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The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow
through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that
voxel’s resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The
new model is outlined and then applied to a number of test cases, which show good agreement with theory. This
method is subsequently used to model the important case where each voxel may have a different resistance to
each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real
porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these
simulations.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has been developed
over the past thirty years and has proven to be a numerically
efficient and accurate method to model fluid flow in confined,
topologically complex geometrical domains. LBM does not
directly solve the Navier-Stokes equations but rather the
Boltzmann transport equation. Through a Chapman-Enskog
expansion it can be shown the solution obtained with LBM
is equivalent to that which would have been obtained from a
direct solve of the Navier-Stokes equation [1,2]. LBM is now
commonly applied to determine the permeability of complex
porous media such as carbonates, shales, and other reservoir
rocks (e.g., [3–13]). The inputs for these computations is a
digital representation of the porous medium, which usually
comes from CT scans. Here each voxel corresponds to a
solid region (not available for fluid flow) or void region
(available for fluid flow). Suitable boundary conditions are
applied at boundaries between solid and void voxels, to account
for a no-slip boundary condition. Steady-state fluid velocity
distributions can then be obtained from this LBM solution to
give an estimate for the medium’s permeability. We refer to
such a model as a black-white (BW) model.

Typical resolutions of CT scans are of the order of 1–10 μm.
However, in many mineral rocks, the grain size is much
smaller than this—maybe of the order of 10–100 nanometers
or so. This means a given voxel will contain both solid and
pore regions. Moreover, rocks are constituted of more than
one material and these materials can have different surface
boundary conditions, which will affect resistance to fluid flow.
This discussion implies a BW model cannot be applied to CT
scans for a range of heterogeneous rocks, which are of current
interest to those in the petroleum and natural gas industries.
Rather a model, which allows for differing amounts of flow
depending on that voxel’s (fractional) solid constitution, is
required. This has been the motivation behind the development
of so-called grayscale LBM models [14–22].

LBM is a class of cellular automata, which is solved on
a regular lattice (usually simple-cubic in three dimensions).
On each lattice vertex or node, where the location of each
node is the center of a voxel from the CT scan, a set of
fluid particle distribution functions is defined. There are Q

distribution functions defined on each node. LBM then consists

of three main steps. The first step is called streaming, in which
all fluid packets (distributions) are moved to adjacent sites.
This streaming can be correlated to the normal advection of
fluid. The second step is called bounce back, which accounts
for fluid-solid boundary conditions. Here fluid packets at
boundary nodes are reversed in direction (or more complicated
half-way bounce back or interpolation boundary conditions
may be implemented). The final step in LBM is a collision
step where fluid packets converging on a given node are
redistributed according to the Maxwell distribution. The LBM
method then consists of iterating these three steps (in a pseudo-
time-stepping manner) to give a solution. This procedure
works well for a BW model [7,11]. In the grayscale models
there are no fluid-solid boundaries, as such. All voxels are
allowed a certain degree of flow. This can be related to the
solid fraction in that voxel, but other effects such as tortuosity,
topology, mineral content etc can be included into the model to
contribute to the voxel’s resistance to flow. To account for this
a partial bounce-back rule is imposed on each voxel [14–18].
This means at each voxel a certain fraction of fluid packets
(which were streamed into a node) will be bounced back. We
denote the fraction of fluid packets, which are bounced back at
a node by ns (0 � ns � 1) and each node can have a different
ns value.

The single-phase grayscale model, just described, has
previously been implemented to simulate (single-phase) fluid
flow in real rocks, which are made up of a number of
different minerals [23]. The mineral content for each voxel
was extracted using a data constrained modeling (DCM)
methodology [24] and then these fractional contents were
used in combination with a simple rule, relating the void and
calcite fractions to the ns value for each voxel. Not only were
the results numerically stable but they were also physically
realistic, which makes this method a suitable candidate for
extensions to multiphase fluid flow studies. It is noted here
this method can also be used to upscale permeability to larger
sample sizes, as long as an effective fluid resistance can be
determined for individual elements.

Multiphase fluid flow (e.g., oil and water or gas and oil)
is of utmost importance in the petroleum industry. Two or
three phase relative permeabilities are notoriously difficult to
obtain experimentally. A numerical method that can calculate
these permeabilities would be of significant benefit. With this
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in mind we now consider applying the grayscale model to
multiphase fluid flow. Multiphase LBM models with BW
voxels have already been developed. The multiphase model
we use is a version of the original Shan-Chen model [25]
but with an extended range for the interaction term, a more
accurate forcing scheme, as well as a multirelaxation time
scheme [26–29]. In keeping with previous work we refer to it as
the pseudopotential LBM model [27,30] (so as to differentiate
from the original Shan-Chen model). In this study we combine
this multiphase model with the single-phase grayscale model
to yield a multiphase, grayscale LBM method.

The structure of this paper is as follows: In the next section
we briefly describe the multiphase grayscale LBM model,
starting of with a description of the single-phase grayscale
scheme based on the work of Walsh et al. [18]. We then
describe how to extend the single-phase model to multiple,
immiscible phases. Once the we have outlined our algorithm,
we determine its validity by comparing it with test cases, where
theoretical results are known. Finally, we apply the method to
model immiscible flow in sample porous media.

II. GRAYSCALE LATTICE BOLTZMANN MODEL

Grayscale lattice Boltzmann models allow for fluid flow
at every lattice node, but to varying extent depending on the
fluid resistivity of the corresponding voxel. These grayscale
LBM schemes have been developed over the last 20 years
or so [14–16,18,20,23]. The aim of this paper is to develop
a grayscale model for multiphase, immiscible flow. This is
most easily understood by first describing the single-phase
grayscale model, which has been established and validated
[16,18,20,23].

