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Stochastic model of nanomechanical electron shuttles and symmetry breaking
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Nanomechanical electron shuttles can work as ratchets for radio-frequency rectification. We develop a full
stochastic model of coupled shuttles, where the mechanical motion of nanopillars and the incoherent electronic
tunneling are modeled by a Markov chain. In particular, the interaction of their randomness is taken into
account, so that a linear master equation is constructed. Numerical solutions from our fast approximate method
and analytical derivation reveal the symmetry breaking, which results in the direct current observed in earlier
measurements [Phys. Rev. Lett. 105, 067204 (2010)]. Additionally, the method can facilitate device simulation
of more complex designs such as shuttle arrays.
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I. INTRODUCTION

Nanoelectromechanical systems have attracted significant
interest in the past decade because they can provide a
number of promising applications [1]. Among them, the
nanomechanical electron shuttle proposed by Gorelik et al.
is an outstanding example that received considerable theoret-
ical [2–22] and experimental [23–34] attention. The shuttle
is typically realized by metallic islands, quantum dots, or
large molecules and can be excited by a radio-frequency
(RF) voltage so that electrons are shuttled between electrodes.
Due to strong nonlinear electro-mechanical coupling, such
devices can be used as RF modulators or as a high-frequency
current ratchet. It was shown that single and, more effectively,
coupled electron shuttles can rectify applied RF signals and
give rise to a direct current that may be used to power
electronic devices [21,22,31–33]. While previous theoretical
studies provide fundamental insights into the physics, we are
still unable to make accurate predictions on the device level.

In this paper, we focus on modeling coupled electron
shuttles that would greatly favor energy scavenging. As shown
in Fig. 1(a), the coupled electron shuttles oscillate between
the source and drain electrodes with alternating voltage
V (t) (additional gate electrodes with constant charges can
be applied), triggering nonresonant electron tunneling. The
size of shuttles is generally 1–100 nm, and they work at
room temperature. Figure 1(b) shows a typical design where
the oscillation of shuttles is restrained by the supporting
nanopillars’ eigenmodes. Thus, we develop a new model based
on the semiclassical stochastic theory that enables analytical
and numerical analysis of the device. This is important
for designing practical energy scavengers, where arrays of
electron shuttles are coupled to generate an appreciable output
current.

Because the incoherent tunneling is dominant in such
scenarios [35], the electron tunneling and the shuttle oscillation
in the system can be modeled as a continuous stochastic
process. Thus, a semiclassical statistical model is more
suitable than the full quantum-mechanical treatments [15–19],
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which work better for coherent devices. In the following, we
develop a linear master equation describing the probability
distribution of the electron numbers in the shuttles. Although
the probability distribution was widely discussed in previous
studies on the single shuttle [2,3,8–14], most approaches
describe the mechanical oscillation by deterministic variables
and their master equation is nonlinear.

Ahn [21] and Prada [22] extended such approaches to
pioneer the modeling of the coupled shuttles. In contrast to
some earlier models [6–11,14], they allow electron numbers
in a shuttle to be greater than one. Our model follows their
assumptions, but the linear master equation enables further an-
alytical study. More importantly, we propose the approximate
deterministic equations for the mean and deviation of physical
quantities, from which we can compute the macroscopic direct
current. This brings the large-scale device simulation to a level
of acceptable speed and accuracy.

II. FULL STOCHASTIC MODEL

We describe the displacement and velocity of the sth shuttle
(s = 1,2) at the time t by random variables x̃s(t) and ṽs(t),
and describe the number of net electrons in the shuttle by the
integer-valued random variable ñs(t). For simplicity, we write
them by vectors x̃(t),ṽ(t), and ñ(t) [typically “(t)” is omitted
in the following]. We assume these three random variables are
sufficient to describe the immediate state of the system and
evolute as a Markov chain. The mean of a random variable
is noted by a bracket, e.g., 〈x̃(t)〉 or simply 〈x̃〉. Also we
assume a constant number of electrons on the gate electrodes
noted by vector nG. We use P (n,x,v,t) to describe the joint
probability distribution function (PDF) of ñ(t), x̃(t), and ṽ(t),
whose variables n,x, and v have the same value range as these
random variables.

