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We consider accurate numerical solutions of the one-dimensional time-dependent Schrödinger equation
when the potential is piecewise continuous. Spatial step sizes are defined for each of the regions between
the discontinuities and a matching condition at the boundaries of the regions is employed. The Numerov method
for spatial integration is particularly appropriate to this approach. By employing Padé approximants for the
time-evolution operator, we obtain solutions with significantly improved precision without increased CPU time.
This approach is also appropriate for adaptive changes in spatial step size even when there is no discontinuity of
the potential.
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I. INTRODUCTION

As a fundamental equation of nonrelativistic quantum
mechanics, the time-dependent Schrödinger equation has
received considerable attention. In particular for nonrelativistic
quantum mechanics the Schrödinger equation and its variants
have a prominent place in investigating the atomic and
subatomic world. The importance of these equations is evident
from the plethora of applications in diverse areas of quantum
mechanics.

While analytic solutions are desirable, and often preferred,
the complexity of realistic systems inevitably leads to numer-
ical approaches for obtaining them. There is a long history
of developing and improving the numerical techniques of
generating such solutions; see, e.g., Refs. [1–3]. Recently
further sophistications have been introduced, and these have
been scrutinized for their efficiency and accuracy, as well as
their application to systems with time-dependent potentials or
nonlinear interactions [4–8].

In 2007 we introduced a generalized Crank-Nicolson
method (GCN) [3] by which one obtains accurate solutions in
an efficient manner. An alternative method of choice developed
by Talezer and Kosloff [2] involves the Chebyshev expansion
of the time-evolution operator. Comparison of the two methods
[9,10] indicates that the methods are comparable in efficacy;
depending on the circumstances one performs better than the
other. Unlike the Chebyshev expansion approach the GCN
method is explicitly unitary.

Examples of the calculations which correspond to real
systems abound in the literature. In the last few years one has
found discussions, for example, involving the analysis of the
Landau-Zener transitions in a spin-orbit coupled BEC [11],
the numeric simulation of photoionization of many-electron
atoms [12], the α-decay in ultra-intense laser fields [13], etc.

In this paper we consider numerical solutions to the
one-dimensional time-dependent Schrödinger equation with
different spatial step sizes in different regions of the com-
putational space. Such step-size adaptation would allow for
discontinuities of the potential or for efficient calculation by
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using small step sizes where there is much variation of the
solution and large step sizes in regions of little to no variation.
We use the Padé approximant expression for the time-evolution
operator [3] and consider spatial subdomains within which
equal steps are defined. For the spatial integration we perform
a Numerov procedure [14]. The Numerov method, often used
for stationary state equations, connects the wave function
at three adjacent points, which makes it ideal for crossing
points of changing step size. Furthermore the Numerov method
is O(h6), where h is the spatial step size. This makes it
more accurate than the three-point relation of the traditional
Crank-Nicolson method.

The paper is organized so that Sec. II presents the general
formulation, and Sec. III applies and evaluates the method
using a superlattice consisting of square barriers. In Sec. IV
the method is used for a numerical study of the decay of a
particle through a δ-shell potential. Concluding comments are
given in Sec. V.

II. GENERAL FORMULATION

We wish to determine the numerical solution of the time-
dependent Schrödinger equation

H�(x,t) = i
∂

∂t
�(x,t), �(x,t0) = �(x), (1)

where �(x) is the normalized wave function at initial time t0.
The time-independent Hamiltonian is

H = − �
2

2m

∂2

∂x2
+ V (x), (2)

where V (x) is the potential energy function with a finite
number of discontinuities. The wave function at time t + �t

is connected to the one at t by the time-evolution operator
exp(−iH�t/�):

�(x,t + �t) = e−iH�t/��(x,t). (3)

We make a Padé-approximant expansion of the time-
evolution operator [3]

e−iH�t/� =
M∏

s=1

K (M)
s + O[(�)2M+1], (4)
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where

K (M)
s = 1 + (iH�t/�)/z(M)

s

1 − (iH�t/�)/z̄(M)
s

. (5)

The complex quantities z(M)
s ,s = 1, . . . ,M are the zeros of

numerator of the [M/M] Padé approximant of the function
ez. We denote z̄ as the complex conjugate of z. We discretize
the time t so that tn = t0 + n�t,n = 0,1,2, . . . , so that