A. Single-phase grayscale model

In dealing with flow of a single fluid one set of particle
distribution functions is defined, i.e., f (r,u,t), which denotes
the distribution of particles traveling with a particular velocity
u at lattice node r at time t . The geometrical domain consists
of a three-dimensional, simple-cubic lattice and the D3Q19
model, which consists of 18 possible vector directions in which
a particle may move (ei) plus the null vector, is implemented.
At each time step these eighteen distribution functions at each
node, are propagated to adjacent nodes in the appropriate ei

direction and subsequently solve the following LBM equation
at node i:

fi(r + ei�t,t + �t) − fi(r,t) = �(f,r,t). (1)

In the single relaxation time (SRT) scheme the collision
operator is given by

�(f,r,t) = −
[
fi(r,t) − f

eq
i (r,t)

]
τ

. (2)

In Eq. (2), τ represents a relaxation time and it can be shown to
be related to kinematic viscosity via ν = c2

s (τ − 1/2), where
cs is the sound speed and equal to 1/

√
3. The pressure is

given by P = c2
s ρ. The term f

eq
i is the equilibrium Maxwell

distribution given by [1,2]

f
eq
i = wiρ

[
1 + ei · ueq

c2
s

+ (ei · ueq)2

2c4
s

− ueq · ueq

2c2
s

]
, (3)

where wi are weights, which are well known [1] for the given
D3Q19 model.

Macroscopic parameters such as density and velocity can
be obtained from moments of distribution functions as follows:

ρ =
∑

i

fi and ρu =
∑

i

fiei . (4)

To model forces, such as body forces such as gravity or
even surface forces between different fluid phases, we add an
explicit forcing term to the LB equation (1). This forcing term
is defined as [31]

Fi = F · (ei − ueq)

ρc2
s

f
eq
i , (5)

where F is the force. The macroscopic velocity is updated
in this case to ρu = ∑

i fiei + F/2 and ueq = u. This imple-
mentation of the applied force is not only accurate but exhibits
correct time evolution of the flow.

The SRT method, although relatively simple to implement,
suffers from a few well-documented problems. In the context
of porous media applications one of the main issues is that the
flow field and hence the permeability is viscosity dependent.
However, physically this should not be the case. As a result a
more complicated model, which overcomes these deficiencies
needs to be implemented and is known as the multirelaxation
time (MRT) scheme [32].

Here a linear transformation (matrix) M is chosen so that
the moments

mi(r,t) =
∑

j

Mijfj (r,t), (6)

represent the hydrodynamic modes of the problem. The
collision operator in Eq. (2) is replaced by

�(f,r,t) = −[
M−1 · S · M

(
fi − f

eq
i

)]
= −[

M−1 · S · (
mi − m

eq
i

)]
. (7)

The various moments (m and meq) are given in
detail in d’Humieres et al. [32] with the important
ones for this study being the density (m0) and fluid
momenta (m3, m5, m7). S is a diagonal matrix given by
(0,s1,s2,0,s4,0,s4,0,s4,s9,s10,s9,s10,s13,s13,s13,s16,s16,s16).
The precise (numerical) values are chosen for optimal
numerical stability [32]. The kinematic viscosity in the model
is ν = (1/s9 − 1/2)/3. In addition, nineteen definitions
are given for the moments of an equilibrium distribution
such that the Chapman-Enskog expansion ensures that the
Navier-Stokes set of equations is solved [32]. The equilibrium
distribution and therefore its moments depend only on the fluid
density, three components of the fluid momentum and speed of
sound. The collision operator is built such that each distribution
moment will relax towards the equilibrium distribution
moments. The specific values of the relaxations parameters in
the D3Q19 MRT model that we use are as follows:

(s1, . . . , s19) = (0,1.19,1.4,0,1.2,0,1.2,0,1.2,1/τ,1.4,

1/τ,1.4,1/τ,1/τ,1/τ,1.98,1.98,1.98). (8)

In the grayscale LBM method at each node a certain fraction
of the fluid packets that are streamed into that node are bounced
back. This fraction of fluid packets, which are bounced back
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FIG. 1. (a) Comparison between Brinkman flow analytic solution and LB grayscale model for single-phase flow with a body force
G = 10−6. Symbols are LB results and curves are analytic solutions. Circles correspond to ns = 0.1, squares to ns = 0.3, diamonds to ns = 0.5
and triangles to ns = 0.9. (b) Permeability comparison between theory (curve) and LB simulations (circles).

at any given node is given by ns and so Eq. (1) is replaced by

fi(r + ei�t,t + �t) = (1 − ns)fi(r,t) − (1 − ns)�(f,r,t)

+ (1 − ns)Fi + nsf̂i(r,t). (9)

The last term with the hat on the distribution function indicates
the distribution function to be added is in the opposite direction
to i. The parameter ns is between 0 and 1 and can be related to
voxel composition and/or topological properties (among other
things). The macroscopic velocity is now

ρu = (1 − ns)

(∑
i

fiei + F/2

)
. (10)

Equation (9) represents the grayscale LB model of Walsh
et al. [18]. It has previously been validated for test cases
such as the Brinkman flow equation [18,33,34] as well as
giving qualitatively reasonable results on real samples [23]
using pressure boundary conditions to drive the fluid.

