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Entropic lattice Boltzmann model for gas dynamics:
Theory, boundary conditions, and implementation
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We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows
[N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015)]. The model is capable of simulating a wide range
of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows.
The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based
on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the
simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip
boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are
also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic
and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the
three-dimensional simulation of the supersonic flow around a conical geometry.
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I. INTRODUCTION

Understanding the nature of compressible flows is crucial
in many science and technology applications, ranging from
magnetohydrodynamics and astrophysics to high-speed aero-
dynamics and turbomachinery, to mention a few. Despite their
widespread applications, predicting the behavior of compress-
ible flows remains a challenge. Particularly challenging is the
interaction of shock waves, appearing in supersonic flow re-
gions, with turbulent flows. Numerical methods for high-speed
flows have been specialized into two main classes, one capable
of dealing with smooth flows and the other with shocks,
each with different properties. Standard discretization used
for smooth flows can cause potentially dangerous Gibbs oscil-
lations, leading to unstable schemes in the presence of shocks,
whereas typical methods used to regularize shock calculations
exhibit excessive numerical viscosity [1]. Therefore, the
main approaches to high-speed compressible flows are hybrid
schemes, which typically combine higher-order methods with
weighted essentially nonoscillatory schemes (WENO) through
shock sensors, which determines which scheme should be
used. A current alternative to the latter are nonlinear artificial
viscosity methods [1]. However, both approaches are charac-
terized by complicated algorithms that can also depend on the
setup under consideration. This precludes the development
of efficient, high-fidelity, robust direct numerical simulation
solvers that can seamlessly treat any type of compressible
turbulent flow (subsonic, transonic, and supersonic).

Recently, the lattice Boltzmann method (LBM) has gained
attention as an alternative method for the study of complex
flows including turbulence, microscale flows, porous media,
multiphase flows, relativistic hydrodynamic, soft glasses, and
beyond [2,3]. The simplest LBM solves a set of discrete
kinetic equations for the populations fi(x,t), designed to
reproduce, in the hydrodynamic limit, the desired equations of
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fluid dynamics. Each population is associated with a discrete
velocity vi that fits into a regular spatial lattice with nodes x at
time t . This formulation can be realized by a highly efficient
stream-along-links-and-equilibrate-at-nodes algorithm, which
proves to be very convenient for both computational efficiency
and numerical accuracy.

Historically, the LBM was hindered by two main issues: the
inability to reach high Reynolds numbers in the underresolved
regime because of numerical instabilities [4] and the lack
of Galilean invariance and accuracy of standard lattices [5].
The first issue was tackled with different approaches. These
include the multiple-relaxation-time approach in order to relax
different moments with different relaxation times [4,6–8]. The
entropic LBM (ELBM) for incompressible flows [9–12] dis-
entangled the LBM from the low-Reynolds-number regime by
restoring the second law of thermodynamics (Boltzmann’s H

theorem). The regularized approach curtails the development
of nonhydrodynamic modes by quenching them to equilibrium
[13,14].

A robust extension for thermal and compressible flows,
together with a compliant H theorem for guaranteeing stability
of the simulations, was presented by the entropic theory of
admissible higher-order lattices [15,16]. The entropic higher-
order lattices had already been tested for turbulent flows
simulations in [17], while more recently the same was applied
to quasicompressible thermal flows in [18].

At the same time, a number of suggestions for the
simulation of thermal and compressible flows were proposed in
the literature, including the use of correction terms [19]; the use
of two populations, one for mass and momentum and the other
for the thermal energy [20] or total energy [21,22]; or the use
of lattices with an increased number of velocities [23–28].
However, these suggestions were limited in application range:
The correction terms introduced uncontrolled numerical dis-
sipation, while the two-population approach is limited to the
incompressible limit. The above multispeed lattices were quite
limited in applications. Moreover, development of multispeed
models was hindered due to the lack of appropriate wall
boundary conditions. In [18] many of the requirements for
the simulation of thermal quasicompressible flows (Ma � 0.2)
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were met: No correction terms were needed, the model was not
limited to the incompressible limit, and the entropy supporting
the lattice proved to be stable also for turbulence. Furthermore,
wall boundary conditions for multispeed lattices were also
presented.

In a recent Rapid Communication [29] we extended the
entropic LBM to the simulation of high-speed compressible
flows, where the three key ingredients for such an extension
were laid out, namely, admissible higher-order lattices, exact
entropic equilibrium, and the entropic estimate. In the present
paper we provide a detailed derivation of the model of [29]
and of the boundary conditions, as well as further details on
the implementation. Moreover, we present extensive bench-
marking of the model. We start by presenting a set of lattices
that needs to be employed to simulate compressible flows in
Sec. II A. We then proceed by detailing the exact entropic
equilibrium in Sec. II B. Next, the thermohydrodynamic limit
is derived in Sec. II D. Details on the entropy estimate that
is used as a built-in subgrid model and as a stabilizer for
shocks are given in Sec. II E. In Sec. II F details on the
implementation and realization of the model are provided. The
theoretical part of the paper concludes with the presentation
of the boundary conditions, in Sec. II G, for inlet, outlet,
and wall boundary conditions. In particular, the differences
between no-slip and free-slip boundary conditions with fixed
temperature and adiabatic conditions are discussed. The model
is validated by means of different two-dimensional setups and
a three-dimensional setup in Sec. III. We summarize in Sec. IV.

II. ENTROPIC LATTICE BOLTZMANN MODEL
FOR COMPRESSIBLE FLOWS

The starting point of the compressible lattice Boltz-
mann model is the conventional single-relaxation-time lattice
Bhatnagar-Gross-Krook (LBGK) kinetic equation

fi(x + vi ,t + 1) − fi(x,t) = 2β(f eq
i − fi). (1)

Here β is the relaxation parameter related to the viscosity and
the thermal conductivity and f

eq
i is the local equilibrium that

satisfies the conservation laws of mass ρ, momentum ρu, and
translational energy Etr,

{ρ,ρu,2ρEtr} =
n∑

i=1

{1,vi ,v
2
i }f eq

i (ρ,u,T ), (2)

with the translational energy defined as

2ρEtr = 2C tr
v ρT + ρu2, (3)

where C tr
v = D/2 is the specific heat of an ideal gas at constant

volume in D dimensions.
In the following, two key steps are employed to achieve

the compressible entropic lattice Boltzmann model. First, a
proper choice for the discrete velocities vi will be made in
Sec. II A. Second, evaluation of the equilibrium f

eq
i for high

Mach numbers will be described in Sec. II B.

A. Lattices for the compressible ELBM

Using the standard nomenclature D2Qn for the lattices
with n speeds in D = 2 space dimension (D3Qn in D = 3
space dimension), the hierarchy of lattices described in [15,30]

is constructed as the tensor products of D copies of one-
dimensional velocity sets Vk . For incompressible models, the
standard lattice D1Q3, composed of the discrete velocity set
V3 = {0; ±1}, can be used. Once we move into the domain
of thermal simulations, the quasicompressible flow can be
simulated using the D1Q5 lattice (or D2Q52 and D3Q53 in
two and three dimensions, respectively), with the velocity set
V5 = {0; ±1; ±3} (see [18]). For the case of fully compressible
flows, the number of velocities needs to be increased further,
depending on the Mach number to be reached in the simu-
lations, and also on the required temperature range. Below,
the criterion for the choice of number of lattice velocities is
explained in more detail.