�n+1 = e−iH�t/��n =
(

M∏
s=1

K (M)
s

)
�n + O[(�t)2M+1],

(6)
where �n(x) = �(x,t0 + n�t). As in our previous work [3]
we find it convenient to calculate �n+1 from �n iteratively
by defining intermediate functions �n+s/M,s = 0, . . . ,M such
that

�n+s/M = K (M)
s �n+(s−1)/M, s = 1, . . . ,M. (7)

Since K (M)
s are unitary operators, all intermediary functions

are normalized.
At each stage of the problem the basic structure of the

equation to be solved is

ψ(x,t − 2�t/z) = 1 + (iH�t/�)/z

1 − (iH�t/�)/z̄
ψ(x,t) (8)

or (
1 − i�t

�z̄
H

)
y(x,t) =

(
1

z̄
+ 1

z

)
ψ(x,t), (9)

where we have defined

y(x,t) = ψ(x,t − 2�t/z)

z̄
+ ψ(x,t)

z
(10)

and z is the generic z(M)
s [15]. Note that

∑M
s=1

1
z

(M)
s

= − 1
2 , so

that after the M iterations of Eq. (7) the time advance is exactly
�t [4].

Equation (9) allows us to determine ψ(x,t − 2�t/z) from
ψ(x,t). This yields an equation of the type

y ′′(x,t) = g(x)y(x,t) + f (x,t) (11)

for given t and �t/z, where

g(x) = 2m

�2
V (x) + i

2mz̄

��t
,

f (x,t) = −i
2mz̄

��t

(
1

z̄
+ 1

z

)
ψ(x,t). (12)

The double prime refers to the second partial derivative
with respect to x. It should be noted that, although we are
concentrating on the x dependence of the function f (x,t),
it also depends explicitly on t whereas g(x) does not. If we
consider a local partition of x, say, . . . ,xj−1,xj ,xj+1, . . . , over
a smooth region, we use the Numerov method to obtain a finite
difference relation; i.e., since y ′′(xj ) = g(xj )y(xj ) + f (xj ) or
y ′′

j = gjyj + fj with xj+1 − xj = xj − xj−1 = h, we have

wj+1 =
(

2 + h2 gj

dj

)
wj − wj−1 + h2 fj

dj

+ O(h6), (13)

where

wj = djyj − 1
12h2fj , dj = 1 − 1

12h2gj . (14)

For convenience of the notation we have dropped the explicit
t dependence; it is assumed that t remains constant. Hereafter
we denote a point of discontinuity of the potential and a
point at which the spatial step size changes, simply as a
point of discontinuity. For the regions of x with no points
of discontinuity we use the notation of Goldberg et al. [1] and
Moyer [14]. The advantage of the Numerov method is that it
yields a three-point difference formula, rather than the n-point
formula of Refs. [3,10,16]. A three-point formula is convenient
for crossing a point of discontinuity. Another useful feature of
the Numerov method is that it leads to a result whose error is
O(h6) as compared to O(h3) for the Crank-Nicolson method.

We now consider a partition over the full range of x

values, i.e., x0,x1, . . . ,xj−1,xj ,xj+1, . . . ,xJ . We have chosen
the partition so that the points of discontinuity occur at points
xs of the partition. For a proper solution we must ensure that
both y and y ′ of Eq. (11) are continuous. In the following we
let the step sizes change at x = xj = xs and assume that the
step size is h− to the left of xs and h+ to the right of xs . We
make the following expansions:

y(x ± h±) = y(x) ± h±y ′(x) + 1

2
h2

±y ′′(x) ± 1

3!
h3

±y ′′′(x)

+ 1

4!
h4

±yiv(x) ± 1

5!
h5

±yv(x) + O(h6
±). (15)

Using Eq. (11) and its derivatives we can express the higher-
order derivatives of y(x) in terms of y(x) and y ′(x):

y ′′ = gy + f,

y ′′′ = g′y + gy ′ + f ′,

yiv = (g′′ + g2)y + 2g′y ′ + gf + f ′′,

yv = (g′′′ + 4gg′)y + (3g′′ + g2)y ′ + 3g′f + gf ′ + f ′′′.

