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Equation of state of dense plasmas with pseudoatom molecular dynamics
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We present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that
is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett
et al., Phys. Rev. E 91, 013104 (2015)]. While the EOS calculation with PAMD was previously limited to
orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT
treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons
with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method
is validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the
Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures
for aluminum. We calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic
structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising
from the electronic structure agree well with ab initio simulations.

DOI: 10.1103/PhysRevE.93.063206

I. INTRODUCTION

In the interiors of giant planets, the envelopes of white
dwarf stars, and in inertial confinement fusion experiments,
material conditions referred to as warm and hot dense matter
are encountered [1–3]. Such conditions are characterized by
electron-electron, ion-electron, and ion-ion correlations of
comparable importance. Atoms in these plasmas are partially
ionized and the ionic fluid can range from strongly to weakly
coupled. A self-consistent treatment of all these physical
effects is therefore challenging.

For relatively low temperatures the method of choice for
simulating warm dense matter is Kohn-Sham (KS) density-
functional-theory molecular dynamics (DFT-MD) [4].1 While
this method is thought to be accurate for equation of state
(EOS) calculations, it quickly becomes prohibitively expen-
sive with increasing temperatures [5]. The computational
cost of orbital-free DFT-MD2 [6] has a more manageable
temperature scaling at the cost of physical accuracy, but it
remains expensive. A modified version of the high-temperature
method of path-integral Monte Carlo (PIMC) has enabled its
application to elements beyond helium [7] and currently up to
silicon [8].

Recently [9], we have developed a new method for
modeling the properties of warm and hot dense matter that
we call pseudoatom molecular dynamics (PAMD). This can
be characterized as an approximate version of Kohn-Sham
or orbital free molecular dynamics (both versions of PAMD
have been developed) that combines an average atom model
of the electronic structure with molecular dynamics for the
ionic structure. In the Thomas-Fermi orbital free version,
the equation of state and the self-diffusion coefficient are
of an accuracy comparable to the corresponding OFMD
simulations [9]. In this paper we describe the formulation of the
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1Here we refer to KS-DFT-MD as quantum molecular dynamics

(QMD).
2We refer to OF-DFT-MD simply as OFMD.

thermodynamics of PAMD. We evaluate the thermodynamic
consistency of the PAMD-Thomas-Fermi (TF) method and
show that it is remarkably consistent for a wide range of
temperatures for an aluminum plasma. We then develop and
validate an approximation for equation of state calculations
with the Kohn-Sham version of PAMD, finding good to
excellent agreement with QMD and PIMC simulations. We
compare the pressures from PAMD (both Kohn-Sham and
orbital free) to corresponding average atom models, showing
the influence of a self-consistent treatment of ionic structure.
We also directly compare pressures from Kohn-Sham and
orbital-free PAMD. Finally, we use PAMD to calculate the
principal Hugoniots of aluminum up to 500 eV, and of silicon
up to 1 keV, far beyond the temperature range accessible to
QMD simulations. Unless otherwise stated we use Hartree
atomic units in which � = me = e = 1, where the symbols
have their usual meaning.

II. THERMODYNAMICS WITH PSEUDOATOM
MOLECULAR DYNAMICS

A. Summary of the pseudoatom molecular dynamics model

Central to PAMD is the superposition approximation for
the total electron density. We assume that the plasma is
an ensemble of identical pseudoatoms3 that are constructed
numerically by solving an average atom model [11,12]. On the
basis of the superposition approximation, one can show that
by using the pseudoatom electron density as a closure relation
for the quantum Ornstein-Zernike equations, an effective ionic
pair interaction potential can be uniquely determined [11]. This
potential can be used in the Ornstein-Zernike equation to solve
for the static ionic structure. Alternatively, the same potential
can be used in classical molecular dynamics simulations [9]
which allows the calculation of dynamical ion properties (also
see Refs. [13,14]) as well as the equation of state of the plasma.

3For plasma mixtures there are different pseudoatoms for each
species [10].
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The physical motivation for expecting the plasma electron
density to be reasonably represented by an ensemble of
identical pseudoatoms is based on two observations. The
first is that for deeply bound electrons the separation into
pseudoatoms is clearly accurate. For continuum electrons,
the separation is exact in the linear response regime [12].
The combination of these observations suggests that the
pseudoatom approximation is reasonable and becomes exact
where continuum electrons respond linearly to the ionic
potential. This is borne out by extensive validation of the model
(see below).