In order to select the length of the links associated with each
population, it was shown in [15] that an entropic derivation
should be employed. For the case of the thermal model with
five velocities in one dimension (1D), for example, the admis-
sible lattice is the one with velocities vi ∈ V5 = {0; ±1; ±3}
(the obvious choice of V5 = {0; ±1; ±2} is discarded due to
the nonexistence of a supporting entropy function). Here we
propose to extend further the lattice size to seven speeds in
one dimension, the shortest of which is V7 = {0; ±1; ±2; ±3}.
In order to evaluate the accuracy of each lattice, in Fig. 1
we compare the aforementioned five V5 and seven V7 speed
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FIG. 1. Deviation of the x component of the lattice Boltzmann
equilibrium energy flux qeq

x (top) and flux of energy flux Req
xx (bottom)

from the Maxwell-Boltzmann values computed at reference lattice
temperature and varying Mach number.
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lattices for the errors in evaluation of the equilibrium heat flux

qeq
α =

n∑
i=1

f
eq
i v2

i vi,α (4)

and equilibrium contracted fourth-order moment

R
eq
αβ =

n∑
i=1

f
eq
i v2

i vi,αβ (5)

when compared to their Maxwell-Boltzmann (infinite set of
velocities) counterparts at various Mach numbers. Together,
for completeness, the errors of the D3Q11 velocities lattice
V11 = {0; ±1; ±3; ±4; ±5} are also shown. All errors are eval-
uated at reference temperature T0, which is lattice dependent.

It is important to notice that the aforementioned moments
need to be recovered accurately by the kinetic model in order
to recover the correct thermohydrodynamic limit, as shown
in Sec. II D. From Fig. 1 one can notice that the errors in
the moments are small until Mach number of about Ma � 2
for the lattice with seven velocities. This lattice has all the
characteristics required to run compressible flow simulations,
such as accuracy at relatively high Mach numbers, a supported
entropy function, and a high-temperature range (detailed later),
for which positivity of the populations is guaranteed. It is
important to notice that if one needs to increase the Mach
number, with the entropic lattice Boltzmann model it is just
required to increase the number of lattice velocities. For
example, from Fig. 1 it is possible to observe that with the
11-speed lattice it is possible to simulate flows where the Mach
number can reach values until Ma � 4, thus further validating
the hierarchy of lattices proposed in [15,16].

B. Equilibrium for the compressible ELBM

The second key innovation of the compressible ELBM
model is the form and evaluation of the equilibrium. Three
mainstream approaches were followed in the literature to
derive the equilibrium for the lattice Boltzmann equation.
The first and most popular is the top-down approach [3],
essentially based on writing the equilibrium in the form of
a polynomial and then tuning the coefficients to recover
the (Fourier-)Navier-Stokes equations [23,31] as the limit
of the LB equation (1). Alternatively, the equilibrium was
derived from the continuous Maxwell-Boltzmann distribution
by expanding (in a Taylor series or Hermite basis) to the
desired order [25,32]. The last and most recent approach for the
derivation of the equilibrium is based on entropic construction,
where one first discretizes the continuous entropy function
H = ∫

f ln f dv and then computes the equilibrium as the
point of minimum discrete entropy [12]. This contrasts with
the second approach that first computes the equilibrium of the
continuous H function (resulting in the Maxwell-Boltzmann
distribution) and then discretizes it to attain the discrete
equilibrium. This discretization obviously violates the entropy
maximum condition that was valid for the Boltzmann equation
[33]. Hence, the entropic approach is the only possibility
of having a valid equilibrium that is defined as the point of
maximum entropy, thus bringing thermodynamic consistency
and stability to the LB scheme. It is worth noting that most
expressions for equilibrium in the LB literature are polynomial

in nature. Also, in the case of the entropic lattice Boltzmann
method, the solution of the minimization of the discrete H

function, although nonlinear, is written approximately as a
polynomial in velocity (small perturbations around zero flow
velocity). Polynomial equilibria suffer from two limitations,
namely, limited positivity (the f

eq
i become negative at high Ma

numbers) and inaccuracies at large values of flow velocities.
Loss of positivity renders the physical nature of the populations
void and is considered as one of the sources of numerical
instabilities in the scheme [34]. Moreover, a polynomial that is
obtained as an expanded solution to the entropic minimization
problem cannot be used at large values of flow velocities, due
to exponential divergence from the desired solution arising
from the finite nature of the polynomials. Hence it is clear
that any polynomial solution to the equilibrium cannot be
used for high-Mach-number compressible flows. Thus, it is
of quintessential importance that a method of evaluation of
equilibrium is found for any possible extension of LB methods
to high-velocity flows.

Here we proceed with the entropic definition of equilibrium
that is derived by minimization of the discrete entropy function
H [35],

H (f ) =
n∑

i=1

fi ln

(
fi

Wi

)
, (6)

where Wi = Wi(T ) are the temperature-dependent weights.
In order to construct weights Wi , we start from the one-
dimensional weights wiα , which are derived by matching the
first (n + 1)/2 nonvanishing Maxwell-Boltzmann moments at
u = 0 and ρ = 1 [15,30]. In our specific case, for a D1Q7
lattice, the one-dimensional weights read

w0 = 36 − 49T + 42T 2 − 15T 3

36
, (7)

w±1 = T (12 − 13T + 5T 2)

16
, (8)

w±2 = T (−3 + 10T − 5T 2)

40
, (9)

w±3 = T (4 − 15T + 15T 2)

720
, (10)

where T is the flow temperature. The above relations imply
a positivity window for T as 1 − √

2/5 < T < 1 + √
2/5

and a reference temperature of T0 = 0.697 953 [15,30]. The
weight Wi of each discrete velocity vi in the natural Carte-
sian reference frame vi = (vix,viy,viz), iα ∈ 0,1,2,3, is then
the algebraic product of the corresponding one-dimensional
weights

Wi = wixwiywiz. (11)

Minimization of H (6) is carried out under the constraints of
local conservation of mass ρ, momentum ρu, and translational
energy Etr [Eq. (2)]. The minimization problem is solved with
the method of the Lagrange multipliers (LMs), leading to

δH + δ(χρ + ζ · (ρu) + λρEtr) = 0, (12)

where χ (u,T ), ζ (u,T ), and λ(u,T ) are Lagrange multipliers
corresponding to conservation of mass, momentum, and
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translational energy, respectively. The formal solution to the
minimization problem reads

f
eq
i = ρWi exp

(
χ + ζ · vi + λv2

i

)
. (13)

The closed form of f
eq
i is computed by applying the conserva-

tion laws (2)–(13). This results in D + 2 equations for D + 2
unknown LMs, where D is the dimension of the problem. In
the case of the standard lattice (V1 = {0, ± 1}) and isothermal
flows, this leads to a quadratic system of equations, in terms
of Lagrange multipliers, that was earlier solved analytically in
[12]. However, for larger lattices, say, the D1Q5 and D1Q7
lattices (and the respective lattices in higher dimensions), and
with energy conservation, this leads to a system of D + 2
equations of the order 9D + 3, thus ruling out any possibility
of computing them with an exact analytical solution. The
main problem here reduces then in finding an appealing way
of computing the exact entropic equilibrium for any given
velocity and temperature for any lattice. The first application
of entropy supporting higher-order lattices like in [17] for
isothermal flows and in [18] for thermal flows employed an
expanded version around zero velocity of the LM included in
the equilibrium (13). This version of the entropic equilibrium,
however, suffers the same problem of positivity as for the
conventional polynomial when the velocity is increased.