(16)

By defining ys−1 = y(xs − h−) and ys+1 = y(xs + h+) we
obtain

ys±1 = E±
s ys − D±

s y ′
s + F±

s , (17)

where

D−
s = h− + 1

6
h3

−gs − 1

12
h4

−g′
s + 1

120
h5

−
(
3g′′

s + g2
s

)
,

E−
s = 1 + 1

2
h2

−gs − 1

6
h3

−g′
s + 1

24
h4

−
(
g′′

s + g2
s

)
− 1

120
h5

−(g′′′
s + 4gsg

′
s),

F−
s = 1

2
h2

−fs − 1

6
h3

−f ′
s + 1

24
h4

−(gsfs + f ′′
s )

− 1

120
h5

−(3g′
sfs + gsf

′
s + f ′′′

s ). (18)

The expressions for D+
s , E+

s , and F+
s are obtained from the

negative superscripted quantities in Eq. (18) by replacing h− by
−h+. For D+

s ,E+
s ,F+

s all the derivatives and gs are evaluated
on the right of xs and for D−

s ,E−
s ,F−

s they are evaluated on the
left of xs . Since we use the three-point formula to step through
the partition, whether we step from the right or from the left
we reach the point xs with value ys . As we cross this point
we begin a three-point recursion with this value of ys , but also
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need to have one of ys±1 in order to restart the recursion. This
quantity is obtained by demanding that y ′

s is the same on both
sides of xs . From Eq. (17) we get

ys+1 − E+
s ys − F+

s

D+
s

= ys−1 − E−
s ys − F−

s

D−
s

. (19)

This relation can be used to make the crossing of a point of
discontinuity in either direction.

We use the recursion of wj , Eq. (13), to obtain yj :

yj = wj

dj

+ 1

12
h2 fj

dj

. (20)

When j = s we need to specify whether the quantities refer
to the region x � xs or x � xs since w(x) [unlike y(x)] is not
continuous at xs . Thus

w±
s = d±

s ys − 1

12
h2

±fs,

w+
s = w−

s + (d+
s − d−

s )ys − 1

12
(h2

+ − h2
−)fs, (21)

w−
s = d−

s

d+
s

w+
s − 1

12
(d+

s h2
− − d−

s h2
+)

fs

d+
s

,

where we have used ys = w±
s

d±
s

+ 1
12h2

±
fs

d±
s

to obtain the last
equation. Writing Eq. (19) in terms of values of w, we obtain
the connecting formula for w+

s and w−
s :

1

D+
s

[
ws+1

ds+1
+ 1

12
h2

+
fs+1

ds+1
− E+

s

(
w+

s

d+
s

+ 1

12
h2

+
fs

d+
s

)
−F+

s

]

= 1

D−
s

[
ws−1

ds−1
+ 1

12
h2

−
fs−1

ds−1

−E−
s

(
w−

s

d−
s

+ 1

12
h2

−
fs

d−
s

)
− F−

s

]
. (22)

For the purpose of this paper we assume that the physical
system is totally contained in the allotted space and that
�(x0,t) = �(xJ ,t) = 0. In that case it is convenient to
reformulate the three-point relation of the wj , Eq. (13), into
two-point relations of two quantities ej and qj [1]. These
quantities are defined through the relation

wj = ej−1wj−1 + qj−1. (23)

Where there is no point of discontinuity,

ej = − 1

ej−1
+ 2 + h2 gj

dj

, qj = qj−1

ej−1
+ h2 fj

dj

. (24)

At a discontinuity,

ws+1 = e+
s w+

s + q+
s , ws−1 = w−

s

es−1
− qs−1

es−1
. (25)

Inserting these expressions into Eq. (22), we get an expression
which includes linear terms in w+

s and w−
s . Insertion of the last

equation of Eq. (21) yields an equation which is linear in w+
s

only. Equating the coefficients of w+
s we obtain an expression

for e+
s :

e+
s = ds+1

d+
s

[
E+

s + D+
s

D−
s

(
d−

s

es−1ds−1
− E−

s

)]
. (26)

The remaining terms in the equation, i.e., the coefficients of
(w+

s )0, yield

q+
s = − 1

12
h2

+fs+1 + 1

12
E+

s h2
+

ds+1

d+
s

fs + ds+1F
+
s

+ ds+1
D+

s

D−
s

[
− 1

12

1

es−1ds−1
(d+

s h2
− − d−

s h2
+)

fs

d+
s

− qs−1

es−1ds−1
+ 1

12
h2

−
fs−1

ds−1
− F−

s

+ 1

12

E−
s

d−
s

(d+
s h2

− − d−
s h2

+)
fs

d+
s

− 1

12
E−

s h2
−

fs

d−
s

]
. (27)

