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This paper addresses an important fundamental question: the differences between wave propagation in fractured
porous media with a uniform matrix (constant bulk modulus) and those in which the matrix is heterogeneous
with its bulk modulus distributed spatially. The analysis of extensive experimental data [Phys. Rev. E 71, 046301
(2005)] indicated that such distributions are self-affine and induce correlations at all the relevant length scales. The
comparison is important from a practical view point because in many of the traditional models of fractured rock,
particularly those that are used to study wave propagation or fit some data, the matrix is assumed to be uniform.
Using extensive numerical simulation of propagation of acoustic waves, we present strong evidence indicating
that the waves’ amplitude in a fractured porous medium with a heterogeneous matrix decays exponentially with
the distance from the source. This is in sharp contrast with a fractured porous medium with a uniform matrix
in which not only the waves’ amplitude decays with the distance as a stretched exponential function, but the
exponent that characterizes the function is also dependent upon the fracture density. The localization length
depends on the correlations in the spatial distribution of the bulk modulus, as well as the fracture density. The
mean speed of the waves varies linearly with the fractures’ mean orientation.
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I. INTRODUCTION

Two important characteristics of many field-scale (FS)
porous media, such as groundwater aquifers and oil, gas,
and geothermal reservoirs, are their broad heterogeneity and
fracture network. The heterogeneities of such formations are
manifested by broad spatial distributions of the porosity,
permeability, and elastic moduli [1–3]. Three decades ago
Hewett [4] presented strong evidence that the porosity logs
of the FS porous media in the direction perpendicular to
the bedding follows the statistics of a fractional Gaussian
noise (FGN) [5], while those parallel to the bedding follow a
fractional Brownian motion (FBM) [4], where the former is the
“numerical derivative” of the latter. Both the FGN and FBM are
self-affine stochastic functions that induce correlations with an
infinite correlation length. As FS porous media have a finite
size, an infinite correlation length implies one whose extent is
as large as the linear size of the media under study. Numerous
studies over the past three decades have shown that the
permeability [6,7] and elastic moduli [8] of FS porous media
also follow such self-affine distributions. For a comprehensive
review see Ref. [2]. Thus, any realistic modeling of an FS
porous medium must take into account the effect of such
long-range correlations in their various properties.

Many FS porous media are also highly fractured [1–3,9–
11]. Fractures are crucial to flow of fluids in FS porous media
and act as fast conduits for dispersal of contaminants in
low-permeability soils [12], and their spatial distribution is
critical to understanding tectonic motions [13–15]. They also
provide important clues to the spatial distribution of earthquake
hypocenters [16–19]. Thus, comprehensive characterization
and modeling of FS porous media entails taking into account
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the effect of the heterogeneities and their extended correla-
tions, as well as the spatial distribution of the fractures.

An important impediment to characterization of FS porous
media and, hence, their modeling is the difficulty of measuring
and collecting data for their properties. One method for
collecting such data is through well bores. During drilling
of wells in FS porous media, many properties are measured
at various depths [20–22] and recorded. These are usually
referred to as well logs. It was through the analysis of such
well logs that their aforementioned self-affine structure was
discovered. Such logs include porosity, resistivity, gamma ray,
sonic transient times, and other information.

Another method for gaining information and insight into
the structure of FS porous media is seismic experiments. An
explosion is carried out on the surface. The resulting seismic
waves, representing waves of energy, propagate throughout the
formation and are reflected by the body of the porous forma-
tion. The reflections carry information on the spatially varying
heterogeneities of the formation. By recording the reflections
and the differences in the arrival times of the primary and sec-
ondary (P and S, respectively) waves and other characteristics,
one gains information about the structure of porous formations.