Assuming the sth pillar has an eigenfrequency ωs , effective
mass ms , and damping coefficient γs = ωs/Q with Q being the
quality factor, we have x̃s(t) and ṽs(t) satisfying the following
stochastic differential equations:

dx̃s/dt = ṽs ,

dṽs/dt = −γsṽs − ω2
s x̃s + Fs(ñ,t)/ms, (1)
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FIG. 1. (a) Coupled nanomechanical electron shuttles, set with
electrodes S, D and optionally G1, G2, oscillate under driving voltage
and have electrons tunneled. (b) Side view of a typical design where
shuttles are on top of nanopillars.

where Fs is the electromagnetic force on the sth shuttle
and can be approximated as a function of ñ(t) and V (t).
Since the probability distribution of ñ(t) is unknown, we
cannot simply solve the equations to describe x̃s(t) and ṽs(t).
Instead, assuming P (n,x,v,t) changes to P (n′,x′,v′,t ′) after
infinitesimal time �t = t ′ − t , from Eq. (1) which implies
deterministic change of motion, we can write the conditional
probability in the form of Dirac delta functions:

P (x ′
s ,v

′
s ,t

′|n,x,v,t) = δ(x ′
s − xs − vs�t)

· δ
(
v′

s − vs + [
γsṽs + ω2

s x̃s − Fs(ñ,t)/ms

]
�t

) + o(�t),
(2)

where o(�t) denotes a high-order infinitesimal of �t .
Another mechanism restraining the PDF besides the me-

chanical motion is the tunneling of electrons, which can be
modeled by the orthodox model [6]. The components of
n − n′ are limited to ±1 and 0 for considering single electron
tunneling at each step. Technically we define a vector μ,
whose components μj denote the number of electron tunneled
through the j th junction (j = 1,2,3) and can be 0 and ±1. We
also define

T =
⎡
⎣ 1 0

−1 1
0 −1

⎤
⎦, (3)

so that n = n′ − μT and note its j th row by a vector T j . The
transition probability of μj electrons tunneling through the j th
junction is

P (μj ,t
′|n,x,t) =

{
�±

j �t, μj = ±1,

1 − (�+
j + �−

j )�t, μj = 0,
(4)

where

�±
j (n,x,t) = e−x·T j /λj

q2R0
j

U±
j

1 − e−U±
j /kBT

(5)

is the forward or backward (+ or −) tunneling rate of electrons
through the j th junction, wherein R0

j is the unperturbed
tunneling resistance from the mechanical motions, λj is
the tunneling wavelength, T is the temperature, kB is the
Boltzmann constant, and U±

j denotes the change of electro-
magnetic energy due to the tunneling.

The electromagnetic field can be modeled by the partial
capacitance matrix due to the geometry that makes the induc-
tance (or variation of the magnetic energy) negligible. Thus,
the energy EC stored in the field should be a homogeneous
second-order polynomial of the charges qn(t),qnG and the

applied voltage V (t), with coefficients associated with the
partial capacitance. Comparing the formula of EC before and
after the tunneling, we obtain the unperturbed U±

j :

U±
j (n,t) = −E0

j ∓ (E0�j ) · (n − nG B) ± qκjV (t), (6)

where E0
j is the j th component of E0 (j = 1,2,3) denoting

the ground-state energies, B is a unitless matrix to describe the
effect of gate bias, and κj is a unitless coefficient representing
the number of electrons pumped between the electrodes by an
outside voltage source when an electron tunnels through the
j th junction, satisfying κ1 + κ2 + κ3 = 1. Their values are de-
termined by the capacitance matrix associated with geometry
and material [36]. In addition, �j is a constant matrix:

�1 =
⎡
⎣2 1

0 −1
0 1

⎤
⎦, �2 =

⎡
⎣−1 −1

−1 1
1 1

⎤
⎦,

�3 =
⎡
⎣−1 0

1 0
−1 −2

⎤
⎦.