We suggest here direct numerical evaluation of LMs using
the rapidly converging Newton-Raphson method. Our simula-
tions shows that such an approach converges to an accurate
solution (with error of order 10−8) with approximatively
five iterations. The computational cost associated with such
a numerical evaluation is not high when compared to the
standard way of evaluating the equilibrium using polynomials.
This is due to the fact that in spite of the usage of a large
number of discrete velocities (72 in 2D and 73 in 3D) we
have only four unknowns (LMs) in 2D and five unknowns
in 3D, which then compares to the cost of computing 72

or 73 polynomials of the order u4. Furthermore, it must be
remembered that a polynomial truncated to order u4 carries
errors of order u5 and higher in the equilibrium moments,
thus leading to large deviations from the desired moments
values when velocity is increased. In our implementation, we
have a comparable computational time between numerical and
polynomial evaluation. It is worth noting that the positivity
range for equilibrium now is greatly enhanced due to its
exponential form of Eq. (13): The equilibrium is in fact always
positive in the temperature range of positivity for the weights
and until a speed at which the minimization problem admits
real-valued solutions for the LM.

C. Compressible lattice Boltzmann equations

Armed with the above method of accurate evaluation of
entropic equilibrium and a higher-order lattice that guarantees
stability and an accurate evaluation of the Maxwell-Boltzmann
moments until the fourth-order moment, the ELBM model
for compressible flows is written in the standard propagation-
relaxation form as

fi(x + vi ,t + 1) − fi(x,t)

= 2β1
(
f

eq
i − fi

) + 2(β1 − β2)[f ∗
i − f

eq
i ]. (14)

Note that (14) is a modification of Eq. (1) in order to control
the Prandtl number as in [36], by modifying β1 and β2

independently, as shown below, and similarly to [37]. Here
f ∗

i is the quasiequilibrium population, which in the case of
Pr < 1 reads

f ∗
i = f

eq
i + Wi Q : [vi ⊗ vi ⊗ vi − 3T vi I]/6T 3, (15)

where

Q =
n∑

i=1

fi(vi − u) ⊗ (vi − u) ⊗ (vi − u) (16)

is the centered heat flux tensor and I is the unit tensor. Note
that with the quasiequilibrium (15), the present model differs
from the well-known Shakov model where the once-contracted
tensor q is used instead of the tensor Q [38]. Moreover,
the model (14) is restricted to a fixed value of adiabatic
exponent γtr = 5/3 owing to the fact that f

eq
i was matched

to the Maxwell-Boltzmann distribution for a monatomic gas.
Previous approaches employed to make variable adiabatic
exponent γ , such as in [39] or [40], are limited to models with
a prescribed polynomial form of the equilibrium. Since our
way of computing equilibrium is exact and needs numerical
evaluation, we employ an alternative way by following the idea
of [41,42] and introduce another set of populations gi , which
carry the energy related to the internal degrees of freedom
(rotational and vibrational) and thus enabling a variable γ .
The kinetic equation for g populations is written as

gi(x + vi ,t + 1) − gi(x,t)

= 2β1
(
g

eq
i − gi

) + 2(β1 − β2)
[
g∗

i − g
eq
i

]
. (17)

The equilibrium g
eq
i accounts for the conservation of the energy

stored in the internal degrees of freedom

2ρEint =
n∑

i=1

g
eq
i = (2Cv − D)ρT , (18)

where Cv is the specific heat at constant volume. The
conservation law for the total energy becomes

2ρEtot = 2CvρT + ρu2 =
n∑

i=1

v2
i f

eq
i +

n∑
i=1

g
eq
i (19)

and the adiabatic exponent is related to a variable specific
heat at constant volume Cv by γ = (Cv + 1)/Cv . Note that
the equilibrium g

eq
i need not be computed by another Newton-

Raphson iterative operation; once f
eq
i is evaluated, we set

g
eq
i = (2Cv − D)Tf

eq
i . (20)

The quasiequilibrium g∗
i is defined consistently with f ∗

i as

g∗
i = g

eq
i + Wiq · vi/T , (21)

where

q =
n∑

i=1

gi(vi − u) (22)

is the contracted and centered heat flux tensor associated with
the internal degrees of freedom.
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D. Thermohydrodynamic limit of the compressible ELBM

We proceed here by deriving the thermohydrodynamic
limit of Eqs. (14) and (17) for the case of a D-dimensional
gas characterized by a Prandtl number Pr � 1; for Prandtl
Pr > 1 the procedure is similar and can be found in [18].
The thermohydrodynamic limit is derived using the Chapman-
Enskog method, under the assumption that the second-, third-,
and fourth-order Maxwell-Boltzmann moments are recovered
by the equilibrium populations, as shown in Sec. II A. We start
by expanding the shift operator of Eqs. (14) and (17) in a
Taylor series up to second order,[

δt(∂t + ∂μciμ) + δt2

2
(∂t + ∂μciμ)(∂t + ∂νciν)

]
fi

= 2β1
(
f

eq
i − fi

) + 2(β1 − β2)
[
f ∗

i − f
eq
i

]
, (23)[

δt(∂t + ∂μciμ) + δt2

2
(∂t + ∂μciμ)(∂t + ∂νciν)

]
gi

= 2β1
(
g

eq
i − gi

) + 2(β1 − β2)
[
g∗

i − g
eq
i

]
, (24)

and by introducing a characteristic time scale of the flows �

and a reduced time t ′ = t/�. Similarly, we introduce reduced
velocities and reduced coordinate v′

i = vi/c and x ′ = x/c�,
respectively, where c = 1, and we rewrite Eqs. (23) and
(24) in terms of the reduced variables t ′ and x ′ and drop
primes to simplify notation. After introduction of the smallness
parameter ε = δt/�, Eqs. (23) and (24) can be written as[

ε(∂t + ∂μciμ) + ε2

2
(∂t + ∂μciμ)(∂t + ∂νciν)

]
fi

= 2β1
(
f

eq
i − fi

) + 2(β1 − β2)
[
f ∗

i − f
eq
i

]
, (25)[

ε(∂t + ∂μciμ) + ε2

2
(∂t + ∂μciμ)(∂t + ∂νciν)

]
gi

= 2β1
(
g

eq
i − gi

) + 2(β1 − β2)
[
g∗

i − g
eq
i

]
. (26)

We can now perform a multiscale expansion of the time deriva-
tive operator, of the populations, and of the quasiequilibrium
f and g populations, to second order as

ε∂t = ε∂
(1)
t + ε2∂

(2)
t + · · · , (27)

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · , (28)

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + · · · , (29)

f ∗
i = f

∗(0)
i + εf

∗(1)
i + ε2f

∗(2)
i + · · · , (30)

g∗
i = g

∗(0)
i + εg

∗(1)
i + ε2g

∗(2)
i + · · · . (31)

Inserting Eqs. (27), (28), and (30) into Eq. (25), and Eqs. (27),
(29), and (31) into Eq. (26), an analysis to orders ε(0), ε(1), and
ε(2) is performed.