The general problem propagation of waves in heteroge-
neous porous materials and media is of interest not only to
petroleum engineering but also to a wide variety of other
science and engineering disciplines, including geophysics, soil
science, oceanography, and characterization and modeling of
FS porous media. In particular, propagation and reflection
of seismic waves are used [23,24] to estimate not only the
hydrocarbon content of a potential oil reservoir, but also
the spatial distributions of its strata and fractures. Although
seismic records do not have high resolution and cannot
provide meaningful information on length scales smaller than
9–15 meter, they provide a relatively accurate picture of the
large-scale structure of FS porous media.
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In a series of papers we studied wave propagation in highly
heterogeneous media. Both acoustic [25,26] and elastic [27,28]
waves were considered, and it was assumed, in accordance
with the analysis of well logs for the same properties [8],
that the elastic constants of the media follow an FBM.
One important goal of the study was whether such waves
are localized in heterogeneous porous media, similar to the
classical problem of electron localization in disordered solids.
We found that both acoustic and elastic waves are localized in
two-dimensional (2D) heterogeneous porous media. In partic-
ular, due to localization, the wave front in 2D porous media in
which the elastic constants follow an FBM distribution takes
on [29] the shape of the rough landscape generated by the
2D FBM, with its roughness exponent being equal to the
Hurst exponent H that characterizes the FBM. Although the
one-loop dynamic renormalization group approach that we
utilized in our theoretical studies [25–28] indicated that both
acoustic and elastic waves are also localized in 3D porous
media, if the distribution of their elastic constants follows an
FBM, numerical simulation of the phenomena has not provided
an unambiguous resolution of the problem.

The question of wave localization in the FS porous media
is particularly important from a practical point of view. If the
waves are localized, then any information that their scattering
conveys over length scales that are larger than the localization
correlation length is useless and represents only statistical
noise due to the heterogeneity of the porous formations.
The localization correlation length depends, of course, on the
structure of porous media and the spatial distribution of their
heterogeneities.

In a recent paper [30] we studied propagation of acoustic
waves in a model fractured porous medium. Unlike most of the
models of fractures used in the past in which no finite thickness
was attributed to them, we represented, following Yazdi et al.
[31] (see also Refs. [32–34]), the fractures by channels of finite
lengths and thicknesses; the authors of Ref. [31] presented
strong numerical evidence that the finite thickness of the
fractures has a strong influence on the connectivity and flow
and transport properties of a fractured porous medium. In
particular, it gives rise to nonuniversal power laws for the
various properties of the system near its connectivity or
percolation threshold. In our study of propagation of acoustic
waves [30] the matrix was assumed to be uniform, but with
constant elastic constants. We found that the amplitude A of
the waves decays as

A ∝ exp[−γ (ρ,b)xα]. (1)

Here b is the fractures’ thickness, ρ is their density (volume
fraction), γ a coefficient with units of 1/(length)α , and x the
distance from the waves’ source. The most interesting aspect
of this result was that, at large distances x from the wave
source, the exponent α is not only strictly less than 1, but also
depends on both ρ and b. This is an unexpected result in that
it implies that the presence of fractures of finite length and
thickness slows down the decay of the waves’ amplitude. It
is also unlike the classical electron localization in disordered
solids in which the amplitude decays exponentially fast, i.e.,
α = 1.

Thus, the focus of this paper is on the propagation of
acoustic waves in the same type of model of fractured porous

media, but those in which the matrix is no longer uniform.
Instead, the bulk modulus of the matrix is, in accordance with
the well logs for the elastic properties of rock [8], distributed
according to an FBM. In our opinion, this would make the
model of fractured porous media that we develop a realistic
model, close to what field observations [2] and well logs
[8,20–22] suggest. We address a fundamental question: Is the
decay of the waves’ amplitude still a stretched exponential
function, or is it faster and similar to the classical electron
localization? From a practical point of view, the question
is important. If the waves’ amplitude in fractured porous
media decays slower than exponentially, the implication is that
such techniques as seismic wave propagation provide more
information about the structure of such porous media than
unfractured media. In an interesting study Garnier and Sølna
[35] explained the relation between the effective attenuation
and dispersion of an acoustic wave propagation through a
random medium on the medium’s statistics, such as its short-
or long-range correlation properties.