The electric force on the sth shuttle (s = 1,2) is Fs =
−∂EC/∂xs . Take the first-order Taylor expansion of EC and
ignore the dependence of Fs on xs . We get

Fs(ñ,t) = ñF0
s ñT + ñFG

s nT
G + nG FGG

s nT
G

+ q
(
ñ · αs + nG · αG

s

)
V (t), (7)

where F0
s ,FG

s , and FGG
s are matrices of constant force related

to geometry and material (the matrix dimensions are consistent
with their multipliers ñ or nG to make Fs a scalar), and
αs and αG

s are constant vectors representing the reciprocal
length. These parameters result from spatial derivatives of
the capacitance matrix. Note that αss , the sth component of
the vector αs , is usually much larger than other components.
If nG = 0, we could drop the small terms and use Fs

∼=
qñsαssV (t), which is linear to ñs and consistent with the
assumption in Ref. [21]. For large nG,Fs

∼= qnG · αG
s V (t) is a

fair approximation.
The white noise can be added to Eq. (7) to account for

heating effects, but its energy kBT/2 is usually far too small
compared to the electric driving vibrations.

For the first-order perturbation for x,EC should be sub-
tracted by F(n,t) · x, where F = [F1,F2] is the force vector
on shuttles. For nG = 0, we have

U±
j (n,x,t) ∼= U±

j (n,t) ∓ [
qV (t)ᾱj + nF̄0

j

] · x,

where F̄0
j = [F0

1T T
j ,F0

2T T
j ],ᾱj = T j [αT

1 ,αT
2 ]. For nG �= 0,

we further add ∓T j [FG
1 nT

G,FG
2 nT

G] · x to Uj .
Because the electron tunneling through each junction and

the mechanical motion of each shuttle are independent, we
have the Chapman-Kolmogorov equation [36]:

P (n′,x′,v′,t ′) =
∑

μj =0,±1

∫
P (n,x,v,t)

3∏
j=1

P (μj ,t
′|n,x,t)

·
2∏

s=1

P (x ′
s ,v

′
s ,t

′|n,x,v,t) d�, (8)
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where d� = dx1 dx2 dv1 dv2. From Eq. (2), (4), and (8), we
can describe the time derivative of the PDF by adopting the
limit t ′ → t . Note that a strict derivation should consider a
mixed moment of displacement and velocity instead of using
Eq. (2), which is covered by Ref. [36]. We hence build the
following master equation for P (n,x,v,t):

∂P

∂t
=

3∑
j=1

∑
±

(N̂∓T j
− 1)�±

j P +
2∑

s=1

{
γsP−vs

∂P

∂xs

+
[
γsvs + ω2

s xs − Fs(n,t)

ms

]
∂P

∂vs

}
, (9)

where the operator N̂∓T j
shifts the argument n in a function

by ∓T j . Equation (9) is a linear first-order partial differential
equation. Its boundary condition is implicit, i.e., as |ns | → ∞
or |xs | → ∞ or |vs | → ∞,P (n,x,v,t) → 0 (asymptotically
as a Gaussian function). In addition, Eq. (9) is homogeneous,
so the solution is linear with the initial condition, in which the
PDF should be normalized. Given an initial condition, we can
solve the equation to obtain a conditional PDF. Nevertheless,
we are more interested in the steady-state solution in which
the PDF becomes periodic and irrelevant to the initial PDF
after numerous periods (so that the initial condition only plays
a role in normalization). From numerical solutions, we learn
that such a PDF (at a specific time) is usually very close to a
multivariate Gaussian distribution [36]. This conclusion com-
plies with the central limit theorem under weak dependence,
because the stochastic process consists of infinite times of sin-
gle electron tunneling which are weakly dependent on others.

Although Eq. (9) with linear properties is meaningful for
analysis, it is very difficult to solve numerically with good
accuracy (like the Monte Carlo method and the method of
lines), because the PDF has as many as seven arguments.
Ignoring the generally weak correlation of ñ(t) and x̃(t) and
the relatively small variance of x̃(t), we can integrate Eq. (9)
over x1,x2,v1,v2 to transform into a simpler equation for the
marginal distribution P (n,t) = ∫

P (n,x,v,t) d�:

∂P (n,t)

∂t
=

3∑
j=1

∑
±

(
N̂∓T j

− 1
)
�±

j (n,〈x̃〉,t)P (n,t), (10)

where 〈x̃〉 can be linked to 〈Fs(ñ,t)〉 by the mean of Eq. (1). In
fact, this is equivalent to the master equation given in Refs. [21]
and [22]. The disadvantage is that the equation is nonlinear as
the relation of 〈x̃〉 and P (n,t) is implicit. Without linearity,
we can hardly discuss the analytical solution, since superpo-
sition of initial conditions and solutions are disallowed. For
numerical solutions, challenge is normalization of the PDF
and convergence and accuracy after a long time. In addition,
the approximation does not cover the resonance scenario where
max〈x̃(t)〉 
 λj .