1. Zeroth-order terms

Terms to the order ε(0) lead to

f
(0)
i = f

∗(0)
i + β2

β1

(
f

eq
i − f

∗(0)
i

)
(32)

and

g
(0)
i = g

∗(0)
i + β2

β1

(
g

eq
i − g

∗(0)
i

)
. (33)

Since f
∗(0)
i and g

∗(0)
i are chosen to satisfy

n∑
i=1

{
1,vi ,v

2
i

/
2
}
f

∗(0)
i =

n∑
i=1

{
1,vi ,v

2
i

/
2
}
f

eq
i (34)

and
n∑

i=1

g
∗(0)
i =

n∑
i=1

g
eq
i , (35)

we find that the leading term in the expansions (28) and (29)
is the local equilibrium

f
(0)
i = f

eq
i , g

(0)
i = g

eq
i . (36)

Local conservation laws imply
n∑

i=0

{1,viα}fi =
n∑

i=0

{1,viα}f eq
i (37)

for mass and momentum conservation and
n∑

i=0

(
v2

i fi + gi

) =
n∑

i=0

(
v2

i f
eq
i + g

eq
i

)
(38)

for the total energy conservation, which, combined with
Eqs. (28), (29), and (36) lead to the solvability conditions

n∑
i=0

{1,viα}f (1)
i =

n∑
i=0

{1,viα}f (2)
i = · · · = 0 (39)

and
n∑

i=0

(
v2

i f
(1)
i + g

(1)
i

) =
n∑

i=0

(
v2

i f
(2)
i + g

(2)
i

) = · · · = 0. (40)

2. First-order terms

Collecting terms to the order ε(1), we obtain an expression
for the first-order f and g populations

f
(1)
i = f

∗(1)
i

(
1 − β2

β1

)
− 1

2β1

(
∂

(1)
t + ∂μviμ

)
f

(0)
i , (41)

g
(1)
i = g

∗(1)
i

(
1 − β2

β1

)
− 1

2β1

(
∂

(1)
t + ∂μviμ

)
g

(0)
i . (42)

Applying solvability conditions (39) to Eq. (41) and using the
conditions

n∑
i=0

{1,viα}f ∗(1)
i = 0 (43)

obtained from (34) for the quasiequilibrium populations, the
thermohydrodynamic equations of mass and momentum are
recovered to first order:

∂
(1)
t ρ = −∂α(ρuα), (44)

∂
(1)
t uα = −uβ∂βuα − 1

ρ
∂α(ρT ). (45)
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The term ρT can be identified as p = ρT , which is the
equation of state for ideal gases, with p being the pressure.
In order to obtain first-order equations for the total energy,
we need to apply the solvability condition (40) to the sum of
Eqs. (41) and (42) and use the condition [from (34)]

n∑
i=0

(
v2

i f
∗(1)
i + g

∗(1)
i

) = 0, (46)

so that

∂
(1)
t T = −uα∂αT − 1

ρCv

ρT (∂αuα). (47)

3. Second-order terms

We proceed now by collecting terms of order ε(2) in
Eqs. (25) and (26):

[
∂

(2)
t + 1

2

(
∂

(1)
t ∂

(1)
t + ∂μ∂νviμviν + 2∂

(1)
t ∂μviμ

)]
f

(0)
i

= −2β1f
(2)
i − 2(β2 − β1)f ∗(2)

i − (
∂

(1)
t + ∂μviμ

)
f

(1)
i ,

(48)[
∂

(2)
t + 1

2

(
∂

(1)
t ∂

(1)
t + ∂μ∂νviμviν + 2∂

(1)
t ∂μviμ

)]
g

(0)
i

= −2β1g
(2)
i − 2(β2 − β1)g∗(2)

i − (
∂

(1)
t + ∂μviμ

)
g

(1)
i .

(49)

Applying Eq. (41) in (48) and Eq. (42) in (49) and considering
that f

∗,(2)
i = g

∗,(2)
i = 0 by construction of the quasiequilib-

rium, Eqs. (48) and (49) become[
∂

(2)
t −

(
1

2β1
− 1

2

)(
∂

(1)
t ∂

(1)
t + ∂μ∂νviμviν + 2∂

(1)
t ∂μviμ

)]
f

(0)
i

= −2β1f
(2)
i − (

∂
(1)
t + ∂μviμ

)
f

∗(1)
i

(
1 − β2

β1

)
, (50)[

∂
(2)
t −

(
1

2β1
− 1

2

)(
∂

(1)
t ∂

(1)
t + ∂μ∂νviμviν + 2∂

(1)
t ∂μviμ

)]
g

(0)
i

= −2β1g
(2)
i − (

∂
(1)
t + ∂μviμ

)
g

∗(1)
i

(
1 − β2

β1

)
. (51)

Applying the solvability condition for the mass, we obtain a
vanishing second-order contribution to the continuity equation

∂
(2)
t ρ = 0. (52)

Applying the solvability condition for the momentum to (50)
and the solvability condition for the total energy to (50) and
(51), we find

∂
(2)
t (ρuα) =

(
1

2β1
− 1

2

)
∂β

(
∂

(1)
t P

eq
αβ + ∂γ Q

eq
αβγ

)

−
(

1 − β2

β1

)
∂βP

∗(1)
αβ , (53)

∂
(2)
t (2ρE) =

(
1

2β1
− 1

2

)
∂α

(
∂

(1)
t qeq

α + ∂βR
eq
αβ

)

−
(

1 − β2

β1

)
∂αq∗(1)

α . (54)

As anticipated, in the case where Pr < PrBGK, the additional
quasiconserved quantity for the quasiequilibrium population
is the centered heat transfer tensor Qαβγ , i.e.,

f ∗ = f ∗(ρ,uα,ρEtr,Qαβγ ). (55)

This additional conservation guarantees the following form for
the first-order heat flux and the first-order pressure tensor:

q∗(1)
α = q(1)

α − 2uγ P (1)
αγ , (56)

P
∗(1)
αβ = 0. (57)

By projecting Eqs. (41) and (42) on the desired moment space,
it is possible to obtain q(1)

α as

q(1)
α = q∗(1)

α

(
1 − β2

β1

)
− 1

2β1

(
∂

(1)
t qeq

α + ∂βR
eq
αβ

)
(58)

and, by using (57), the first-order pressure tensor P
(1)
αβ ,

P
(1)
αβ = − 1

2β1

(
∂

(1)
t P

eq
αβ + ∂γ Q

eq
αβγ

)
. (59)

By inserting (59) in (56) and (56) in (58), we obtain an
expression for q∗(1)

α :

q∗(1)
α = − 1

2β2

(
∂

(1)
t qeq

α + ∂βR
eq
αβ

) − 2uβ

2β2

(
∂

(1)
t P

eq
αβ + ∂γ Q

eq
αβγ

)
.

(60)
Computing explicitly the right-hand side of Eq. (60) we obtain

q∗(1)
α = − 1

2β2
(Cv + 1)ρT ∂αT , (61)

where Cp = Cv + 1 is the heat capacity at constant pressure.
At this point, the computation of the second-order time
derivative of momentum and energy is straightforward: Using
(57) we obtain the second-order momentum equation

∂
(2)
t uα = − 1

ρ
∂β
αβ, (62)

where 
αβ is the stress tensor


αβ = −μ

(
Sαβ − 2

D
∂γ uγ δαβ

)
+ ξ∂γ uγ δαβ, (63)

with

Sαβ = ∂αuβ + ∂βuα (64)

the strain rate tensor,

μ =
(

1

2β1
− 1

2

)
ρT (65)

the dynamic viscosity, and

ξ =
(

1

Cv

− 2

D

)
μ (66)

the bulk viscosity, characteristic of any kinetic scheme with an
internal degrees of freedom Cv �= D/2. The left-hand side of
Eq. (54) is transformed using second-order time derivatives of
mass and momentum [Eqs. (52) and (62)]

∂
(2)
t (ρE) = ρCv∂

(2)
t T − uα∂β
αβ. (67)
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The right-hand side of Eq. (54) is transformed by computing
explicitly the first-order time derivative of q

eq
α and the spatial

derivative of R
eq
αβ ; by making use of Eqs. (44), (45), (47), and

(61) we obtain

∂
(1)
t qeq

α + ∂βR
eq
αβ = (Cv + 1)ρT ∂αT

+ ρT uβ

(
Sαβ − 1

Cv

(∂γ uγ )δαβ

)
. (68)

By substitution of (68) and (67) in (54) we obtain the second-
order derivative of the temperature

∂
(2)
t T = 1

ρCv

∂α(κ∂αT ) − 1

ρCv

(∂αuβ)
αβ, (69)

where κ is the thermal conductivity given by

κ = Cp

(
1

2β2
− 1

2

)
ρT . (70)

4. Thermohydrodynamic equations

Summing up contributions of first and second order, the
Fourier-Navier-Stokes equations for compressible flows are
recovered as follows:

∂tρ + ∂α(ρuα) = 0, (71)

∂tuα + uβ∂βuα = − 1

ρ
∂α(ρT ) − 1

ρ
∂β
αβ, (72)

∂tT = −uα∂αT − 1

ρCv

ρT (∂αuα)

− 1

ρCv

(∂αuβ)
αβ + 1

ρCv

∂α(κ∂αT ), (73)

where, as before, the stress tensor is defined as


αβ = −μ

(
Sαβ − 2

D
∂γ uγ δαβ

)
+ ξ∂γ uγ δαβ,

with the strain rate tensor

Sαβ = ∂αuβ + ∂βuα.