But, in addition to the fundamental problem of wave
localization, propagation of acoustic waves in porous media
is also of interest because of its many practical applications.
Stimulation of oil reservoirs by weak elastic waves was a
technique that was used from the 1950s to 1970s [36,37].
The interest has been revived over the past decade by the
observations that oil fields that are close to regions with
earthquakes, or even those with heavy traffic, produce more.
Thus, the idea of using waves to stimulate oil reservoirs has
been resurgent. Two types of waves have been used [38]. One
consists of high-power frequency waves that affect a reservoir
locally and are used for well stimulation. The second type
consists of low-frequency acoustic waves [38] that stimulate
an entire reservoir.

Another application of acoustic wave propagation in porous
media is to measurement of the velocity and density of the
fluids in porous formations using various techniques, such as
a double-pulse signal emitted from an ultrasonic transducer
[39]. A third application is using acoustic waves in wireless
data telemetry in oil well services. The method [40] utilizes
compressional acoustic waves to transmit data along the drill
string. To do so, coded wave trains are produced by an
acoustic transducer that travel through the drill string. They are
subsequently decoded to recover the data. Clearly the travel
time of the coded wave trains depends on the structure of
rock and in particular its heterogeneity. Sonic well logging,
which is based on propagation of acoustic waves, is used for
borehole measurements, such as estimating the porosity of a
porous formation [41]. It is also used for detecting fractures
[42,43] that intersect the well along which logging is run.

The P and S waves in a fractured porous medium interact
and mix. Thus, a study of such waves and their speed
must in principle involve the solution of the elastic wave
equation. However, studying this aspect is not our goal
in this paper. Rather, we are interested in the localization
properties of the waves and their dependence on the structure
of fractured porous media. At the same time, due to its
many aforementioned applications, as well as the fundamental
problem of wave localization, study of propagation of acoustic
waves in fractured porous media is an important and interesting
problem on its own merit. Moreover, if we view the fractures
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as high-conductivity zones in a disordered medium, then our
study also represents an attempt for understanding propagation
and localization of acoustic waves in a highly heterogeneous
solid, which is also a problem of much interest.

Before presenting the details of the work, it would be
instructive to review the previous works and their differences
with what we study in this paper. Saenger et al. [44]
introduced a numerical scheme based on a rotated staggered
computational grid to solve the wave equation but did not study
fractured porous media. Saenger and Shapiro [45] studied
wave propagation in a porous medium with thin intersecting
cracks. However, no finite dimension was attributed to the
cracks, and the crack density was low, significantly below the
percolation threshold. As our recent paper demonstrated [30],
a finite dimension of the cracks gives rise to nonuniversality
and unexpected results for flow and transport properties of
fractured porous media and fracture networks and, thus, cannot
be ignored. Saenger et al. [46] studied wave propagation
in 3D porous media with nonintersecting thin penny-shape
cracks in three dimensions that do not form a sample-spanning
percolation cluster. The critical crack density or percolation
threshold of the system that they studied is between ≈0.18 [47]
and ≈0.23 [1]. Both papers [45,46] were also concerned only
with wave velocities and testing the accuracy of the effective-
medium approximation of O’Connell and Budiansky [48].

Orlowsky et al. [49] simulated wave propagation in 2D
porous media with thin (zero cross-sectional area) parallel
fractures, which is not relevant to our study. Vlastos et al.
[50] studied wave propagation in a porous medium with short,
nonintersecting, thin (zero cross section) cracks that were more
or less parallel. In another study Vlastos et al. [51] investigated
the effect of pore pressure and carried out dual fluid flow
and wave propagation simulations, which were not, however,
coupled due to the differences in the time scales involved
in wave propagation and fluid flow. In their model the main
fractures were parallel and generated by a cellular automata
model [52]. Hall and Wang [53] studied wave propagation in
fractured porous media using an equivalent medium in which
the elastic coefficients were averaged over a fractured space.
The fractures were, however, parallel and nonintersecting.

Therefore, although a considerable amount of work has
been carried out on simulation of wave propagation in fractured
porous media, the models used in almost all cases were far
simpler and in our opinion less realistic than what we utilized
in the present paper. In addition, these works assumed that
the porous medium matrix is uniform, whereas a major goal
of the present paper is to study the effect of the heterogeneity
in the porous matrix on wave propagation.