III. DEVICE-LEVEL SIMULATION

A. Approximate solution for means and variances

We are more interested in the measurable physical quan-
tities which are the mean values of the random variables
rather than the PDF. Without solving the PDF, we can build
deterministic equations for the mean from Eq. (9) as well and
solve them as time-dependent functions. By multiplying ns to
both sides of Eq. (9), s = 1,2, and summing over n,x,v, we
obtain

d〈ñs〉
dt

=
3∑

j=1

Tjs〈�j (ñ,x̃,t)〉, (11)

where �j = �+
j − �−

j , and Tjs is a matrix element of T .
Let us first consider a simple approximation: use the

unperturbed 〈U±
j (ñ,t)〉 and assume its mean has an absolute

value much larger than kBT ; ignore the correlation of ñ(t) and
x̃(t) and the variance of x̃(t). Then �j (ñ,t) ≈ Uj (ñ,t)/(q2R0

j ),
where

Uj (ñ,t) = [U+
j (ñ,t) − U−

j (ñ,t)]/2

= qκjV (t) − (ñ − nG B) · (E0�j )

is a linear function of ñ. We can replace Eq. (11) by

d〈ñs〉
dt

∼=
3∑

j=1

Tjs

q2R0
j

e−〈x̃〉·T j /λj Uj (〈ñ〉,t). (12)

This can be combined with the mean of Eq. (1) to solve
〈x̃〉 and 〈�j 〉. In fact, Eq. (12) can be interpreted as a circuit
model composed by capacitors and resistors, and the model
can even more be simplified by ignoring the charging current
of capacitors (i.e., ∂〈ñs〉/∂t = 0) to comply with the adiabatic-
limit model in Ref. [21]. However, this simple circuit model
does not hold with a high-frequency excitation and is too rough
for simulation of the current.

For higher accuracy, we may assume ñs ,x̃s , and ṽs (s = 1,2)
have the multivariate Gaussian distribution. If the covariance
matrices of ñ,x̃, and ṽ are denoted by D,�, and V , respec-
tively, we can use the Taylor expansion of �±

j (ñ,x̃,t) for ñ and
x̃ near their means to obtain

〈�±
j (ñ,x̃,t)〉 ∼= 1

q2R0
j

e−〈x̃〉·T j /λj eT j �T T
j /λ2

j

·
∞∑

l1,l2=0

(∓1)l1+l2

l1! l2!
E

l1
1jE

l2
2j · Yl1+l2 (U±

j (〈n〉,〈x〉,t))Ml1l2 ,

(13)

where Yl(U ) = ∂l[U/(1 − e−U/kBT )]/∂Ul, E1j and E2j are
components of E0�j , and Ml1l2 is the l1,l2-order mixed
moment of n1,n2 following the Isserlis theorem:

Ml1l2 = 〈(ñ1 − 〈ñ1〉)l1 (ñ2 − 〈ñ2〉)l2〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑lm
k=0

l1! l2!D
l1
2 −k

11 D

l2
2 −k

22
(l1−2k)!!(l2−2k)!!

D2k
12

(2k)! , l1,l2 even

∑lm
k=0

l1! l2!D
l1−1

2 −k

11 D

l2−1
2 −k

22
(l1−1−2k)!!(l2−1−2k)!!

D2k+1
12

(2k+1)! , l1,l2 odd

0, l1 + l2 odd

, (14)
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where lm denotes the integer part of min(l1,l2)/2. We can also
build equations for the variance and the covariance:

dDss

dt
=

3∑
j=1

[
2Tjs〈�j (ñ,x̃,t)(ñs − 〈ñs〉)〉 + T 2

js〈�∗
j (ñ,x̃,t)〉],

(15)

dD12

dt
=

3∑
j=1

2∑
s=1

Tj (3−s)〈�j (ñ,x̃,t)(ñs−〈ñs〉)〉−〈�∗
2 (ñ,x̃,t)〉,

(16)

where �∗
j = �+

j + �−
j . The result of 〈�j (ñ,t)(ñs − 〈ñs〉)〉 is

similar to the right side of Eq. (13) with Ml1l2 replaced by
Ml1+1,l2 or Ml1,l2+1 according to s = 1,2.