Given that the x integration is a two-point boundary
condition problem, we start with e0 = ∞ [14] and q0 = 0
since �(x0,t) = 0 giving w0 = 0. We then use the forward
recursion, Eq. (24), until we reach the first point of disconti-
nuity, xs . We will have obtained e−

s and q−
s , from which we

calculate e+
s and q+

s using Eqs. (26) and (27). These are used as
initial values for further recursive evaluations using Eq. (24).
We continue until we reach the next point of discontinuity and
repeat the procedure until we reach eJ−1 and qJ−1. Having
obtained ej ,qj , for j = 0, . . . ,J − 1, we follow with the
backward recursion, wj−1 = (wj − qj−1)/ej−1, starting with
wJ = 0 since �(xJ ,t) = 0. At a point of discontinuity we will
have obtained w+

s = (ws+1 − q+
s )/e+

s , and using the last of
Eq. (21), we calculate w−

s . We continue with the backward
recursion until the next point of discontinuity, and repeat
until we reach w0. It should be noted that during the forward
recursion we store e+

s and q+
s in memory since these are needed

in the backward recursion. Because of the structure of the
discontinuity relations we do not need e−

s and q−
s . In this way

the numerical function y(x,t) = ψ(x,t − 2�t)/z̄ + ψ(x,t)/z
is obtained from w, and since ψ(x,t) is the input, ψ(x,t −
2�t/z) is determined.

III. APPLICATION OF THE METHOD TO
SUPERLATTICES

Superlattices are layered structures by which particles
(electrons) are reflected or transmitted. We consider the
one-dimensional model of particle impinging normally on
such structure. A simple example would be that of a simple
seven-layered structure modeled by the potential

V (x) =
⎧⎨
⎩

V0, d1/2 � |x| � d1/2 + d2

V0, 3d1/2 + d2 � |x| � 3d1/2 + 2d2

0, otherwise.
(28)

This models a GaAs/AlGaAs superlattice with the barriers
representing the AlGaAs layers and the wells the GaAs layers
[17]. We choose parameters close to ones used in Refs. [17,18],
i.e., d1 = 6.50 nm, d2 = 2.54 nm, V0 = 290 meV, and m =
0.071me, where me is the free electron mass.

A. Comparison of transmission probabilities
from time-independent and time-dependent calculation

We allow wave packets with fairly sharp energy definition
(hence very broad in space) to impinge on the superlattice. The
computational space ranges from −10 000 to 10 000 nm. The
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initial wave function is

�(x,0) = 1√
α
√

2π
exp [−(x − xi)2/(2α)2 + ik0(x − xi)],

(29)
where xi = −5000 nm and α = 1000 nm. Thus the spatial
width of the packet is �x = 2α = 2000 nm, and the momen-
tum uncertainty is �k = 0.0005 nm−1, giving an energy un-
certainty of �E = 1.100 × 10−3˜nm−2 = 8.384 × 10−2 meV.
The incident electrons have energies E = 45, . . . ,75 meV in
steps of 1 meV. We calculate the reflection and transmission
probabilities as

R =
∫ −d

x0

|�(x,tlarge)|2 dx, T =
∫ xJ

d

|�(x,tlarge)|2 dx,

(30)
where d = 3d1/2 + 2d2 is the range of the potential region
and tlarge is a time large enough so that the wave function has
become negligible in the potential region, but not so large that
the transmitted and the reflected wave packets have reached
the boundary of the computational space.

We also calculate the stationary state transmission and
reflection probabilities by solving numerically the variable
amplitude equations [19–21]

u′(x) = 1 − 2iku(x) − 2mV (x)u(x)2,

q ′(x) = −2ikq(x) − 2mq(x)V (x)u(x),
(31)

where we integrate from the right of the potential region,
from a � d to b � −d with the initial conditions u(a) =
(2ik)−1 and q(a) = exp(−2ika)/(2ik). The reflection and
transmission amplitudes are, respectively,

ρ(k) = e2ikb[2iku(b) − 1], τ (k) = 2ikq(b)e2ikb. (32)

These differential equations are straightforward to solve
numerically, even with potential discontinuities, and yield very
accurate solutions. In Fig. 1 we plot an continuous curve of
|τ (k)|2 versus the energy, and we plot T as obtained from
the time-dependent Schrödinger equation at discrete energies
in the first transmission band. The agreement of the two
calculations is excellent.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 45  50  55  60  65  70  75

T,
 |τ

|2

E (meV)

TD calc.
TI calc.