Each pseudoatom has a nuclear charge Z and electron
density nPA

e (r), where∫
d3r nPA

e (r) = Z. (1)

The electron density of the (infinite) plasma is then

ne(r) =
∞∑
i=1

nPA
e (|Ri − r|), (2)

where {Ri} is the set of position vectors of the nuclei. For
all the calculations in this paper we use nPA

e (r) as generated
by the ion-sphere average atom model presented in Ref. [12].
The average atom model is based on density functional theory.
Both orbital free (here we use the PAMD-TF approximation)
and Kohn-Sham (PAMD-KS) treatments of the electrons have
been developed. The nuclear positions {Ri} are generated
with classical molecular dynamics [9]. The pseudoatom pair
interaction potential V (r) that is input to the molecular
dynamics simulations is generated from nPA

e (r). Once the
contribution of the valence electrons to nPA

e (r) has been defined
as nscr

e (k) [12], the potential V (r) is given by (in Fourier space)

V (k) = 4π

k2
Z̄2 +

[
nscr

e (k)
]2

χe(k)
, (3)

where Z̄ = ∫
d3r nscr

e (r) is the ion charge and χe(k) is the
response function of the electrons (see Eq. (17) of Ref. [12]).
The potential V (r) has no assumed functional form or
adjustable parameters and is easily calculated once nPA

e (r) is
determined.

The PAMD model contains unconstrained approximations
whose limit of validity in terms of the physical parameters
of the system is a priori unknown. To establish the range
of applicability of the model, we have carried out a large
amount of validation in the warm and hot dense matter regimes,
primarily by comparison with ab initio simulations. In the
interest of brevity, we simply list these comparisons below,
noting that in every case the agreement is very good to excellent
unless otherwise indicated. In Ref. [11], where the pseudoatom
model was first introduced, ion-ion pair distribution functions
were presented for hydrogen, aluminum, and iron and for the
high-Z element tungsten in Ref. [12]. In Ref. [10] the model
was extended to mixtures, with a study of the ion-ion pair
distribution functions of carbon-hydrogen mixtures in both
the Thomas-Fermi and Kohn-Sham models of the electrons.
In the latter case, we found poor agreement with simulations
at temperatures below a few eV and solid density where C-C
bonds appear in the simulations, a phenomenon that is not

captured by the PAMD model. In Ref. [15] the x-ray elastic-
scattering feature, which is closely related to the ion structure
factor, is compared to an accurate experimental measurement
of warm dense aluminum [16]. The introduction of molecular
dynamics for the ions in PAMD allowed the calculation of the
equation of state, ionic diffusion coefficients, and viscosity
with PAMD, with applications to aluminum and a iron-helium
mixture (EOS) and hydrogen, deuterium, boron, aluminum,
iron, and copper (self-diffusion) [9,13].

This extensive validation has shown that PAMD becomes
inaccurate in the solid or liquid regimes (i.e., normal densities
and temperatures below 1 eV) but is accurate at these
densities and higher at temperatures such that the ion fluid
is not too strongly coupled (i.e., effective ion-ion coupling
parameter [17] �eff � 55). On the basis of the physical
underpinning of the model, the inability of the pseudoatom
model to model bonds is obvious, while the breakdown at very
low temperatures is likely due to the inaccurate treatment of
long-range Friedel oscillations that occur when free electrons
are strongly degenerate (see below). The method has not
been developed to model lower density plasmas, since in the
current implementation the ion-ion interaction is mediated by
the ionized electrons, and at low densities and temperatures
the ionization fraction can become very small, leading to an
unreliable ion-ion potential. The present contribution extends
the model’s capability to the calculation of the EOS with the
Kohn-Sham model of the electrons.