Further, assume �s as the covariance of x̃s and ṽs ,Xs as the
covariance of x̃s and ñs , and Ys as the covariance of ñs and
ṽs . Other covariances which are between different shuttles are
generally negligible, due to small correlation between Fs(ñ,t)
and ñs ′ (s �= s ′), i.e., αss 
 αss ′ . Multiply Eq. (9) with xs and
x2

s and sum over n,x,v, so we can derive d〈x̃s〉/dt = 〈ṽs〉
and d〈x̃2

s 〉/dt = 2〈x̃s ṽs〉, respectively. By combining them, we
obtain

d
ss

dt
= 2�s. (17)

Similarly, we can build equations describing the time deriva-
tive of Ws,�s,Xs , and Ys [36]:

dWs

dt
= 2

[
− γsWs − ω2

s �s + Ys

〈fs(ñ,t)〉
ms

]
, (18)

d�s

dt
= Ws − γs�s − ω2

s 
ss + Xs

〈fs(ñ,t)〉
ms

, (19)

dXs

dt
=

3∑
j=1

Tjs〈Kj (x̃)〉
[
gjs(t)Xs − Tjs

λj

Gj (t)
ss

]
+ Ys,

(20)

dVss

dt
=

3∑
j=1

Tjs〈Kj (x̃)〉
[
gjs(t)Ys − Tjs

λj

Gj (t)�s

]

− γsYs − ω2
s Xs + 〈Fs(ñ,t)(ñs − 〈ñs〉)〉

ms

, (21)

where we define fs(n,t) = ∂Fs(n,t)/∂ns , which is a
linear function of n, Kj (x̃) = e−x̃·T j /λj and its mean

〈Kj (x̃)〉 = Kj (〈x̃〉)eT j �T T
j /λ2

j , gj (t) = 〈∂�j (ñ,t)/∂ ñ〉 with
gjs(t) being the sth component, and Gj (t) = 〈�j (ñ,t)〉 −
gj (t)diag(T j )[X1,X2]T/λj .

The model can be further refined by the nonlinear resistance
and the nonlinear vibration of nanopillars. According to the
calculation in Ref. [37], we can add a factor of (1 + βjU

2
j ) to

the conductance 1/R0
j in Eq. (5), where β ∝ (dj/λj )2 if the

tunneling length dj 
 λj .
We can combine the ordinary differential equations

Eqs. (11) and (13)–(21) and the mean of Eq. (1) together
in order to solve the mean of variables, which can be
accomplished numerically. Empirically, the order of moment
in Eq. (14) can be set to l1 + l2 � 4 for decent accuracy. For

nonresonant scenarios, we can simply set 
ss,Ws,�s,Xs , and
Ys to zero and ignore Eqs. (17)–(21) to reduce the complexity.
Another considerable approximation is that a high-quality
factor Q for the mean of Eq. (1) may be scaled down to a
smaller value by scaling up λj , in order to greatly reduce
the simulation time, as long as vibration is close to an
undamped resonance (the resonant frequency is close to the
eigenfrequency, and the electric force is usually balanced by
the damping force in the steady state). Details are discussed in
Ref. [36].

B. Current

The macroscopic current can be calculated from the mean
rate of electrons tunneling:

I (t) = C0
dV

dt
+ q

3∑
j=1

κj 〈�j (ñ,x̃,t)〉, (22)

where C0 is the equivalent capacitance seen from the electrode.
In the steady state, I (t) is periodic. Direct current Idc is a time
average of I (t) for a full period. As 〈ñ1〉,〈ñ2〉, and V (t) are
periodic, we can substitute Eq. (11) into Eq. (22) and remove
the terms with ∂〈ñ1,2〉/∂t , thus

Idc = qω

2π

∫ t0+2π/ω

t0

〈�j (ñ,x̃,t)〉 dt, (23)

where j = 1, 2, and 3 are equal. The value of Idc is usually
small compared to I (t) because the current flows in another
direction after half a period π/ω.