We now compare our code results of this model, using a
body force to drive the fluid (e.g., for a gravity driven flood),
with the Brinkman model. The Darcy-Brinkman equation
models laminar flow through a channel, which has a nonzero
resistance (or drag). It is given by

∇2u −
(

φ

νB

)
u = 1

ρνB

G, (11)

where φ is the resistance to flow in some local region, νB is the
Brinkman viscosity and G is the body force. The solution of
this equation (flow is in the x direction, the channel has width
H in the y direction and is periodic in the z direction) is

u(y) = − G

φρ

[
1 − cosh r(y − H/2)

cosh(rH/2)

]
, (12)

where r ≡ √
φ/νB and φ = 2ns . Figure 1(a) shows a com-

parison between the single-phase LB solution at different ns

values (from our code) compared with the Brinkman solution
(12). The comparison shows good overall agreement over a
wide range of ns values. (Note that LB results are presented
in dimensionless units.) The permeability can be calculated

from the average channel speed together with Darcy’s Law,
i.e., k = ν〈ρu〉/G and shows good agreement [see Fig. 1(b)]
with the theoretical prediction derived in Walsh et al. [18]:

k = (1 − ns)ν

2ns

. (13)

The multiphase grayscale LBM algorithm is now developed
as an extension of this single-phase method.

B. Multiphase grayscale lattice Boltzmann model

The multiphase grayscale model combines the single-phase
grayscale model (just described) with multiphase immiscible
flow for BW models [25–28,31]. We begin with a description
of a multiphase BW model and then extend it to a grayscale
model. For n immiscible phases we now define n sets
of distributions functions, which represent each immiscible
phase: f 1(r,u,t) . . . f n(r,u,t). For each phase we solve the LB
equation at node i. So for the kth phase (where k ∈ 1, . . . ,n)
we need to solve the LB equation:

f k
i (r + ei�t,t + �t) − f k

i (r,t) = �k(fk,r,t) + F k
i , (14)

where F k
i contains all additional forces including surface

tension (as we shall see below), gravity, etc. The collision
operators, either for the SRT or MRT schemes, follow a similar
form to that given for single-phase flow with the exception that
each phase has its own relaxation time (or S matrix). Values
for various macroscopic variables such as density, momentum
flux, etc. follow almost analogously from the single-phase
equations, using the appropriate distribution function for each
phase [25,26,28,30].

To model immiscibility between phases the pseudopo-
tential model [26–28] is used, which is an extension of
the original Shan-Chen model [25]. The Shan-Chen model
employs nearest-neighbor interaction potentials to model the
interactions between components. In a sense this follows
physical reality at the microscopic level where molecules
interact via short-range Lennard-Jones-type potentials. In the
original Shan-Chen model [25] only lattice nodes, which are
nearest neighbors (i.e., separated by 1 lattice spacing), are
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coupled together and these couplings are incorporated into a
surface force at each lattice node.

One of the issues with this nearest-neighbor implementation
is that it leads to large spurious currents, which are a numerical
artifact of using a a small and discrete set of neighbors
to approximate what should really be a continuum set of
force vectors. These numerical artifacts, if not reduced to a
minimum, will lead to large numerical instabilities. To reduce
these numerical instabilities it has been found [26–28] that
extending the range of the pseudopotential leads to a significant
reduction (up to 1000 times) of these spurious currents. The
range of pseudopotential can in principal go to infinity but
this of course comes at a computational cost. Both sixth-order
(including all neighbors less than or equal to 2 units away)
and eighth-order (including all neighbors less than or equal
to

√
8 units away) pseudopotentials have been utilized in this

work. This increases the number of neighbors to be sampled
from 6 (Shan-Chen) to 32 (sixth order) to 64 (eighth order),
but greatly enhances the numerical stability of the method.

The fluid-fluid interaction for phase k at lattice node r is
given by

Fk(r) = ρk(r)
∑
k′ 	=k

gkk′
∑

i

w(|ei |2)ρk′(r + ei)ei , (15)

where gkk′ is the interaction potential (or coupling parameter)
between dissimilar components. In principal, the phases can
also have different molecular mass, which we denote as mk .
The weights w depend on the separation between interacting
nodes and complete tables of weights for sixth- and eighth-
order pseudopotentials are given in Sbragaglia et al. [27]. Note,
we assume the coupling is zero for similar components. The
additional term F k

i in Eq. (14) is given by [31]

F k
i = Fk · (ei − ueq)

ρkc2
s

f
k,eq

i . (16)

The equilibrium velocity in Eq. (16) is now a combined
velocity and to satisfy momentum conservation must be

ueq =
∑

k sk
9ρkuk∑

k sk
9ρk

. (17)

The pressure in this model is given by the equation of state

P = c2
s

∑
k

ρk + 1

2

∑
kk′

gkk′ρkρk′ (18)

and the phase velocities are

ρkuk =
∑

i

mkf
k
i ei + Fk/2. (19)

The final step in developing a multiphase grayscale algo-
rithm is to incorporate the effect of voxel resistivity. To do this
we essentially use Eq. (9) but now apply it to each of the k

phases. We assume that the resistivity of a particular voxel to
fluid flow is different for each phase, so that we can have up
to k different ns values for each voxel. Physically this may be
the case if there are different materials in a voxel, which have
different (surface) interactions with different fluids. Thus the
multiphase gray LB evolution equation becomes

f k
i (r+ei�t,t + �t) = (

1 − nk
s

)
fi(r,t)−

(
1−nk

s

)
�(f k,r,t)

+ (
1 − nk

s

)
F k

i + nk
s f̂

k
i (r,t). (20)
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FIG. 2. Pressure difference between inside and outside of droplet
versus inverse radius for gAB = 1.33. The best fit line (dashed) has a
gradient of 0.6472.

The macroscopic velocity for each phase is defined similarly to
Eq. (10) with suitable nk

s , f k and Fk values for each component.

C. Calibration of microscopic gkk′ to macroscopic
surface tension

The microscopic interaction parameter, gkk′ , needs to be
calibrated to macroscopic surface tension and (if required)
contact angle measurements. This calibration process also
validates the multiphase LBM code since it yields an interface
between two immiscible phases k and k′. To obtain the
relationship between the microscopic parameter, gkk′ , and
macroscopic variables we use the Young-Laplace equation

�P = 2γ

R
. (21)

Here �P is the pressure difference across the fluid interface,
γ is the macroscopic surface tension and R is a droplet radius.