B. Thermodynamics in the superposition approximation

The electrostatic energy of a plasma can be written

Eel = Eii + Eie + Eee, (4)

where

Eii = 1

2

∞∑
i=1

∞∑
j=1
j �=i

Z2

|Ri − Rj | , (5)

Eie = −
∞∑

j=1

∫
d3r

Zne(r)

|Rj − r| , (6)

Eee = 1

2

∫
d3r

∫
d3r ′ ne(r)ne(r ′)

|r ′ − r| . (7)

Using the superposition approximation [Eq. (2)], Eqs. (5) to (7)
can be written for a subset of N pseudoatoms in a periodically
repeating cell

Eii = 1

2

N∑
i=1

∞∑
j=1
j �=i

Z2

|Ri − Rj | , (8)

Eie = −
N∑

i=1

∞∑
j=1

∫
d3r

ZnPA
e (|Rj − r|)
|Ri − r| , (9)

Eee = 1

2

N∑
i=1

∞∑
j=1

∫
d3r

∫
d3r ′ nPA

e (|Ri − r|)nPA
e (|Rj − r ′|)

|r ′ − r| .

(10)

On combining Eqs. (8) to (10) the electrostatic energy
separates into a term that does not explicitly depend on the
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ionic structure (the nonstructural term ENS) and a term that
does (the structural term ES),

Eel = ENS + ES, (11)

where

ENS = N

2

∫
d3r nPA

e (r)

[−Z

r
+ V PA(r)

]
(12)

and

ES = 1

2

N∑
i=1

∞∑
j=1
j �=i

{−ZV PA(|Ri − Rj |)

+F−1
[
ñPA

e (k)Ṽ PA(k)
]
(|Ri − Rj |)}, (13)

where

V PA(r) ≡ −Z

r
+

∫
d3r ′ nPA

e (r ′)
|r ′ − r| , (14)

and the tilde indicates a Fourier transformed function and
F−1 is the inverse Fourier transform operator. This form of
Eel [Eqs. (11)–(13)] is suitable for evaluation with molecular
dynamics.

The structural term [Eq. (13)] can be further simplified as
follows. The Fourier transform of the microscopic density ρk

is defined as [18]

ρk =
N∑

i=1

e−ık·Ri (15)

and its relation to the ionic structure factor [18] is

Sii(k) = 1

N
〈ρkρ−k〉, (16)

where the angular brackets indicate that the configurational
average has been taken. Using Eqs. (15) and (16), ES can be
written in terms of the ionic structure factor. Since [18]

Sii(k) = 1 + n0
I (2π )3δ(k) + n0

I hii(k), (17)

where n0
I is the particle density of the nuclei, hii(k) the pair cor-

relation function, and δ(k) the δ function, the configurational
average of the structural contribution becomes

〈ES〉 = N

2

[
−ZV ext

Ne (r = 0) +
∫

d3r nPA
e (r)V ext

Ne (r)

]
, (18)

where

V ext
Ne (r) ≡ n0

I

∫
d3r ′ gii(|r ′ − r|)V PA(r ′). (19)

Therefore, with knowledge of the pseudoatom electron density
nPA

e (r) and the ionic structure factor [or, equivalently, the pair
distribution function gii(r) = hii(r) + 1], the electrostatic free
energy

F el = ENS + 〈ES〉 (20)

can be calculated without further approximation. If gii(r)
is determined using the Ornstein-Zernike equations as in
Ref. [12], then Eqs. (12) and (18) are used. For MD simulations
we use Eq. (13) for the structural term, averaged over a number
of ionic configurations to get 〈ES〉.

In the TF approximation the kinetic energy of the electrons
in a plasma of volume V containing N nuclei can be written

KTF
e = 1

β

∫
V

d3r cTFI3/2[η(r)] (21)

and the free energy is given by

F TF = 1

β

∫
V

d3r

{
ne(r)η(r) − 2

3
cTFI3/2[η(r)]

}
, (22)

where β = 1/T is the inverse temperature, Ij is the Fermi
integral of order j (see Ref. [11]), and

cTF ≡
√

2

π2β3/2
. (23)

The electron density in this approximation is

ne(r) = cTFI1/2[η(r)]. (24)

Given the electron density in the superposition approximation
[Eq. (2)], the function η(r) is obtained by inverting Eq. (24)
which can then be substituted into Eqs. (21) and (22). An
important point to realize here is that the electron density
ne(r) in Eq. (2) cannot be obtained from nPA

e (r) and gii(r)
without further approximation and therefore cannot be directly
calculated from the model presented in Refs. [11,12]. In turn,
while Fel can be calculated from nPA

e (r) and gii(r), F TF and
the exchange-correlation free energy F xc

ee (see below) cannot.
One must have access to the set of ionic positions {Ri} to
allow construction of the electron density ne(r) via Eq. (2).
Fortunately {Ri} can be generated using classical MD. This
makes it possible to calculate the other components of the
total free energy for a given MD snapshot. The configurational
average can then be generated in the usual way by averaging
MD snapshots under the ergodic hypothesis [19].