The organization of this paper is as follows. In Sec. II we
describe the model of fractured porous media that we use in
our study. Section III presents the governing equations for
acoustic wave propagation, and the numerical technique for
solving the governing equation is described in Sec. IV. The
results are presented and discussed in Sec. V. The paper is
summarized in Sec. VI.

II. MODEL OF FRACTURED POROUS MEDIUM

Although the model that we utilize in this paper was previ-
ously described in Refs. [30–33], for the sake of completeness

we describe briefly its essential features. A 2D model is
utilized, represented by a square grid of size Lx × Ly , with
Lx = Nxa and Ly = Nya, where a is the size of the elementary
square block in the grid, and Nx = 4096 and Ny = 512 in all
of our simulations.

The matrix of the porous media is not uniform. Each
grid block is characterized by an elastic constant (bulk
modulus), selected from an FBM array. To generate the spatial
distribution of the bulk modulus of the grid blocks according to
an FBM, we used the fast Fourier transformation method. The
spectral density S(ω) of a d- dimensional FBM, the Fourier
transform of its covariance, is given by

S(ω) = a(d)( ∑d
i=1 ω2

i

)H+d/2 , (2)

where, ω = (ω1, . . . ,ωd ) is the Fourier transform variable and
a(d) is a d- dependent constant. Here H is the Hurst exponent
that controls the type of correlation. H > 1/2(H < 1/2)
indicates positive (negative) correlations in the successive
increments of the FBM, and H = 1/2 represents the Brownian
(completely random) case with no correlations between the
increments. Thus, in accordance with the analysis of extensive
data for the elastic properties and wave speeds of FS porous
media [8], we generated 2D FBM arrays of size 4096 × 512
and attributed the results to the blocks of the computational
grid as their elastic constant.

The fractures are represented by rectangles of length l

and width b. The location of the fractures’ center and their
orientation were both assumed to follow uniform distributions,
although it would impose no additional difficulty to use other
types of distributions. The width and length of the fractures
are 2a and 64a, respectively. Accordingly, the fracture number
density ρ is given by ρ = Nf /(Lx × Ly), where Nf is the
number of fractures. Periodic boundary conditions in both
horizontal and vertical directions were used to generate the
fracture network. The network is embedded in the porous
matrix and surrounded by grid blocks whose elastic constant
follows an FBM, as described earlier. Two samples of the
generated fractured porous medium are shown in Fig. 1 for
which the Hurst exponent is H = 0.5. Figure 2 presents a
sample of the fractured porous medium with a distribution of
the bulk modulus of the grid blocks in the matrix that follow
an FBM with H = 0.2.

III. GOVERNING EQUATION

Propagation of acoustic waves is described by the scalar
wave equation [23,54]

ρm(x)
∂2

∂t2
ψ(x,t) = ∇ · [K(x)∇ψ(x,t)] + S(t), (3)

where K(x) and ρm(x) are, respectively, the bulk modulus and
density of the medium at point x, and S(t) is the strength of the
source, which in our simulation is placed at the “top” of the
medium; see Fig. 1. In Eq. (3) ψ(x,t) represents the amplitude
of the wave at position x and time t . In 2D media that we study
Eq. (3) describes the transverse displacement in the system
with varying tension and mass density, or antiplane shear
in a 2D heterogeneous solid [55]. In strongly heterogeneous
media, both K(x) and ρm(x) vary spatially. In our simulation
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(a)

x

y

(b)

FIG. 1. Distribution of the bulk modulus of fractured porous
media with H = 0.5 and for (a) fracture density ρ = 2 and (b)
ρ = 4. The fractures’ length is l = 64a and their width is b = 2a.
The medium’s size is Lx = 4096a and Ly = 512a. x is the main
direction of wave propagation. Lighter colors indicate larger bulk
modulus.

the bulk modulus of the grid blocks representing the matrix is
distributed spatially according to a FBM, as described earlier.
The mass density of the porous matrix and the fractures were
taken to be 1 and 0.7, respectively. These are the typical values
that have been used in the past.