To obtain γ we begin with two phases A and B (B phase
surrounds A phase) in a cubical geometry. A number of
different sized cubes are tested and these cubical droplets
quickly relax to spheres of different radius. We measure the
pressure difference between the interior and exterior of the
droplet to give �P ≡ Pin − Pout and using Eq. (18) for Pin

and Pout. This plot is shown in Fig. 2 where we used a gAB

value of 1.33. The surface tension is extracted from the gradient
of this line and is 0.3236.

We have previously applied the BW, multiphase LBM
method to scenarios such as multiphase fluid flow through
packed beds as well as real porous media and have achieved
physically realistic results [29]. The method shows good nu-
merical stability for a relatively wide range of surface tensions
and viscosity ratios. Thus, we now proceed to assessing the
validity of the newly developed grayscale, multiphase LBM
method. After this validation the method is applied to some
more realistic scenarios to demonstrate its capability.

III. MODEL PERFORMANCE AND DISCUSSION

To validate the new multiphase grayscale model we con-
sider multiphase flow through a channel. We then consider
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FIG. 3. Schematic of geometry of long, slender channel, which
is used for test cases in this section (W < H 
 L). The body force
is applied in the positive z direction.

the effect of a solid-fluid interaction on the flow and then
through and around semipermeable tows. Finally, multiphase
flow through a real, heterogeneous porous medium.

For the simulations presented here relaxations of τA ≡
1/(s9)A = 1 and τB ≡ 1/(s9)B = 2 are used, which give
viscosities of νA = 1/6 and νB = 1/2 and other parameters for
the multi-relaxation model are given in Eq. (8). The interaction
potential (or coupling parameter) is gAB = 1.33 and the mass
of the phases are mA = 2 and mB = 1. For the first three sets
of tests below, a long, slender channel geometry is utilized,
i.e., W × H × L, where W < H 
 L (shown schematically
in Fig. 3). A body force is placed in the z direction to drive the
fluid motion. Precise values for parameters such as body forces,
lattice dimensions, and ns are varied between simulations and
given below.

A. Multiphase channel flow

In this test two-phase channel flow is modeled, i.e., phase A

displacing phase B in a narrow channel with periodic boundary
conditions in the x and z directions. At y = 1 and y = H +
1 an ns value of 1 is used for both phases and for the rest
of the channel the ns value is varied from zero up to 0.7,
between different simulations. The ns value is kept the same
for both phases in these simulations. Recall a larger ns value
indicates a large resistance to flow, so that ns = 1 in the y

boundaries indicates no flow normal to these boundaries. The
channel is filled with phase B except for a smaller region at
the lower end (between z = 1 to z = 30), which is filled with
phase A. A body force is applied in the positive z direction to
drive the fluids. For all the following cases, we have W = 21,
H = 41. For the initial case where ns = 0 within the channel,
we use a channel length of L = 301, which is double the
length for the following five cases (where L = 151). For ns =
0 we use a body force of 6.8 × 10−5, which is applied in
the positive z direction. This case corresponds to multiphase
Pouseille flow through a channel where the velocity profile
is parabolic. Figure 4(a) shows the channel flow at the LB

time of 550. The two dark orange stripes on each side of the
channel (near the bottom) indicate where the A phase began.
Because of the no-slip boundary condition on these edges,
fluid is stationary here. As a consequence, the A phase, which
was initially at these edges remains for the duration of the
simulation. The interface profile between phases is parabolic
in shape but highly curved.

For the five cases of ns = 0.05,0.1,0.3,0.5, and 0.7 we use
an appreciably larger body force of 6.8 × 10−3. A much larger
body force is required because the drag on the fluid induced
by the increased resistance of the medium (from a nonzero ns

value) is large enough to prevent any appreciable flow for much
smaller body forces. (Note that if we had used such a large body
force for the ns = 0 case, it would have resulted in speeds
much larger than the sound speed, which is not physically
sensible for laminar flow in a porous medium.) The shape of
the interface between phases results from a combination of
surface tension and fluid drag. As the ns value is increased
from zero, the first thing we notice is that the interface profile
becomes much flatter, in the middle of the channel and less
curved overall. This is in agreement with the velocity profiles
shown in Fig. 1. The other noticeable aspect of the interface is
that the tail of the A phase [marked in Fig. 4(c)] diminishes in
length as ns increases. For the largest ns value of 0.7 [Fig. 4(f)]
the tail is nonexistent, with only a slight bow in the interface
(at the back end). The long tail (for small ns) is due to the
zero slip condition on the boundaries (i.e., y = 1 and H + 1).
As ns increases the difference in drag between the boundaries
and the interior of the channel diminishes and consequently
the tails diminish in length.

According to Darcy’s law the average (channel) velocity in
a porous medium (for laminar flow) is given by

〈Vx〉 = Gk

νρ
, (22)

where G is the body force and k is the permeability. So the
average channel velocity is proportional to the permeability.
In the grayscale models [18] the permeability is related to ns

via Eq. (13), so that the average velocity along the channel is

〈Vx〉 = G(1 − ns)

2nsρ
. (23)

We can determine the average A phase velocity in the
channel by tracking the interface as a function of time. Doing
this for the five different simulations, at the same G value, and
plotting the average velocity as a function of ns gives Fig. 5.
Note, we have also added the ns = 1 value, which gives zero
channel speed [see Eq. (10)]. We obtain a linear relationship
between 〈Vx〉 and (1 − ns)/ns , in agreement with Eq. (23).
We estimate the average A phase density to be 0.65, which is
obtained by averaging densities in the middle of the A phase
drop, well away from the interface over the five cases. Using
the gradient of the graph and the A phase average density of
0.65 we predict the body force is 6.9 × 10−3, which agrees
well with the actual body force we used for these five cases.