Expressions for dynamic viscosity, bulk viscosity, thermal
conductivity, and adiabatic exponent are given by, respectively,

μ =
(

1

2β1
− 1

2

)
ρT , ξ =

(
1

Cv

− 2

D

)
μ,

κ = Cp

(
1

2β2
− 1

2

)
ρT , γ = Cp

Cv

and the expression for the Prandtl number becomes

Pr = (1 − β1)β2

(1 − β2)β1
. (74)

E. Entropic estimate for improved numerical stability

Since the LBGK models allow limited stability for high-
Reynolds-number flows, we extend here the kinetic equations
(14) and (17) to their entropic variant based on [35]:

fi(x + vi ,t + 1) − fi(x,t)

= αβ1
(
f

eq
i − fi

) + 2(β1 − β2)
[
f ∗

i − f
eq
i

]
, (75)

gi(x + vi ,t + 1) − gi(x,t)

= αβ1
(
g

eq
i − gi

) + 2(β1 − β2)
[
g∗

i − g
eq
i

]
. (76)

In the above equations, equilibrium populations f
eq
i and g

eq
i

are the same as in Secs. II B and II C, while the relaxation
parameter related to the viscosity is replaced by αβ1, where α

is the maximal overrelaxation parameter, which is the positive
root of the entropy condition

H (f + α(f eq − f )) = H (f ), (77)

where H is the entropy function (6). This formulation is based
on the assumption that the entropic estimate (77) serves to
stabilize the flow only through viscosity, without affecting the
thermal conductivity.

The entropic relaxation parameter α was originally con-
ceived for stabilization of high-Reynolds-number flow simu-
lations to handle large velocity gradients [33]. In that case,
fluctuations of α around α = 2 due to the entropic estimate
acts as a built-in subgrid model. The entropic relaxation
parameter α then played a crucial role in stabilizing multiphase
flow simulations with large density gradients [43]. It will
be shown below that the entropic estimate helps to stabilize
the compressible flow simulations where large gradients of
velocity, density, and temperature are present. The stabilizing
effect of the entropic estimate is triggered automatically and
is of importance for two reasons: In the turbulent regions the
entropic estimate acts as a built-in subgrid model as it would
be for incompressible flows, and in the presence of shocks,
it naturally helps avoiding the Gibbs oscillations that would
otherwise corrupt the flow field. It is remarkable that the entire
scheme described thus far is free of any tuning parameter and
the required stabilization of the flows occurs automatically by
simply respecting the second law of thermodynamic, without
the need to identify the regions that would destabilize the
simulations.

1. Implementation details

In order to solve Eq. (77), the first step of the imple-
mentation consists in checking the allowable values for α

guaranteeing that the discrete H function (6) can be evaluated,
i.e.,

fi + α
(
f

eq
i − fi

)
> 0. (78)

Assuming that populations fi are always positive, the positivity
condition (78) translates to the values for minimum and
maximum entropic estimates as

αmin = max {δi, i ∈ 1,2, . . . ,Q if δi < 0},
αmax = min {δi, i ∈ 1,2, . . . ,Q if δi > 0}, (79)

where δi = fi

fi−f
eq
i

. In the case αmax < αLBGK (= 2) we directly

set α = αmax; otherwise, Eq. (77) is solved with the Newton-
Raphson method for α.

F. Realization of the compressible ELBM

We now summarize the equations and expressions needed
for the implementation of the compressible entropic LB
model. The two kinetic lattice Boltzmann equations including
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quasiequilibrium model read

fi(x + ciδt,t + δt) − fi(x,t)

= αβ1(f ∗
i − fi) + 2β2

(
f

eq
i − f ∗

i

)
, (80)

gi(x + ciδt,t + δt) − gi(x,t)

= αβ1(g∗
i − gi) + 2β2

(
g

eq
i − g∗

i

)
, (81)

where the equilibrium f
eq
i is computed by solving numerically

the equations{
ρ,ρu,

3

2
ρT + ρu2

}
=

n∑
i=1

{
1,vi ,v

2
i

/
2
}
f

eq
i (ρ,u,T ) (82)

for χ , ζα , and λ in

f
eq
i = ρWi exp

(
χ + ζαviα + λv2

i

)
, (83)

while the equilibrium g
eq
i is consequently given by

g
eq
i = (2Cv − D)Tf

eq
i . (84)

It must be noted that Eq. (1) together with f
eq
i defined

as Eqs. (82) and (83) can also be used for simulation of
compressible flows at Pr = 1, γ = (D + 2)/D, and low-
Reynolds-number flows. Moreover, for thermal low-Mach-
number problems, the current approach can be used to recover
the results of [18] with the V5 and V7 lattices. We do not present
here low-Mach-number simulations. Instead, only flows with
significant compressibility effects are presented.

Quasiequilibrium f populations can be written in the
compact form as

f ∗
i = f

eq
i + Wi Q : [vi ⊗ vi ⊗ vi − 3T vi I]

6T 3
, (85)

where

Q =
n∑

i=1

fi(vi − u) ⊗ (vi − u) ⊗ (vi − u). (86)

The quasiequilibrium g population reads

g∗
i = g

eq
i + Wiq · vi

T
, (87)

where the contracted centered third-order moment is

q =
n∑

i=1

gi(vi − u) (88)

and Wi(T ) is the weight computed according to (11). The
velocity set is composed of 20 energy shells (in 3D) that
are constructed as the tensor products of D copies of one-
dimensional velocity sets V7, where

V7 = {0,±1,±2,±3}, (89)

which leads to 343 velocities in three dimensions D = 3.
The relaxation parameters β1 and β2 are computed by the

corresponding dynamic viscosity and thermal conductivity

β1 = 1
2μ

ρT
+ 1

, (90)

β2 = 1
2κ

ρ(Cv+1)T + 1
(91)

and the heat capacity Cv is derived from the desired adiabatic
exponent γ from

Cv = 1

γ − 1
. (92)

Finally, the compressible ELBM algorithm is summarized
in three main steps.

(i) Propagation. Populations associated with discrete ve-
locities vi are moved to the corresponding adjacent links

fi(x,t) → fi(x + vi ,t + 1), (93)

gi(x,t) → gi(x + vi ,t + 1), (94)

which results in a new set of populations f ′
i (x,t) and g′

i(x,t).
(ii) Wall boundary conditions. In the presence of walls, the

missing populations at the wall are replaced according to the
description given below in Sec. II G.