The free energy of the electron exchange and correlation
energy is handled in a similar way. In the local density
approximation,

F xc
ee =

∫
V

d3r f xc
ee [ne(r)], (25)

which can be calculated directly from nPA
e (r) and {Ri}.

The total the free energy is given by

F = F TF + F I + F el + F xc
ee , (26)

where F I is the free energy of an ideal gas of ions. The internal
energy per atom is

U = 1

N

(
KTF

e + KI + F el + U xc
)
, (27)

where U xc is the contribution to the internal energy from
exchange and correlations

U xc = F xc
ee − T

∂F xc
ee

∂T
(28)

and KI is the ion kinetic energy

KI = 3
2N T. (29)
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C. Calculation of the pressure

To calculate the pressure we use the Virial theorem, which
can be derived [20–22] by assuming that the superposition
approximation Eq. (2) is exact. The expression to evaluate is

P vir V = 2
3KTF

e + 2
3KI + 1

3F el + Cxc (30)

and Cxc is the contribution from exchange and correlation,

Cxc = −F xc
ee +

∫
V

d3r ne(r)
δF xc

ee

δne(r)
. (31)

An alternative route to calculate the pressure (which we
call the thermodynamic pressure P th) is to take a numerical
derivative of the free energy F with respect to the volume V

P th = − ∂F

∂V

∣∣∣∣
T

. (32)

P vir and P th are identical if the calculated ne(r) minimizes
the free energy [23,24]. In PAMD, ne(r) is given by the
superposition approximation, not by the minimization of the
free energy. A comparison of the two pressures offers an
internal check of the accuracy of this approximation. In Fig. 1
we compare P vir and P th for aluminum as a function of
temperature. The virial pressure P vir [Eq. (30)] converges
quickly with respect to number of particles and time steps. For
P th we found it necessary to use rather large MD simulations
(40 000 particles) to perform accurate numerical differentia-
tion of the free energy. For the higher temperatures it was also
necessary to extend the length of the simulations to 20 000
time steps. Even so, some numerical noise persists in P th at
the 1% level. For the higher temperatures shown the relative
difference in the pressures is 2–3%. This represents a very
stringent test on the numerics of the implementation. For lower
temperatures we see larger differences, approaching ∼15% at
2 eV and 2.7 g cm−3. This indicates that the superposition
approximation becomes poorer at these lower temperatures
and density, although still quite reasonable. This deviation

0 20 40 60 80 100
Temperature [eV]

0

5

10

15

ΔP
 [

%
]

2.7 g/cm
3

8.1 g/cm
3

16.2 g/cm
3

Aluminum

FIG. 1. Percentage difference in the virial and thermodynamic
pressures (see text) for aluminum. A positive difference indicates that
P th > P vir. This is a stringent test of the accuracy of the superposition
approximation [Eq. (2)]. In the limit of perfect physical and numerical
accuracy the difference would be zero.

from thermodynamic consistency is similar to the trend caused
by the variational inconsistency of two Kohn-Sham AA models
[INFERNO [25], and a neutral Wigner-Seitz (NWS) sphere
atom-in-jellium model], as discussed in Ref. [22]. In the latter
two models, the inconsistency is attributed to the handling of
the long-range Friedel oscillations that occur in the electron
density at low temperatures. The error in thermodynamic
consistency of the PAMD model (Fig. 1) likely arises from
the linear superposition of the Friedel oscillations being a
poor approximation to the actual effect.4 In summary, the
superposition approximation is accurate over a wide range
of temperatures, which validates this core assumption of the
PAMD model.

