of Eq. (A14).
A similar modification can also be applied to the matrix inverse

(@'l |p)) .

, (A14)
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