(iii) Collision step. In this last step, populations f ′
i (x,t) and

g′
i(x,t) are updated by the rule

f ′
i (x,t) ← f ′

i (x,t) + αβ1
(
f

eq
i − f ′

i

)
+ 2(β1 − β2)

(
f ∗

i − f
eq
i

)
, (95)

g′
i(x,t) ← g′

i(x,t) + αβ1
(
g

eq
i − g′

i

)
+ 2(β1 − β2)

(
g∗

i − g
eq
i

)
, (96)

where the two relaxation parameters, equilibrium populations
and quasiequilibrium populations, have been previously de-
scribed.

G. Boundary conditions for the compressible ELBM

The boundary conditions employed in the present com-
pressible ELBM model are an extension to those presented
in [18,44]. In general, the population fi(xb,t) [and gi(xb,t)]
associated with a boundary node residing in the fluid domain
xb (black and gray in Fig. 2) may belong to two different
subsets, namely, the subset D denoting velocities pointing

FIG. 2. Scheme representing boundary nodes (black xb,n and gray
xb,f ) and normal n of the wall. Point N is employed to extrapolate
flow-field values in the direction normal to the wall. A, B, C, and D

are the points employed in the bilinear interpolation to compute N .
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from the solid into the fluid domain and the subset of velocities
pointing from the fluid into the solid or fluid domain.

Populations belonging to D, fi(xb,t) ∈ D, are missing
and need to be approximated in order to complete the
advection step. Due to the employment of a multispeed lattice,
we distinguish here between those nodes belonging to the
boundary that are the nearest to the wall xb,n (black in Fig. 2)
and the nodes belonging to the boundary set that are only next
to nearest xb,f (gray in Fig. 2). Formally, they are distinguished
by the following criterion: If

max(‖r‖i ,i /∈ D) � 1 → xb,n; (97)

otherwise

max(‖r‖i ,i /∈ D) > 1 → xb,f , (98)

where r i = xb − xw,i and xw,i is the intersection point of
lattice link vi with the wall.

We first proceed by specifying that only missing popu-
lations are replaced, for both xb,n and xb,f nodes. At this
point, we need to formulate an approximation for the missing
populations fi(xb,t) and gi(xb,t) at boundary node xb; we
propose to approximate them by a chosen equilibrium part
and a nonequilibrium part, approximated by the first-order
Chapman-Enskog solution in the populations, leading to

fi = f
eq
i (ρtgt,utgt,Ttgt) + f

(1)
i (ρtgt,utgt,Ttgt,∇utgt,∇Ttgt), (99)

gi = g
eq
i (ρtgt,utgt,Ttgt) + g

(1)
i (ρtgt,utgt,Ttgt,∇utgt,∇Ttgt),

(100)

where ρtgt, utgt, Ttgt, ∇utgt, and ∇Ttgt are the target density,
velocity, temperature, velocity Jacobian, and temperature
gradient, respectively, that need to be specified. Before we
proceed with specifying target values, the approximation for
the first-order part of both f and g populations needs to be
provided. For f populations, we use Grad’s approximation of
the form

f
(1)
i =Wi

{
P

(1)
αβ

vi,αvi,β − T δαβ

2T 2

+Q
(1)
αβγ

vi,αvi,βvi,γ − 3vi,γ T δαβ

6T 3

}
, (101)

where P
(1)
αβ and Q

(1)
αβγ are the first-order pressure tensor and

heat flux tensor. First-order pressure and heat flux tensors are
derived from Chapman-Enskog analysis, thus by projecting
Eq. (41) to the second- and third-order moment space

P
(1)
αβ = − 1

2β1
ρT

(
Sαβ − 1

Cv

∂γ uγ δαβ

)
, (102)

where Sαβ is given by Eq. (64) and

Q
(1)
αβγ = − 1

2β2
ρT [∂αT δβγ + ∂βT δαγ + ∂γ T δαβ]

+uαP
(1)
βγ + uβP (1)

αγ + uγ P
(1)
αβ . (103)

For g populations, we use Grad’s approximation of the form

g
(1)
i = Wi

{
Tr(1),g + vi,α

T
q(1),g

α + Xi,αβ

2T 2
R

(1),g
αβ

}
, (104)

where

Tr(1),g =
n∑

i=1

g
(1)
i (105)

is the first-order contribution of the zeroth-order moment
of the g populations, q

(1),g
α is the first-order contribution

to the contracted heat flux associated with g populations,
and R

(1),g
αβ is the first-order contribution to the contracted

fourth-order moment of g populations. All these moments can
be derived analytically by the Chapman-Enskog method, thus
by projecting Eq. (42) to desired order moment

Tr(1) = − 1

2β1
ρT (2Cv − D)

(
1

Cv

∂γ uγ

)
, (106)

q(1),g
α = − 1

2β2
ρT (2Cv − D)∂αT + T r (1)uα, (107)

R
(1),g
αβ = − 1

2β1
ρT (2Cv − D)(T Sαβ + uα∂βT + uβ∂αT ).

(108)

At this point, we need to specify target values. The target
values need to be chosen based on which type of boundary
conditions one wants to simulate: inlet, no-slip, or free-slip
(which includes adiabatic wall treatment for the temperature)
boundary condition. For the case of the outlet boundary
condition we proceed alternatively by replacing all populations
belonging to the outlet by previous time-step populations.
Before proceeding with the description of target quantities,
we want to stress that only target quantities belonging to
xb,n boundary nodes need to be specified, while for the
boundary nodes xb,f we employ previous time step local
quantities. Temperature gradients and velocity Jacobian are
instead evaluated by a second-order centered scheme, based on
previous time step quantities. For the case of the inlet boundary
condition, target quantities need not be computed since they
are prescribed by the setup, so they are chosen corresponding
to the prescribed conditions at the inlet.

1. Target values for no-slip boundary conditions

We now need to specify the target values ρtgt, utgt, and Ttgt

for nodes xb,n in the case of no-slip (wall) boundary conditions.
The target density ρtgt corresponds to the density obtained after
applying the bounceback rule to the f populations

ρtgt =
∑
i∈D

f bb
i +

∑
i /∈D

fi, (109)

where the missing populations f bb
i are replaced by the

reflected populations as f bb
i = f̃i with ṽi = −vi . The target

velocity utgt at a given boundary node xb,n is obtained by
an interpolation scheme involving the wall velocity uw,i =
u(xw,i,t) (which usually is 0) at the intersection point xw,i

and the velocities uf,i = u(xf,i ,t) at the adjacent fluid nodes
xf,i = xb + vi for i ∈ D. For an averaged linear interpolation,
this yields

utgt = 1

nD

∑
i∈D

(‖r‖i/‖v‖i)uf,i + uw,i

(‖r‖i/‖v‖i) + 1
, (110)
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where nD is the number of unknown populations satisfying
max(‖r‖i ,i /∈ D) �

√
2 in two dimensions and max(‖r‖i ,i /∈

D) �
√

3 in three dimensions. Similarly, the same procedure
is applied to the temperature:

Ttgt = 1

nD

∑
i∈D

(‖r‖i/‖v‖i)Tf,i + Tw,i

(‖r‖i/‖v‖i) + 1
. (111)

The derivatives for a generic field � are evaluated with a
semi-second-order scheme for the unstructured grid,

∂�

∂x
= �j+1 − �w

1 + ‖r‖i

(112)

or
∂�

∂x
= �w − �j−1

1 + ‖r‖i

, (113)

depending on the position of the wall with respect to the
boundary node, where �w is the quantity � imposed at the
wall (for example, u or T ).