FIG. 1. Transmission coefficient calculated using the time-
dependent (TD) and the time-independent (TI) calculations.

B. Wave function

It is instructive to make a detailed examination of the wave
function at various times as the packet traverses the potential
region. We consider a wave packet with energy near which total
transmission occurs: E = 54.2 meV. In Fig. 2 we show the
probability density at t = 0,55dt,85dt,125dt where dt = 15.
The wave packet evolves in time as it travels through the
potential region. It is very wide compared to the range of the
potential so that its energy spread is very small. Since we are
near the resonance energy the wave packet becomes “trapped”
in the potential region for a time and then emerges mostly as
a transmitted packet. The tunneling time can be inferred by
comparing the position of the transmitted packet to that of a
packet that traveled through the same region when the potential
is zero, i.e., the blue (leading) curve.

Of interest is the shape of the wave function that is in
the potential region; it seems to have an unchanging shape,
while its amplitude increases and decreases as the packet
passes through the potential. The energy range shown in Fig. 1
corresponds to the first transmission band consisting of three
peaks. The energy E = 54.2 meV corresponds to the energy of
the first of these peaks. As the wave function is momentarily
trapped, the wave function is approximately that of lowest
(quasi-) bound state, i.e., the ground state when the outside
barriers have infinite width.

C. Error calculations

The error can be defined as

(e2)2 ≡
∫ xJ

x0

dx |�(x,t1) − �exact(x,t1)|2, (33)

which assumes the exact solution is known. In the case that
the exact solution is not known, we could follow an approach
where we compare the solution for a particular value of M

to the one for M + 1 [10] and define an error in terms of the
difference of those solutions. However for our purpose here,
we modify the definition of e2 by considering the highest M-
value approximation as the “exact” solution and define

(ηM )2 ≡
∫ xJ

x0

dx |�(M)(x,t1) − �(Mmax)(x,t1)|2 (34)

as an estimate of the accuracy of the solution. We consider
again the wave scattering from the superlattice described in
Eq. (28), but we use a narrower (in space) wave packet in order
to reduce the computational space. For parameters we choose
α = 10, and x0 = −500, xi = −200, and xJ = 500, and we
evaluate the wave function up to a maximum time of 90 units.
In this case the energy range of the wave packet is large enough
that the transmission is not unity, and the wave function in the
potential does not display the symmetry behavior of Fig. 2.
For an animation of the traveling wave packet, see Ref. [22].
To be specific, the space is divided into regions bounded by
the discontinuities of the potential, as shown in Table I, where
we list the numbers for the most accurate calculation, i.e., the
lowest graph in Fig. 3. The quantity s labels the regions from
left to right, ns the number of spatial steps in region s, hs the
corresponding step size, and xs the upper boundary of that
region.
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,t)
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0

0.01

0.02

0.03
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|ψ
(x

,t)
|2

x
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 0.0002
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|ψ
(x
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|2

x(d)

t = 125dt

FIG. 2. The wave packet being scattered by the superlattice. Its energy is 52.4 meV; the distance units are nm, and dt = 15. The calculation
employs M = 10. The solid red line represents the square of the magnitude of the wave function, the dash-dotted blue line is the magnitude of
the square of the wave in the absence of the potential, and the dashed brown lines represent the superlattice potential. The time is indicated in
each of the four subfigures. See Ref. [27] for an animation of this figure.