An important conclusion about symmetry breaking of the
current can be derived from Eq. (9). If nG = 0 and V (t) =
−V (t + π/ω), we have �±

j (n,x,t + π/ω) = �∓
j (−n,x,t)

from Eqs. (5) and (6), and Fs(n,t + π/ω) = Fs(−n,t) from
Eq. (7). Let us replace t by t + π/ω in Eq. (9) and substitute
the above relations into Eq. (9) with n replaced by −n. Then we
obtain the same equation for P (−n,x,v,t + π/ω) as Eq. (9)
indicating P (n,x,v,t),P (−n,x,v,t + π/ω) = P (n,x,v,t) in
the steady-state solution. In this case we have I (t) = −I (t +
π/ω) from Eq. (22) and no direct current.

Thus, there are two ways to break the symmetry: First is
to apply bias on the gate. If nG �= 0, we still have �±

j (n,t +
π/ω) = �∓

j (2nG B − n,t), but Fs(n,t + π/ω) �= Fs(2nG B −
n,t). Thus, I (t) �= −I (t + π/ω), which enables the direct
current. Second is to introduce even-order harmonics in V (t),
which breaks the symmetry of AC voltage after half a period,
making V (t) �= −V (t + π/ω). The wave superposition makes
use of the nonlinear transport relation. In practice, this could
be realized by natural wave distortion, introducing nonlinear
elements in the circuit, or magnifying the second-order
harmonic by the RF circuit.

In addition, as e−〈x〉·T j /λj is periodic with ω,〈ñ(t)〉 has
considerable higher-order harmonic components. Thus, the
system resonates when the frequency component is close
to both ω1 and ω2, so ω should be around ω1/l where
l = 1,2,3, . . ., and smaller l leads to stronger vibrations. This
phenomenon is known as Arnold’s tongues and was observed
in Refs. [31,32].

The direct current, as a key device characteristic, must
be obtained from accurate numerical computation, since the
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FIG. 2. Direct current versus driving frequency (with an offset
of the average eigenfrequency of the two shuttles 500 MHz),
when driving amplitude is 1 V and a second-order harmonic with
amplitude of 0.5 V introduces asymmetry. The difference of two
eigenfrequencies are varied for three curves, indicated in the legend.

value is usually so small that it is flooded by noise, and
therefore it can hardly be acquired from previous methods.
Using our fast approximate solution above, Fig. 2 plots a
typical resonant response of coupled shuttles, whose geometry
follows Ref. [31] (for simulation of capacitance and resistance)
and their eigenfrequencies are both around 500 MHz. Here
we assume that V (t) = V1 sin(ωt) + V2 cos(2ωt) with V1 = 1
V and V2 = 0.5 V. The second order harmonics (with π/2
phase difference) introduces asymmetric phases for current of
two directions. According to theoretical prediction [37] and
to match experimental results in Ref. [31], we assume the
tunneling length λj is 0.2 Å.

In addition, Fig. 3 shows how the amplitude of driving
voltage impacts on the direct current, where V1 varies from
0 to 2 V and V2/V1 varies from 0.2 to 0.5. The quasilinear
relation matches the measurement in Ref. [31]. Although the
direct current shown here is of the order of 10 pA, 109 arrays
integrated in a 1 cm2 area could provide a 10 mA order current,
which is useful to drive a device.
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FIG. 3. Peak direct current (over the frequency) versus driving
voltage amplitude V1, with different ratios of second-order amplitude
V2/V1.

IV. CONCLUSION

In conclusion, we have proposed a full stochastic model for
the coupled nanomechanical electron shuttles, focusing on the
Markovian behavior and the direct output current. By treating
the electronic and mechanical motions as stochastic processes,
we derive the linear master equation that enables analysis
of symmetry breaking. Further results show that even-order
harmonics of the driving voltage or a gate bias are necessary
for observing a direct signal. Further, we developed the
deterministic ordinary differential equations for the mean and
covariance of random variables, by assuming the multivariate
Gaussian distribution. This provides an efficient method for
device-level simulation.
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