2. Target values for free-slip and adiabatic
wall boundary conditions

Target conditions for free-slip and adiabatic wall boundary
conditions can be constructed by starting from the no-flux
condition for density and temperature

∂ρ

∂n

∣∣∣∣
∂�

= 0, (114)

∂T

∂n

∣∣∣∣
∂�

= 0, (115)

where n is the coordinate normal to the boundary surface
∂�, as depicted in Fig. 2. For the velocity field, the same
condition is imposed for the component of velocity normal to
the boundary surface ∂�, u⊥:

∂u⊥
∂n

∣∣∣∣
∂�

= 0. (116)

On the other side, the tangent component of velocity u‖ is the
projection on the surface ∂� of the velocity field u(xb) at the
boundary node:

u‖ = u − (u · n)n, (117)

where n is the vector normal with respect to surface ∂�. In
order to satisfy the no-flux conditions, the values of density,
temperature, and velocity are evaluated in the normal direction,
by bilinear interpolation, as depicted in Fig. 2. Given the nor-
mal direction and then its end point N considering a constant
distance from A of ‖n‖ = √

2 in 2D or ‖n‖ = √
3 in 3D, we

identify the neighbors points A, B, C, and D. Next we perform
bilinear interpolation (in 2D), for a given field �, according to

�N = [(Dx − Ax)(By − Ay)]−1

× [�A(Dx − Nx)(By − Ny)�B(Dx − Nx)(Ny − Ay)

×�C(Nx − Ax)(Ny − Ay)�D(Nx − Ax)(By − Ny)].

(118)

Here �N is the field to be found at point N and �A, �B , �C ,
and �D are the known fields at respective points, where Ax ,
Ay , etc., are the x and y coordinates, respectively, for point

A and the same for the other points. A similar procedure for
fields at point N , �N , can be performed in three dimensions
by trilinear interpolation.

Once �N is found, we assume a first-order approximation
for the derivative in the direction of the normal:

∂�

∂n
� �N − �A

‖N − A‖ = 0. (119)

This allows us to approximate the values of the fields at node
A:

�A = �N, (120)

which correspond to the target values �tgt = �A.

III. NUMERICAL VALIDATION

In the following, various numerical simulations are per-
formed in order to validate the model and the boundary
conditions described previously. We start by presenting the
simulation of the two-dimensional supersonic flow around
a diamond-shaped airfoil, for which analytical solutions
are available. Next, the two-dimensional inviscid transonic
flow around the NACA0012 airfoil is presented for two
different angles of attack. In a second part, the results for
the viscous transonic flow around the NACA0012 airfoil are
exposed. We continue presenting simulations results of the
Schardin problem and we conclude with the three-dimensional
simulation of the inviscid supersonic flow field around a double
cone geometry.

A. Supersonic inviscid diamond airfoil

We start here by presenting, in Fig. 3, the Mach-number
distribution around a diamond-shaped airfoil, where free-
slip boundary conditions are imposed. The far-field flow is
characterized by Mach number Ma = 1.5 and a Reynolds
number of Re = 3×106, and the angle of attack of the airfoil
is set to A = 3◦. Typical oblique shocks are formed starting
from the leading and trailing edges, while expansions waves
are formed at the rear edges of the airfoil.

The setup was simulated with three different chord lengths
C = 100, 500, and 1000 and is compared with the analytical
expression [45] for shocks angles and Mach and pressure

FIG. 3. Mach-number distribution around a diamond-shaped air-
foil immersed in a supersonic flow field at Ma = 1.5 and Re = 3×106

based on chord length and inflow speed.
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FIG. 4. Scheme of the various zones and angles compared with
analytical solutions.

distributions around the airfoil. In Fig. 4 we show the various
zones that are compared, together with the corresponding angle
definitions.

The angles of the oblique shocks with respect to the surface
of the airfoil depend on the upstream Mach number Ma∞, the
angle of attack A, and the angle of the solid geometry 2α and
are given by the nonlinear equations

tan (α − A) = 2 cot β1u

Ma2
∞ sin2 β1u − 1

Ma2
∞(γ + cos 2β1u) + 2

, (121)

tan (α + A) = 2 cot β1d

Ma2
∞ sin2 β1d − 1

Ma2
∞(γ + cos 2β1d ) + 2

(122)

for the upper and lower oblique shocks, respectively. Once
the angles of the shock are found, it is possible to express the
pressure and the Mach number after the oblique shocks:

p1u/d

p∞
= 1 + 2γ

γ + 1

(
Ma2

∞ sin2 β1u/d − 1
)
, (123)

Ma1u = 1

sin2 (β1u − α + A)

(
1 + γ+1

2 Ma2
∞ sin2 β1u

)
γ Ma2

∞ sin2 β1u − γ−1
2

, (124)

Ma1d = 1

sin2 (β1d − α − A)

1 + γ+1
2 Ma2

∞ sin2 β1d

γ Ma2
∞ sin2 β1d − γ−1

2

. (125)

In order to find the postexpansion-fan distributions (2u and
2d), one needs first to evaluate the Prandtl-Meyer function
ν(Ma) for the pre-expansion Mach number

ν(Ma1u/d ) =
√

γ + 1

γ − 1
arctan

√
γ − 1

γ + 1

(
Ma2

1u/d − 1
)

− arctan
√

Ma2
1u/d − 1. (126)

Next, the Mach number after the expansion can be evaluated
by solving the same equation for the Mach number Ma2u/d ,

TABLE I. Errors ε of the computed oblique shock angles with
three different chord resolutions: C = 100, 500, and 1000.

Analytical ε100 (%) ε500 (%) ε1000 (%)

β1u 44.064 2.957 0.467 0.376
β1d 52.572 1.506 0.357 0.205

TABLE II. Errors ε of the computed Mach-number distribution
around the airfoil and for a chord length of C = 100.

Ma1u Ma1d Ma2u Ma2d

Analysis 1.4316 1.2079 1.7716 1.5626
ε100 (%) 0.069 1.135 0.206 0.163

but for a modified Prandtl-Meyer value

ν(Ma1u/d ) + 2α =
√

γ + 1

γ − 1
arctan

√
γ − 1

γ + 1

(
Ma2

2u/d − 1
)

− arctan
√

Ma2
2u/d − 1. (127)

Pressure is derived by the pressure upstream of the expansion
fan and the Mach number upstream and downstream of the
expansion fan:

p2u/d

p1u/d

=
(

1 + γ−1
2 Ma2

1u/d

1 + γ−1
2 Ma2

2u/d

)γ /(γ−1)

. (128)

In Table I we report the errors on the two angles β1u and β1d

with the three different chord lengths, while in Tables II and III
we report the errors on the pressure normalized by pressure
at infinity and of Mach number. The reported errors show
that the method is sufficiently accurate already with a small
Cartesian grid of C = 100 for the discretization of the chord
of the airfoil. This demonstrates a good predictive capability
of the model.

B. Transonic inviscid NACA0012 airfoil

In this section we present two simulations in which the
transonic flow field around a NACA0012 airfoil is considered.
Two different situations were performed: the first with an angle
of attack of the airfoil of A = 0◦ and a Mach number of Ma =
0.82 and the other with an angle of attack ofA = 2◦ and a Mach
number of Ma = 0.75. For both cases the Reynolds number
was set to Re = 106, the cord was resolved with C = 200
points, and the free-slip boundary conditions were used.

In Fig. 5 the distribution of Mach number around the airfoil
for the case with an angle of attack A = 0◦, on the left, and
for the case with A = 2◦, on the right, is represented.

The plot shows the typical shock wave formation for both
cases: on both sides of the airfoil for Ma∞ = 0.82 and A = 0◦
and on the upper surface for the case Ma∞ = 0.75 andA = 2◦.
This is due to the progressively increasing velocity on the
airfoil surface, which gradually becomes supersonic. The
pressure distribution for both cases has been compared with
experimental measurements, the results of Euler equations
solver, and potential equation solver and is shown in Fig. 6.