Figure 3 shows the errors as a function of M where we
have chosen Mmax = 20. In each case we choose dt = Mdt0.
This ensures that on a particular graph points joined by a
line correspond to calculations which take approximately the
same CPU time. Remarkably one can obtain much more
accurate solutions than the traditional M = 1 case, or even
more so the traditional Crank-Nicolson calculation, with the

TABLE I. Parameters for the error calculations.

s ns hs xs−1 xs

1 5,000 0.009703 −500 −14.83
2 250 0.010160 −14.83 −12.29
3 650 0.010000 −12.29 −5.79
4 250 0.010160 −5.79 −3.25
5 650 0.010000 −3.25 3.25
6 250 0.010160 3.25 5.79
7 650 0.010000 5.79 12.29
8 250 0.010160 12.29 14.83
9 5000 0.009703 14.83 500.00

10-12

10-10

10-8

10-6

10-4

10-2

1

 0  5  10  15  20

ηM

M

h = 0.01, dt0 = 0.05 (C = 1800)
h = 0.1, dt0 = 0.05 (C = 180)
h = 0.05, dt0 = 0.4 (C = 40)

h = 0.1, dt0 = 1.0 (C = 8)

FIG. 3. Error as function of M . The parameters of the lowest
curve are given in Table I. The other cases have numbers of intervals
ns divided by 2 or 10. The errors are calculated when t = 90. The
symbol C refers to the approximate CPU time.
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same computational effort. For the most accurate case shown
the error is reduced by 10 orders of magnitude. Furthermore,
in that case, even though we have chosen values of M up to
20, saturation sets in at around M = 5, and further increases
of M do not lead to further improvement of the accuracy. The
starred graph, however, is one in which the precision increases
for every increase in M up to 20. An approximate relative CPU
time is given for the calculation for each type of point on the
graph. Where two curves intersect one could select the more
precise calculation with the smaller CPU time. The one such
point on the graph shows a possible reduction in CPU time by
at least a factor of four. Exploration of the input parameters
allows one to optimize the precision and computational
efficiency.

IV. DECAY THROUGH A δ-FUNCTION BARRIER

A system which has a discontinuous potential resulting in
a discontinuity of the spatial derivative of the wave function
is the δ-function potential. A simplified model of α decay has
a particle initially trapped in the S partial wave of an infinite
square well of radius a. At t = 0 the well is replaced by a
repulsive δ-shell potential at the square well’s edge [23,24]. In
this three-dimensional system the calculation is limited to the
S-state partial wave for which the potential is

V (r) = �
2

2ma
λδ(r − a) for r � 0. (35)

Then Eq. (11) generates a discontinuity condition at r = a,

y ′(a+,t) − y ′(a−,t) = λ

a
y(a,t), (36)

which in fact replaces the potential. Equation (19) becomes

ys+1 − E+
s ys − F+

s

D+
s

= ys−1 − E−
s ys − F−

s

D−
s

+ λ

a
ys (37)

when rs = a and retains its original form for other values of s

where the step length changes.
In order to compare the numerical results to the analytic

ones of Refs. [24,25], we set � = 1 and m = 1/2. The model
parameters are a = 1 and λ = 3. The initial wave function is

ψ(r,0) = φk(r) ≡
√

2/a sin(kπr/a)θ (a − r)θ (r), (38)

where k is a natural number. It should be noted that for the S

partial wave ψ(0,t) = 0 for all t . The wave functions for t = 3,
a time much longer than the half-life, are in good agreement
[26] as is evident in Fig. 4. In fact, the graphs of the numerical
and analytic solutions are indistinguishable. We calculate the
error using expression (33) where the exact solution is the
analytic one given in Refs. [24,25]. The error is e2 = 8 × 10−3.
Actually the analytic solution consists of series over the zeros
of the Jost function (or poles of the S matrix). The series
do not converge very rapidly; in our calculation we allow up
to one million poles to contribute. We also calculate η19 =
1 × 10−3, where Mmax = 20, indicating that the precision of
the numerical solution in this case is greater than the analytic
solution with a finite (but large) number of terms in the series.

In Fig. 5 we show the propagation of the escaping wave
packet at increasing times.

-0.4

-0.3

-0.2

-0.1

 0
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 0.2

 0.3

 0.4

 0  5  10  15  20  25  30  35  40

ψ
(r

,3
)

r

Re ψ
Im ψ

|ψ|

FIG. 4. The real part, the imaginary part, and the absolute value
of the wave function in the region where it is dominant at time t = 3.
The parameters of the system are λ = 3, a = 1, and k = 1.

The horizontal axis is a logarithmic scale. With increasing
time the maximum amplitude of the packet decreases and
its width increases. The Supplemental Material includes a
animation of the time evolution of the decaying wave packet
[27].