IV. NUMERICAL SIMULATION

Using the length l of the fractures as a basic length scale,
we first rescale the variables,

x ′ = x

l
, L′

x = Lx

l
, L′

y = Ly

l
, b′ = b

l
, ρ ′ = ρl2, (4)

FIG. 2. Distribution of the bulk modulus of a fractured porous
medium with a Hurst exponent H = 0.2. The medium’s size is Lx =
1024a and Ly = 512a. x is the main direction of wave propagation.
Shades of red indicate larger bulk modulus.

and for convenience drop the prime notation. To solve Eq. (3)
numerically, we use the finite-difference (FD) method with
second-order discretization for the time and fourth-order
discretization for the spatial variables, in order to avoid
numerical dispersion. The standard form of the second-order
FD approximation (accurate to �t2) is given by

∂2ψ(x,t)

∂t2
� ψ

(n+1)
i,j − 2ψ

(n)
i,j + ψ

(n−1)
i,j

�t2
, (5)

where �t is the size of the time step, taken for all the cases
to be �t = 10−2, and the superscripts denote the time step
numbers. As for the spatial derivatives, we first expand the
right side of Eq. (3):

∇ · [K(x)∇ψ(x,t)] = ∇K(x) · ∇ψ(x,t) + K(x)∇2ψ(x,t)

= ∂xK(x)∂xψ(x,t) + ∂yK(x)∂yψ(x,t)

+K(x)
[
∂2
xψ(x,t) + ∂2

yψ(x,t)
]
,

and then use the fourth-order FD discretization to obtain, for
example, for the derivatives in the x direction

∂2
xψ(x,t) � −ψ

(n)
i+2,j+16ψ

(n)
i+1,j − 30ψ

(n)
i,j +16ψ

(n)
i−1,j − ψ

(n)
i−2,j

12�x2

(6)
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and

∂xψ(x,t) � −ψ
(n)
i+2,j + 8ψ

(n)
i+1,j − 8ψ

(n)
i−1,j + ψ

(n)
i−2,j

12�x
, (7)

where �x is the spacing between two neighboring grid points
in the x direction. The accuracy of such approximations and
numerical stability of the method [56,57] were verified by
preliminary simulations in the limit of low frequencies or
wavelengths that are much larger than the linear size of the
blocks of the computational grid. We took �x = �y = a, with
the main direction of wave propagation being the x direction;
see Fig. 2. To avoid the boundary effects we used periodic
boundary condition in y direction. The discretized form of
Eq. (3) was solved with up to 44 000 time steps.

The wave source was put at every node of the grid’s first
row at x = 0 (Fig. 1), ensuring generation of a smooth initial
wave front. The source function S(t) that we used was the
pulse wave,

S(t) = A exp[−ζ (t − t0)2], (8)

where we assume A = 1 at the source points; t0 = 105�t , and
ζ = 5 × 10−5 control the waves’ wavelength and their width.
The receivers (grid points) at which the data are collected
and analyzed are distributed evenly throughout the grid along
the main direction of wave propagation. The energy of a
propagating wave is given by [55]

EP = 1

2
ρm(x)

[
∂ψ(x,t)

∂t

]2

+ 1

2
K(x)[∇ψ(x,t)]2. (9)

V. RESULTS AND DISCUSSION

We studied several characteristics of the propagating
waves in the model heterogeneous fractured porous medium
described earlier. In what follows we present and discuss the
results.

A. Decay of the waves’ amplitude

Figure 3 presents the decay of the amplitude A as a function
of the distance x from the source, fracture number densities
ρ, and the Hurst exponents H , for a constant fracture width,
b = 0.0313. It is clear that the waves’ amplitude decays rapidly
with x and follows an equation similar to Eq. (1), except that
the coefficient γ depends on ρ and the Hurst exponent H :

A ∝ exp[−γ (ρ,H )xα]. (10)

Moreover, at a fixed distance x from the source and fixed
Hurst exponent H , A decreases very rapidly with increasing
fracture number density ρ. There is also a qualitative difference
between H < 0.5 and H > 0.5. Figure 3 indicates that the
rate of decay of the wave amplitude for H < 0.5 is larger than
those for H > 0.5. The reason is the nature of the correlations:
H < 0.5 corresponds to negative correlations, large values of
the bulk modulus of grid blocks next to small values, and hence
a more heterogeneous medium that causes a more rapid decay
of the amplitudes.