TABLE III. Errors ε of the computed pressure distribution around
the airfoil and for a chord length of C = 100.

p1u/p∞ p1d/p∞ p2u/p∞ p2d/p∞

Analytical 1.1030 1.4887 0.6671 0.9069
ε100 (%) 0.706 1.404 0.036 0.021
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FIG. 5. Distribution of Mach number around the NACA0012
airfoil with Ma∞ = 0.82 and A = 0◦ on the left and Ma∞ = 0.75
and A = 2◦ on the right.

The ELBM solver compares very well with the Euler
equations solver, while the shock is more steep if compared
to the experimental measurement. This is due to the fact
that in the present simulation free-slip boundary conditions
were employed, while in the experiment the boundary layer
plays a fundamental role in shaping the shock near the wall,
diffusing the pressure. The preshock and postshock conditions
are however captured correctly. Comparison of the ELBM

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

1.5

c p

ELBM

Expt.

Eul

Pot

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

c p

ELBM up

ELBM down

Expt.

Eul

Pot

FIG. 6. Pressure coefficient comparison for the transonic flow
field around a NACA0012 airfoil for two different Mach numbers
and angles of attack, at Reynolds number Re = 106: Ma∞ = 0.82
and A = 0◦ (top) Ma∞ = 0.75 and A = 2◦ (bottom). Compared are
the ELBM with experimental measurements [46], the Euler solver
[47], and the transonic potential equation solver.

FIG. 7. Mach-number (top) and entropic estimate (bottom)
distributions around the NACA0012 airfoil with Ma∞ = 0.85,
Re = 10 000, and A = 0◦.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

1.0

1.5

c p

Ref, up

Ref, down

ELBM, up

ELBM, down

FIG. 8. Pressure coefficient comparison for the viscous transonic
flow field around a NACA0012 airfoil with Ma∞ = 0.85, Re =
10 000, and A = 0◦. Compared are the ELBM and the simulations of
[48].
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FIG. 9. Evolution of the pressure for the Schardin’s problem.

result with the potential solver solution is also provided and it
can be noted that both have similar behavior, apart from the
fact that the ELBM solver computes the postshock pressure
correctly, while the potential solver does not.

For the case with an angle of attackA = 2◦, the pressure co-
efficient on the nonshocked (lower) surface and computed with
the ELBM solver compares perfectly with the measurements,
while the Euler and potential solvers are slightly incorrect.
When the upper shocked surface is analyzed, one can see that
the ELBM solution is close to the Euler solution. The deviation
from the experiments is due to the reason explained for the case
with zero angle of attack and gets amplified when the angle of
attack is increased.

C. Viscous transonic NACA0012 airfoil

We proceed by including viscous and boundary layer effects
by imposing no-slip and adiabatic boundary condition on the
surface of the airfoil. The freestream Mach number was set
to Ma∞ = 0.85, the Reynolds number to Re = 104, and the
angle of attack to A = 0◦. In order to capture the boundary
layer correctly, the chord was resolved with C = 800 points.
Figure 7 shows the distribution of Mach number over the
airfoil.

In this configuration, a complex flow field forms on the air-
foil surface and downstream: Due to the shear developing from
the boundary layer, vortex shedding is initiated downstream the
airfoil, with sound waves departing from it and accumulating
at the shock front developed above (or below for the lower
airfoil surface) the boundary layer. Further upstream another
shock forms: Both shocks travel downstream and upstream
unsteadily influenced by the vortex shedding.

We plot in Fig. 7 the distribution of the entropic estimate α.
One can notice how it follows the flow field patterns (compared
to the Mach-number distribution), in particular in the location

of the shocks and of the waves emitted by the downstream
vortex shedding, helping to stabilize the flow field. In fact,
if the entropic estimate was set constant to α = 2 (LBGK
model), the simulation would become unstable. In order to
compare quantitatively the solution obtained with the ELBM,
we plot in Fig. 8 the pressure coefficient distribution on the
airfoil surface at normalized time t = 13.8.

The comparison with the simulations of [48] shows once
again the excellent results obtained with ELBM.

D. Schardin’s problem

The last two-dimensional validation is conducted by sim-
ulating the so-called Schardin problem. In this setup a planar
shock wave impinges on a triangular wedge, reflecting and re-
fracting, thus creating complex shock-shock and shock-vortex

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x/L

0.0

0.5

1.0

1.5

2.0

2.5

y/
L

T1, ELBM
T1, Sim
T1, Expt.
T2, ELBM
T2, Sim
T2, Expt.
V, ELBM
V, Sim
V, Expt.

FIG. 10. Evolution of the position of the triple point T 1, the triple
point T 2, and the vortex V .
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FIG. 11. Slice of the pressure coefficient distribution together
with isosurface of density in order to visualize the conical shock
wave forming in front of the double cone.

interactions [49,50]. A typical evolution of the flow field for
such a problem is shown in Fig. 9 by plotting the pressure
distribution for a shock wave traveling at Ma = 1.34 and
Re = 2000 based on the wedge length, resolved with L = 300
points.

In Fig. 10 the evolutions of the position of the triple point
T 1, the triple point T 2, and the vortex center V are represented.

E. Supersonic inviscid double cone

Finally we show the results obtained by the three-
dimensional simulation of the supersonic flow field around
a double cone geometry. The Mach number was set to Ma∞ =
1.3 and the Reynolds number to Re = 106 with zero angle
of attack. Free-slip boundary conditions were imposed on the
cone surface in order to compare with analytical computations
based on inviscid equations. In Fig. 11 we provide an overview
of the flow field around the double cone: The slice shows the
distribution of pressure coefficient while the orange isosurface
of density depicts the conical shock forming in front of the
cones.

In order to validate the simulation, we compare in Table IV
the angle of the cone formed by the axisymmetric oblique
shock, the mean pressure coefficient, and the mean Mach num-
ber on the first cone surface with the analytical computations
of [51].

Also for the three-dimensional case the comparison is satis-
factory, in particular considering the low resolution employed
for the simulation.

TABLE IV. Errors with respect to analytical computations [51] of
the semiangle of the conical shock θs and the mean Mach number on
the surface of the first cone Maw and on the mean pressure coefficient
on the surface of the first cone cpw

. The first cone is resolved with a
length of C = 150 lattice points.

θs Maw cpw

Analytical 58.0◦ 0.970 0.219
ELBM 58.7◦ 0.959 0.220
ε (%) 1.2 1.1 0.6

IV. CONCLUSION

We presented an extension of the LBM that allows, with one
single algorithm, one to simulate a broad range of applications
ranging from low Mach number and thermal flows to transonic
and supersonic flow regimes, also in the presence of arbitrarily
complex obstacles. This is in sharp contrast to conventional
solvers, which require identification of different flow regimes
and employing the appropriate numerical approach for it.

The model is based on three key elements: higher-order
entropy supporting lattices, entropic accurate equilibrium,
and entropic time stepping, thus retaining the simplicity of
the isothermal LBM. Moreover, detailed boundary conditions
were presented in order to simulate the presence of solid walls.
These boundaries are validated through a number of standard
benchmarks in two and three dimensions.

The simplicity and robustness of the present approach are
highlighted by the fact that the construction (adherence to
the second law of thermodynamics) and boundary conditions
presented here are independent of the choice of the lattice
(standard and multispeed lattices) and simulation dimensions.
Also, in contrast to the state of the art flow solvers, all ELBM
simulations are performed using Cartesian meshes without
any grid refinement, turbulence model, tuning parameters, or
tracking of the shock front. This, when viewed in combination
with the simplicity of the LB methods, could make the
ELBM a competitive and viable option for compressible flow
simulations.
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