We also calculate the nonescape and survival probabilities
as a function of time:

Pne(t) =
∫ a

0
|ψ(r,t)|2 dr,

Psurv(t) =
∣∣∣∣
∫ a

0
ψ(r,0)ψ(r,t) dr

∣∣∣∣
2

. (39)

The curves shown in Fig. 6 are typical for a system like
this [25]. The exponential decay dominates the process for the
initial five or so half-lives; the half-life for the system T1/2 is

 0

 0.05

 0.1

 0.15

 0.2
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 0.3

 0.35

 0.4

 1  10  100

|ψ
(r

,t)
|

r

t = 2
t = 4
t = 6

t = 8 
t = 10 

FIG. 5. The magnitude of the wave function at increasing times.
Note that logarithmic scale along the horizontal axis. The parameters
of the system are λ = 3, a = 1, and k = 1. See Ref. [27] for an
animation of this figure.
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FIG. 6. Nonescape and survival probabilities as a function of time
when λ = 3 and a = 1. The initial state has k = 1.

approximately 0.638 time units. Then as the system transitions
from exponential decay to inverse power decay law, i.e., t−3,
there is significant fluctuation, which means, remarkably, that
the current is negative for short times. The sign reversal of the
current indicates that at certain times the particle probability
inside the potential region increases. This feature was pointed
out in Ref. [23].

The initial wave function is an eigenstate of the infinite
square well potential. The ground state corresponds to k = 1,
the first excited state to k = 2, etc. Thus if we consider k = 2
for the initial state, the system starts out with higher energy.
The decay curves for such a system are shown in Fig. 7. The
system decays out of the excited state and, besides generating
an outgoing wave, it also populates the ground state. When
there still is an appreciable excited-state component the decay
rate is relatively fast; when it is depleted the system decays
from the ground state much with the same characteristics
as if it had started from the ground state. One obtains two
different exponential decay curves with some fluctuation when
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FIG. 7. Nonescape and survival probabilities when k = 2. The
inset gives the graph zoomed in for small times. Note that it also
shows the probability of the particle being in state φ1(r) as a function
of time.

the system switches from one exponential decay relation to the
other. Similar behavior was shown in an exact calculation by
Garcia-Caldéron et al. [28].

V. CONCLUSION

The Padé approximant of the time-evolution operator com-
bined with Numerov method of spatial integration provides
an approach for determining accurate solutions of the time-
dependent Schrödinger equation. Interestingly the precision
can be improved over the traditional Crank-Nicolson method
by more than 10 orders of magnitude using approximately the
same amount of computing resources, i.e., memory and CPU
time.

The applications display results for simple models. How-
ever, there is no reason that for more realistic calculations, such
as those including antireflecting coatings for the superlattices
(see, e.g., Refs. [18,29,30]), the results would be less precise.
A similar statement can be made about the decaying quantum
system. More complicated barriers of finite width would be
amenable to the analysis of this paper.

It should be noted that the approach, in principle, does
not limit the number of discontinuities of the potential in
computational space. To be practical, however, there needs
to be a finite distance between adjacent discontinuities.
Thus the restriction on the number of discontinuities of the
potential is that there are at most a countable infinity of
them.

To reduce computational effort one often introduces trans-
parent boundary conditions at the edge of the computational
space, so that wave packets are allowed to exit without
reflection and altering the wave function in the region
of interest [14,31,32]. We have not used such conditions
because we wanted to study the wave function outside
the potential region, especially for the decaying systems.
Nevertheless, the numerical method allows us to investigate
the transparent boundary conditions especially when there is
a fluctuating current at potential edge. We leave this for future
consideration.

Further investigation will deal with the application of the
method to two- or three-dimensional systems using the Alter-
nating Direction Implicit method of Peaceman and Rachford
[33]. The applicability of the method to multichannel problems
[34] and nonlinear and time-dependent potentials [4] is also
a topic of later study. In particular the study of an equation
with a cubic nonlinearity may be of interest for BEC under
a superlattice. In Ref. [4] it is shown that the nonlinear term
could be included as a nonhomogeneous term and equations
like Eq. (8) result with ψ containing an additive term which
depends on the wave function. A self-consistent iterative
procedure was shown to be feasible. This is a natural and
significant extension of the current research with discontinuous
potentials.
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