B. Solid-fluid interaction

Typical porous media consists of different minerals, which
may have different resistance to flow for different fluids
(e.g., surface effects depend on the wettability of a particular
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FIG. 4. Multiphase channel flow for a variety of ns values (times given are the times taken by the A phase droplet to move from the bottom
to the position shown). (a) ns = 0, t = 550, (b) ns = 0.05, t = 900, (c) ns = 0.1, t = 2200, (d) ns = 0.3, t = 12100, (e) ns = 0.5, t = 51000,
(f) ns = 0.5, t = 51000. In (a) channel length is double and the body force is 100 times larger than in the other five cases. In (c) we mark the
tails of A phase, which we refer to in the text.

mineral). To model such an effect, we require the ns values
to be different for the different fluid phases. This we now
consider the effect of using different ns values for the two
phases. Consider the case where nA

s = 0.0 and nB
s = 0.3 and

we use similar channel dimensions to above. However, we fill
half the channel (z = 1 to L/2) with the A phase and other
half with the B phase. Again a body force of 6.8 × 10−3 is
applied in the positive z direction. With this configuration
there is larger resistance to flow for the B phase. Figure 6
gives three snapshots of the displacement of B phase by
the A phase. The interface between phases is highly curved
and resembles the interface in Fig. 4(a), where ns was zero
(for both phases). Since the A phase is being forced through
the B phase it is this phase that governs the shape of the

interface. This shape resembles a parabolic (Pouseille-like)
profile.

On the other hand, when nA
s = 0.3 and nB

s = 0.0 (see Fig. 7)
the shape of the interface is now much rounder since the A

phase now has a high resistance to flow. In both cases, as one
moves well back from the interface, the whole of the channel
is filled with that particular phase. This means in the region
where the A phase is the majority phase only a thin film of
the B phase remains adjacent to the solid edges, which has
zero velocity, to satisfy the no-slip boundary condition. The
times required for the tip of the A phase to reach the end of
the channel (i.e., z = 151), which is a distance of 75 LB grid
spacings is 500 LB time units, which gives an average speed
of 0.15. In comparison, when nA

s = 0.0 and nB
s = 0.3 the time
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FIG. 5. Plot of the average channel velocity of phase A versus
(1 − ns)/ns . Solid circles are from the LB simulations while the
dashed line is a best fit with gradient of 5.29 ×10−3.

required for the interface tip to reach the end of the channel
is 280 LB time units yielding an average speed of 0.27. The
higher speed for smaller nA

s corresponds to the observation
that A phase governs the interface shape since it is the phase
being driven through the channel.

Simulations for other pairings of nA
s and nB

s such as 0.5 and
0.1 (and vice versa) have been carried out and the results
correspond in general to the simulations presented above.
(Average channel speeds for all the combinations simulated are
shown in Table I.) In summary, the capability to have different
voxel resistivity for each phase is a physically important
scenario. Our new method has been demonstrated to be capable
of modeling this situation yielding a numerically stable and
physically realistic solution.

1. Capillarity

If a particular mineral has an attractive intermolecular
attraction to a particular fluid, the fluid will tend to spread

over the solid surface. This causes a reduction in the contact
angle to partial or complete wetting conditions. This attractive
interaction leads to capillary rise, i.e., rise of a fluid column
in narrow capillaries or tubes. Our present method can model
this situation, but it should be noted in the general grayscale
formulation a lattice node may not represent the exact pore-
scale morphology (since the resolution of the digital image is
larger than the actual pore-scale fine structure). The level of
approximation in the calculation of the solid-fluid interaction
will be as good as this resolution. (Of course this level of
approximation is the same as in grayscale single-phase fluid
flow.)

The interaction between the solid (s) and phase k is defined
as:

Fks = ρk(r)gks

∑
i

w(|ei |2)ss(r + ei)ei , (24)

where gks is the coupling parameter (between fluid phase k

and solid) and ss(r) is the solid fraction at r and 0 � ss � 1.
The weighting function w(|ei |2) and range of the sum are the
same as used in Eq. (15). This formulation reduces to the
conventional BW multiphase model (when ss is either zero or
one) [26,29,30] yielding a contact angle between zero and π

radians, depending on the values of gks .
To model the effect of capillarity we consider a channel with

solid walls at y = 0, y = H , z = 1 and z = L (with W = 21,
H = 41, and L = 151) and periodic in the x direction. Since
the walls are assumed solid we assign both ns = 1 and ss = 1
along these walls. We assume the remainder of the channel is
void so that both ns = 0 and ss = 0. The channel is filled with
B phase except for a small region at the lower end (between z =
0 to z = H/3). We use gAs = 0 and gsB = 1.33, which results
in the A phase preferring the side walls (and consequently
it makes a contact angle of less than π/2 radians with these
walls). This means in the absence of any other forces, the A

phase would prefer to spread over the side walls (i.e., at y = 1
and y = H ), which would result in the upward motion of the
parcel of A fluid. A body force is applied in the negative z

FIG. 6. Fluid flow through a channel at different times for the cases where each phase has a distinct ns value (nA
s = 0.0 and nB

s = 0.3).
(a) t = 0, (b) t = 140, (c) t = 280.
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FIG. 7. Fluid flow through a channel at different times for the cases where each phase has a distinct ns value (nA
s = 0.3 and nB

s = 0.0).
(a) t = 0, (b) t = 250, (c) t = 500.

direction, which will oppose upward motion of the A phase.
We use a body force of G = 1.36 × 10−6.