We find that, α ≈ 1, independent of H and ρ. As discussed
in the introduction, in the case of a uniform matrix with
constant bulk modulus [30], we found that α < 1 and that α

is a function of the fracture density and width. The coefficient

20 40 60
−0.8

−0.5

−0.2

x

ln
A

(a)

20 40 60

−0.6

−0.4

−0.2

x

ln
A

(b)

20 40 60

−0.5

−0.3

−0.1

x

ln
A

(c)

20 40 60

−0.4

−0.2

0

x

ln
A

(d)

20 40 60

−0.4

−0.2

0

x

ln
A

(e)

FIG. 3. Decay of the wave amplitude A versus the distance x

from the source for the Hurst exponents (a) H = 0.25, (b) 0.3, (c)
0.5, (d) 0.6, and (e) 0.75. The results are for fracture density ρ = 0
(•), 1 (�), 2 (�), 3 (�), and 4 (�).

γ depends on ρ and H . For short distances x from the source
shown in Fig. 2, γ varies with ρ and H as presented in Fig. 4.
A power law fits the numerical data well:

γ = η2(H )ρη1(H ), (11)

where η1 and η2 are both functions of the Hurst exponent
H . Figure 5 presents the dependence of η1 and η2 on the
Hurst exponent H , indicating that η1 increases linearly with
increasing H , with the opposite trends for η2. Thus, overall,

10
0

10
−2

ρ

γ

FIG. 4. The coefficient γ versus fracture density ρ for the Hurst
exponents H = 0.25 (�), 0.3 (•), 0.5 (�), 0.6 (�), and 0.75 (�).
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0.25 0.5 0.75
−0.08

0.1

0.28

H

η1

(a)

0.25 0.5 0.75

0.006

0.01

0.014

H

η2

(b)

FIG. 5. (a) η1 and (b) η2 [see Eq. (11)] versus the Hurst
exponent H .

we write

A ∝ exp[−(−c1H + c2)ρc3H−c4x]. (12)

A fit of the numerical data yielded, c1 = c2 ≈ 0.02, c3 ≈ 0.64,
and c4 ≈ 0.24. Similar relations were obtained for the decay
of the amplitude A at large distances x from the source. Thus,
we write

A ∝ exp[−β(ρ,H )x] (13)

with

β = ε2(H )ρε1(H ). (14)

Figure 6 presents the coefficient β as a function of the fracture
number density ρ and Hurst exponent H , in the limit of large
distances from the source. For a fixed H , the dependence of
β on ρ is weak. The reason is that at large distances x from
the source, the waves have already sampled the structure of
the fracture network, and, therefore, it is unlikely that they
encounter any new type of local structure of the network that
they have not “seen” before.

On the other hand, the dependence of ε1 and ε2 on the Hurst
exponent H is relatively strong and is similar to that of η1 and
η2; this is shown in Fig. 7. The reason is twofold. One is that
varying H produces a wide variety of heterogeneous matrix,
particularly if H < 0.5. The second reason is linked with the
nature of the FBM. Self-affine stochastic distributions, such
as the FBM, are not self-averaging. Recall that the correlation
length of the FBM is infinite, as large as the size of the system.
That means that as the length scale of observations increases
from small to large, no scale is reached beyond which the

10
0

10
−2

ρ

β

FIG. 6. The coefficient β as a function of fracture density ρ for
the Hurst exponents H = 0.25 (�), 0.3 (•), 0.5 (�), 0.6 (�), and 0.75
(�).

behavior of the system is independent of the length scale.
Thus, as the waves sample the porous medium at larger scales,
they still “see” features in the distribution of the bulk modulus
that they had not seen at smaller scales. Thus, we write

A ∝ exp[−(−c5H + c6)ρc7H−c8x] (15)

with c5 = c6 ≈ 0.01, c7 ≈ 0.22, and c8 ≈ 0.03, computed by
fitting the numerical results.