Figures 8(a)–8(c) show the progress of volume of A phase
fluid at three different instants. Initially the A phase begins at
the bottom of the channel and due to the attraction between
this phase and the side walls it forms an acute angle with the
wall. At the very bottom it can be noticed that the A phase
is moving away from the bottom (z = 0) surface. At the next
snapshot the A phase has moved up about half the length of the
channel. Note that the A phase remains on the y boundaries
(at the bottom end of the channel) since there is effectively a
no-slip boundary condition here and thus the B phase appears
in the central, bottom region, which was initially occupied by
the A phase. In the final snapshot the A phase has reached the
top of the channel. We emphasize that even though the body
force is in the negative z direction, the A phase rises through
the channel due to the enhanced wetting interaction provided
by the side walls, i.e., due to capillarity.

We next consider filling the void region from the previous
simulation with a partial solid, i.e., ns = 0.05 and ss = 0.05.
(Setting both ns and ss the same value effectively assumes the
solid is uniformly distributed at each node.) This will have
two effects on the motion of the A phase. First, because ns

is nonzero it will retard fluid flow, but on the other hand, the
non-zero ss value enhances upward fluid motion. In the limit
that ns → 1 we could not get any motion of the fluid, as all the
fi’s would be continuously bounced back. Figures 8(d)–8(f)

TABLE I. Average channel speed for the four combinations of
nA

s and nB
s simulated where fluid resistivity varies between the two

phases.

nA
S nB

s Average channel speed

0.0 0.3 0.27
0.3 0.0 0.15
0.5 0.1 3.9 ×10−4

0.1 0.5 8.3 ×10−4

show the progress of the fluid for this case. The general motion
of the fluid is similar to Figs. 8(a)–8(c), but overall the fluid
motion is retarded. Whereas in Figs. 8(a)–8(c) it took 68 LB
times steps for the A phase to reach the top of the channel, in
the present case it takes 82 LB time steps. We have also tried
cases where ns = ss = 0.1 and once again, the fluid motion
is retarded in comparison to the previous two cases. In fact in
this case it takes 93 LB times steps for the A phase to reach
the top of the channel.

We now consider a second validation for the solid-fluid
interaction model. In this test we consider the situation where
fluid imbibes into a porous medium due to capillarity effects (a
process known as imbibition [38]). Consider a cuboidal block
(porous medium) with a fluid reservoir placed at the bottom
end. In this case, we do not place solid walls at the y edges, but
simply the same ns and ss values as the rest of the lattice nodes.
For this test we use gAs = 0 and gBs = 0.33. Once again a body
force is placed in the negative z direction (G = 1.36 × 10−6),
which opposes the upward motion of the fluid. As above, at
each node we assume that the ns and ss values are the same
and we vary these values from zero (void) up to 0.5. In the
case when ns = ss = 0 we get no motion of the fluid, which
is expected since the body force opposes upward fluid motion
and there is not attraction between the A phase and the porous
medium (which in this case is void). We have run simulations
for ns and ss at 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.5.
For each of these cases (where ns and ss are nonzero) we ran
two varaints: (i) where the value for each node is uniformly
distributed between zero and the upper nonzero value and
(ii) where the value for each node is simply the nonzero
value.

(i). Uniformly distributed nodal values. Here a node value
for ns and ss is uniformly distributed between zero and 0.1
(or 0.2, . . . ,0.5). For the last two cases (0.4 and 0.5) the fluid
remains static (at the bottom of the domain). In the other cases,
(0.1, 0.2, 0.25, 0.3, and 0.35) the fluid rises up the porous
medium [see Fig. 9(a)] as a flat front, which is typical of these
five cases when capillary forces are dominant. However, the
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FIG. 8. Capillary rise in a channel due to an attractive interaction between the B phase (red) and walls. In the top row of figures ns = ss = 0
in the central region while in the bottom row ns = ss = 0.05. (a) Initial stages, (b) middle stages (t = 30), (c) final stages (t = 69), (d) initial
stages, (e) middle stages (t = 50), and (f) final stages (t = 82).

time taken to reach the top is different for each case. In Fig. 9(b)
we plot the average speed to reach the top of the channel and
we see both for zero ns and large ns the speed is zero. In the
former case there is no attraction between the porous medium
(void) and fluid, while in the later case the medium resistance
is too large for fluid to rise.

(ii). Same nodal values. Here all nodal values for ns and ss

are the same. Again the case ns = ss = 0 results in no fluid rise
for the same reason as above. However, the fluid stops rising
up the porous medium at a much lower ns value of around 0.2.
Average speeds for the other cases (0.1, 0.15) are also plotted
in Fig. 9(b) but now the window for capillary rise is much

FIG. 9. (a) Snapshot of imbibition process in the middle stages. For all lattice nodes ns = ss = 0.25. The interface remains flat. (b) Average
speed of interface versus ns (or ss). For the black squares the lattice ns values are uniformly distributed between zero and the maximum (shown)
ns value while for the red circles all nodes have the same ns value. Lines are drawn as a guide for the eye.
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FIG. 10. Porous medium which consists of semipermeable tows (white discs), which have a larger ns value than the surrounding region.
The snapshots at various times are shown in the y-z plane. In (a) at t = 100 the invading phase (red) is at the bottom of channel and defending
phase (blue) occupies the remainder. (b) At t = 6000 the invading phase flows around second tow, but has flowed completely filled the first
tow. (c) At t = 11000 the invading phase bypasses the last tow. In (b) and (c) the tows have been superimposed on the images to show their
approximate location.

narrower. When the node values (for ns and ss) are uniformly
distributed, there are many nodes with a low ns value. This
provides lower resistance to fluid motion and hence a wider
window for imbibition.