0.25 0.5 0.75

0.03

0.08

0.13

H

ε1

(a)

0.25 0.5 0.75

0.004

0.007

0.01

H

ε2

(b)

FIG. 7. The exponent (a) ε1 and coefficient (b) ε2 [see Eq. (14)]
versus the Hurst exponent H .
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B. The localization length

Given Eq. (15), it is then clear that the localization length
ξ is given by

ξ ∝ β(ρ,H )−1 (16)

and therefore

ξ ∝ 1

f1(H )

1

ρf2(H )
(17)

with the two functions f1(H ) and f2(H ) given by Eq. (15) as
the inverse of the prefactor and the power of fracture density
ρ.

In the geophysics literature on wave propagation in porous
and fractured media no attention has been paid to the
localization length, whereas, as mentioned earlier, ξ sets the
distance beyond which any receiver of the waves scattered
by the media will not record useful information and what
it receives represents only statistical noise. Equation (17)
indicates that the localization length is a strong function of
both the correlations in the spatial distribution of the bulk
modulus and the fracture density. This is, in our opinion, an
important result.

C. The waves’ energy

Figure 8 presents the decay of the energy of the pulse
as a function of the distance x from the source, indicating
that EP decays exponentially with x for both short and large

20 40 60
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1.5
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ln
E

p

(a)

20 40 60
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p

(b)
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FIG. 8. Decay of the energy EP versus distance x from the source
for the Hurst exponents (a) H = 0.25, (b) 0.3, (c) 0.5, (d) 0.6, and
(e) 0.75. The data are for fracture densities ρ = 0 (•), 1 (�), 2 (�), 3
(�), and 4 (�).
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FIG. 9. The coefficient χ as a function of the fracture density ρ

for the Hurst exponent H = 0.25 (�), 0.3 (•), 0.5 (�), 0.6 (�), and
0.75 (�).

distances from the source, whereas Ep decays with x as a
stretched exponential function when the matrix is uniform
[30]. Therefore,

EP ∝ exp[−χ (ρ,H )x]. (18)

Figure 9 displays the coefficient χ versus ρ for various Hurst
exponents H , according to which χ also varies as a power law
with the fracture density,

χ = μ2(H )ρμ1(H ). (19)

As shown in Fig. 10, μ1 and μ2 both depend linearly on
the Hurst exponent H . Thus, similar to the amplitude A, for
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FIG. 10. (a) μ1 and (b) μ2 [see Eq. (19)] versus the Hurst
exponent H .
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FIG. 11. The coefficient σ versus fracture density ρ for the Hurst
exponents H = 0.25 (�), 0.3 (•), 0.5 (�), 0.6 (�), and 0.75 (�).

small x,

EP ∝ exp[−(−a1H + a2)ρa3H−a4x], (20)

with a1 = a2 ≈ 0.04, a3 ≈ 0.64, and a4 ≈ 0.09. At large
distances x from the source Ep still decays exponentially with
x, but with different slope. So

EP ∝ exp[−σ (ρ,H )x] (21)

with

σ = ν2(H )ρν1(H ). (22)

In Fig. 11 we plot the coefficient σ as a function of ρ. Once
again, as shown in Fig. 12, both ν1 and ν2 vary linearly with
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FIG. 12. (a) ν1 and (b) ν2 [see Eq. (22)] versus the Hurst
exponent H .
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FIG. 13. Mean traveled distance 〈x〉 versus time t for the Hurst
exponents (a) H = 0.25, (b) 0.5, (c) 0.6 and (d) 0.75. The data are
for the fracture number densities ρ = 0 (�), 1 (•), 2 (�), 3 (�), and
4 (�).

H . Thus, at large distances x from the source,

EP ∝ exp[−(−a5H + a6)ρa7H−a8x], (23)

with a5 = a6 ≈ 0.03, a7 ≈ 0.52 and a8 ≈ 0.09. Note that in
all the cases, Eqs. (12), (15), (20), and (23), the coefficients ci

and ai in the linear prefactor are small.