C. Flow in the presence of semipermeable structures

Given good agreement for channel flow between theory
and the LB grayscale model we now proceed to consider flow
around and through semipermeable cylindrical objects (tows),
which have a higher resistance to flow than the surrounding
medium. This case was previously considered by Spaid and
Phelan [35] in the context of the Brinkman model. In these
simulations the domain is periodic in all directions, but a body
force is still applied in the z direction to generate fluid motion.
The dimensions of the lattice is 21 × 41 × 701 units. There
are five cylindrical tows, which are spaced equidistantly apart
[see white circles in Fig. 10(a)] with their axis parallel to the x

direction. The tow regions are given an ns value of 0.1 for the
A phase and 0.0 for the B phase. Everywhere else both phases
are given an ns value of zero and periodic boundaries in all
directions.

Figure 10 shows a slice in the y-z plane for the progress of
the flood. Initially (time t = 0) the invading phase occupies the
bottom part of the lattice (from z = 1 to z = 310). When the

invading phase reaches a tow, the interface slows down. Since
the tow region has a higher resistance for the invading phase,
in the early stages the invading phase tends to flow around the
tow [see Fig. 10(b)]. Eventually the invading phase does enter
and flow through the tow, but at a much lower speed and so
the interface takes on the shape of a necktie (bottom of necktie
centers on the tow). Similar fluid motion occurs for flow around
all subsequent tows. In the last snapshot [Fig. 10(c)], which
shows the interface has passed the last tow, the front tips of the
invading fluid coalesce. Eventually even this elongated region
will be filled with invading fluid.

For this problem, Spaid and Phelan [35] have shown that
the interface location, R(t), (between phases) can be predicted
from Darcy’s law as:

R(t) = Gk

νρε
t, (25)

where ε is the porosity given by ε = 1 − Vtow/V . Here Vtow

is the volume of the tows and V is the total volume of the
domain. We can track the interface between phases and plot it
as a function of time (see Fig. 11). To calculate the interface
position we take the average of three points on the interface,
which are located on the left side (y = 5), in the center (y =
20), and on the right side (y = 35) of the channel. The data
follows a line reasonably well, in agreement with Eq. (25),
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FIG. 11. Interface position versus time for the porous tow
simulation shown in Fig. 10. Note the interface is initially located
at z = 310. The red dashed line is a linear best fit to the beyond
approximately 2 ×103 LB units.

although there are small deviations. These deviations are due
to:

(i) the initial transition from zero velocity to steady-state
conditions.

(ii) oscillations about the line due to the interface reaching
a tow (where it slows down) and then after it passes the tow
(where it speeds up).

Initially the invading fluid tends to pass relatively quickly
through the low resistance region (region below tows). Once
the interface reaches the tow the overall velocity of the
invading fluid slows down. Eventually steady-state conditions
are reached and the fluid velocity attains a constant value
(albeit with small oscillations), as indicated by the linear fit to
the data in Fig. 11.

D. Multiphase flow in real rock samples

The final scenario we consider is multiphase flow through
real rock samples. These digital (CT) scans are of a CIPS
(calcite in situ precipitation system) sandstone sample, which
consists of calcite and quartz [23,36]. Each voxel is attributed
a volume fraction of void (v0) and calcite (vc). Quartz is
considered impermeable to fluid flow and calcite is partially
permeable to fluid flow. As this is a demonstration of
the capability of the new algorithm, we only use simple
relationships connecting ns and voxel compositions. Future
work will consider more complex relationships, which model
the underlying topology and composition more realistically.
Hence, the effective ns value for each voxel is determined
according to the simple relationship

ns = 1 − v0 − pcvc, (26)

where pc is the effective percolating fraction of calcite [23].
This is an arbitrary variable, which can encompass a number
of factors which may effect fluid flow in a voxel such as the
solid fraction of calcite in the pore, distribution, topology and
tortuosity of solid material, and possibly also the slip behavior.
For this demonstration we consider a constant value of pc for
each voxel of 0.2. This also implies we keep the ns value the
same for each phase — in future work we will consider varying
pc in line with the factors just mentioned.

The sample consists of a 300 × 480 × 5 voxel grid
with a fluid reservoir at the x = 0 end (i.e., for x < 0). This
simulation is a pseudo-three-dimensional simulation, as the
thickness in the third dimension is very small. However, the
advantage is that we can easily visualize and track the path of
the invading phase through the sample. In addition, it allows
us to complete a flood within a reasonable computation time.

The first flood we consider is at a low body force of G =
6.8 × 10−4 and four different snapshots are shown at various
stages during the flood in Fig. 12. Note that because fluid
can enter semipermeable regions we have overlaid the fluid
(A phase density) on the underlying composition matrix to

FIG. 12. Two-phase flood in the case of a real rock sample shown in the x-y plane at four different times for a body force (which is applied
in the positive x direction, i.e., to the right) of G = 6.8 × 10−4. The invading phase fluid reservoir resides on the left edge of the domain.
(a) t = 5000, (b) t = 30000, (c) t = 50000, (d) t = 73000.
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FIG. 13. Same flood as in Fig. 12 but with a solid-fluid attraction between the invading phase and solid. The invading phase fluid reservoir
resides on the left edge of the domain. See the text regarding the circled regions. (a) t = 5000, (b) t = 30000, (c) t = 50000, and (d) t = 73000.

give the reader a perspective of where high ns regions reside.
In addition, these images contain all slices in the z direction
(five in total), rather than just two-dimensional slices as in
the previous figures. In Fig. 12(a) one can see both outlines of
higher porosity regions and also isolated high-density clusters,
which correspond to regions with large ns values. The body
force is applied in the positive x direction (i.e., towards the
right in Fig. 12) and the injected phase begins on the left edge
(reddish phase).