D. Mean speed of wave propagation and its dependence
on orientation

The mean speed of wave propagation provides clues to
the structure of a porous formation. In Fig. 13 we plot the
mean distance 〈x〉 of the wave front in the main direction of
propagation as a function of time and present its dependence
on the fractures’ number density ρ and the Hurst exponent
H . Surprisingly, the dependence of 〈x〉 on both ρ and H is
very weak, for which we have no reasonable explanation. The
slopes of the results shown in Fig. 13 represent the mean
speeds v of propagation of the acoustic waves. Thus, given
that 〈x〉 is practically independent of fracture density and the
Hurst exponent, the mean speed v of propagation is practically
constant and independent of both parameters. We do not,
however, expect this to be true if a fractured porous medium
contains fluids, and in particular when the fracture network
forms a sample-spanning cluster across the medium through
which fluids flow.

The mean wave speed v does, however, depend on the mean
orientation of the fractures. Thus, we carried out a series of
simulations in which we varied the mean orientation of the
fractures. Figure 14 presents five cases that we studied. The
orientations of the fractures were assumed to follow a Gaussian
distribution in which the mean orientations for the five cases
of Fig. 14 were 0, π/6, π/4,π/3, and π/2, while the standard
deviations of the distribution was held fixed. These fracture
networks are, of course, anisotropic. Figure 15 presents the
results. We find that under these condition,

v = v0 − 0.0012ρθ, (24)
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(a) (b) (c)

(d) (e)

FIG. 14. Five models of fractured porous media in which the
mean orientation of the fractures is (a) 0; (b) π/6; (c) π/4; (d) π/3,
and (e) π/2. Lighter colors indicate larger bulk modulus.

where θ is the mean orientation of the fractures, and v0 is
the wave speed for θ = 0. The linear dependence of v on the
mean orientation of the fractures agrees with the theoretical
predictions of Chapman [58].
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FIG. 15. Dependence of the mean speed on the fracture density
and mean orientation of the fractures.
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FIG. 16. Comparison of the decay of the wave amplitude A in
various types of the unfractured and fractured porous media in which
the bulk modulus of the porous matrix follows a white noise without
a fracture network (�), a uniform distribution with a fracture network
(•), a white noise with a fracture network (�), a FBM distribution
without a fracture network (�), and a FBM distribution with a fracture
network (�). The fractures’ number density ρ and the Hurst exponent
H are 2 and 0.5, respectively.

E. Comparison of unfractured and fractured porous media

As pointed out in the introduction, one main goal of this
paper is to compare wave propagation in unfractured and
fractured porous media. Hence, we compare in Fig. 16 the
decay of the amplitude A with the distance x from the source.
Shown are the results for two fractured and two unfractured
porous media and with heterogeneous and uniform matrices.
As can be seen, the decay of the amplitude is a strong function
of the heterogeneity of porous media, and in particular their
fracture network and spatial distribution of their bulk modulus.

VI. SUMMARY

The main goal of this paper was to compare wave
propagation in fractured porous media with a uniform matrix
with one in which, in accordance with the experimental data
[8], the bulk modulus is spatially distributed according to a
fractional Brownian motion. We presented numerical results
that indicated that the waves’ amplitude decays exponentially
fast with the distance x from the source for all values of x,
when the bulk modulus in the matrix is distributed according
to a FBM. This is in sharp contrast with the case [30] in which
the matrix is uniform and not only does the amplitude decay
with the distance as a stretched exponential function, but the
exponent that characterizes the function is dependent upon the
fracture density.

The comparison is important from a practical view point.
First, in the traditional models of fractured rock, particularly
when they are used to study wave propagation or fit some
data, the matrix is assumed to be uniform. But, as our results
indicate, there are fundamental differences between models in
which the matrix is uniform and those in which the matrix
is heterogeneous and its properties are spatially distributed
according to self-affine distributions. Second, that the wave
amplitude decays exponentially fast with the distance from the
source when the matrix is heterogeneous may be considered
as a signature of highly heterogeneous fractured porous media
and perhaps be used as a sort of diagnostic tool.
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