Early on [Fig. 12(a)] a number of fingers appear, which
bypass the high composition regions in the sample. As time
proceeds [Figs. 12(b) and 12(c)] the injected fluid tends to
advance as a relatively wide but rough front, not entering
the high composition regions. This can be seen by the
grayish regions surrounding isolated cluster of orange-red.
(Recall these isolated clusters of orange/red are in fact high
fluid resistivity regions.) This advance is typical of capillary
fingering where capillary forces dominate [37,38], i.e., injected
phase advances by passing through largest pores or regions
with lowest resistivity. In this case a relatively large amount
of the injected phase invades the porous medium, which can
be seen by the large amount of orange-red, which is present at
breakthrough (Fig. 12d).

In the capillary flow regime, capillary forces (attraction
between fluid and solid mineral) are important. Thus, we
repeat the flood above but adding in an attractive interaction
between the injected fluid and the solid. We use Eq. (24) for
this interaction with gAs = 0 and gBs = 0.33 and for ss at each
node, we simply use the corresponding ns value. Of course this
need not be the case, but for this preliminary test we use this
simple assumption. Figure 13 shows progress of the flood at
similar times to Fig. 12. The most noticeable overall difference
is that the flood is much slower. By 73000 LB time steps
the fluid front is only (roughly) one-half to two-thirds of the
distance to the exit. In Fig. 13(a) one can see the fluid enters
the domain at roughly the same points. The higher ns cluster
in the middle of the domain (circled) is initially bypassed but
by the next frame (at 30000 LB time steps) this cluster is

surrounded and invaded. This is no doubt due to the attraction
between fluid and solid, since this cluster is not invaded in
Fig. 12. By 50000 LB time units, it becomes clear other high
ns clusters (circled) are invaded, whereas previously these
remaind relatively untouched by the invading fluid. Overall by
73000 LB time steps the fluid front is relatively flat. Clearly
the effect of the additional attractive interaction between fluid
and solid tends to slow down the fluid front due to invasion of
higher ns regions.

The third flood we consider is at a higher body force of G =
6.8 × 10−3 and again four different snapshots at various stages
are shown in Fig. 14. At this larger body force the invading
front now resembles long fingers, which are primarily directed
along the body force direction. Now that the fluid motion
is dominated by the body force it tends to take the shortest
pathway from inlet to outlet. Once again the high composition
regions are bypassed and breakthrough is achieved much
earlier than in the previous case, i.e., at t = 4300 compared to
t = 73000 at the lower body force. Conjugate with this earlier
breakthrough is a much smaller amount of defending phase,
which has been invaded, indicated by a (comparatively) small
amount of orange-red in Fig. 14(d). This flood is indicative of
viscous fingering where the front takes the appearance of sharp,
random fingers. This flood was carried without any solid-fluid
interaction. In the case of viscous fingering, we argue these
interactions are not important.

These cases demonstrate the correct physical dependence
on flow rate (or body force), i.e., transition from capillary
to viscous fingering. We can therefore be confident in the
multiphase, grayscale method’s capacity to model real physical
phenomena. The next steps along this path is to apply
the method to three-dimensional samples where the third
dimension (z in this case) is comparable to the other two.
Then a more complex topology of the medium results and can
lead to much more interesting behavior than this pseudo-three-
dimensional model. Most importantly in three dimensions,
relative permeability curves can be constructed where each
phase may have a nonzero permeability. In the cases we have
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FIG. 14. Two-phase flood in the case of a real rock sample shown in the x-y plane at four different times for a body force (which is
applied in the positive x direction, i.e., to the right) of G = 6.8 × 10−3. The invading phase resides on the left edge of the domain. (a) t = 500,
(b) t = 1400, (c) t = 2600, (d) t = 4300.

just demonstrated once breakthrough is achieved the defending
phase becomes (more or less) disconnected from inlet to outlet
and therefore its permeability becomes zero.

IV. CONCLUSIONS

In this study we have developed and demonstrated the ca-
pability of a multiphase grayscale LB algorithm for modeling
fluid flow in heterogeneous porous media. This method is
based on a partial bounce back at each lattice node, where the
degree of bounce back is related to the parameter ns . While this
parameter may depend on the solid fractions of each mineral
that is present at a particular voxel, it should not be thought of
as only dependent on this. It can also have contributions from
how the solid phase is distributed in each voxel, i.e., topology
and tortuosity as well as different mineral’s surface slip (with
various fluid phases), which may make up the voxel.

We have proposed a new algorithm and validated it on
different test cases, which has shown it to be quite accurate
and robust. Flow through a channel with different ns values
demonstrated that the interface between phases becomes less
curved with increasing ns . The velocity of the injected phase
was found to be in agreement with a simple theory based
on a model of Walsh et al. [18]. We have also shown that
when each phase had a different ns value, the model was

numerically stable and yielded physically correct behavior.
The most interesting case is the application of the model to
real porous media. The results were qualitatively correct in
that the flood changed characteristics from capillary fingering
to viscous fingering with increasing body force.

For a multiphase problem, each phase can have a different
ns value and future work will consider implementing different
dependencies of ns on various factors, as mentioned above,
and comparing these results. In situations where the solid-fluid
interaction was applied, we assumed that the ss value was the
same as the ns value. This need not be the case and in future
we will investigate in detail different combinations of these
parameters. We also will look at applying the model to large,
cubical porous media samples and obtaining realistic relative
permeability curves. The present model should be of great use
in cases where the porous medium has a variety of minerals
present where each mineral may have different resistivity (or
slip) to a range of fluids. By having a method where each phase
can independently have its own ns value we should be able to
model a wider range of multiphase flows in real rocks.
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