D. Numerical evaluation of the free energy

Given the set of ion positions {Ri} from MD, the electro-
static energy Eel is evaluated directly using Eqs. (11)–(13).
In general, the magnitude of the nonstructural term [Eq. (12)]
dominates that of the structural term. However, both terms
must be accurately evaluated for pressure calculations.

To numerically evaluate the volume integrals for the kinetic
and exchange and correlation energies [Eqs. (21) and (25)]
one could discretize the simulation volume with a nonuniform
grid that allows an accurate integration for a given set of {Ri}.
However, the divergence of the TF electron density as r−3/2

near each nuclear site5 presents a numerical difficulty. This can
be circumvented with a computational trick. Using the kinetic
free energy [Eq. (21)] as an example, we define a pseudoatom
kinetic energy density kTF,PA

e (r):

kTF,PA
e (r) ≡ kTF,full

e (r) − kTF,ext
e (r), (33)

where

kTF,full
e (r) ≡ 1

β
cTFI3/2

[
β
(
μid

e − V eff
Ne (r)

)]
(34)

and

kTF,ext
e (r) ≡ 1

β
cTFI3/2

[
β
(
μid

e − V eff,ext
e (r)

)]
. (35)

The terms in these equations are defined in Eqs. (4) and (7)
of Ref. [12]. This definition of kTF,PA

e is the analog of the
definition of the pseudoatom electron density nPA

e (r) (Eq. (8)
of Ref. [12]). We then construct the kinetic energy density in
the superposition approximation [in analogy with Eq. (2)],

kTF,super
e (r) =

∞∑
i=1

kTF,PA
e (|Ri − r|). (36)

Numerically, we then calculate the kinetic energy [Eq. (21)]
in the form

KTF
e = KTF,S

e + N KTF,PA
e , (37)

4For an example of Friedel oscillations in the pseudoatom electron
density, see Fig. 1 of Ref. [9].

5In Cartesian coordinates, the integrand for the kinetic energy
integral diverges as r−5/2 near nuclear sites.
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where

KTF,S
e =

∫
V

d3r

[
1

β
cTFI3/2[η(r)] − kTF,super

e (r)

]
(38)

and

KTF,PA
e ≡

∫
d3r kTF,PA

e (r). (39)

Equations (37) to (39) give an exact representation of KTF
e . The

integral in Eq. (39) can be rapidly evaluated on a nonuniform
grid and only needs to be carried out once for a given equation
of state point. The integrand in Eq. (38) is slowly varying
as the singularities have been removed; it can be evaluated
efficiently on a uniformly spaced grid. KTF,S

e is generally small
in magnitude relative to the N KTF,PA

e term but nevertheless
cannot be ignored for pressure calculations. The other volume
integrals can be evaluated in the same way. We note here that
the same trick could be used in OFMD simulations, obviating
the need for a pseudopotential and allowing all-electron
simulations.

E. An approximation for thermodynamics
with the Kohn-Sham functional

As explained in Ref. [9], Eqs. (30) and (27) can also be used
in KS calculations if KTF

e is replaced by the KS quantity KKS
e .

However, to evaluate KKS
e one needs not the electron density

(as in the Thomas-Fermi case) but rather the multicenter
electronic wave functions which are not provided by PAMD.
Nevertheless, we can develop an approximate method based
on the discussion of the previous section.

In analogy with Eq. (33) we define a KS pseudoatom kinetic
energy density

kKS,PA
e (r) ≡ kKS,full

e (r) − kKS,ext
e (r), (40)

where

kKS,full
e (r) ≡

∫ ∞

−∞
dε gε ε χ full(ε,r) − nfull

e (r)V eff
Ne (r) (41)

and

χ full(ε,r) ≡
∞∑
l=0

2(2l + 1)

4π

∣∣∣∣yε,l(r)

r

∣∣∣∣
2

(42)

and similarly for kKS,ext
e (r). An explanation of the terms in these

equations is provided in Appendix A of Ref. [12]. Defining

kKS,super
e (r) =

∞∑
i=1

kKS,PA
e (|Ri − r|) (43)

we can then approximate KKS
e as

KKS
e ≈ KTF,S

e + N KKS,PA
e , (44)

where

KKS,PA
e =

∫
V

d3r kKS,PA
e (r). (45)

Whereas in the TF case Eq. (44) is just a numerical trick
[see Eq. (37)], here it is actually a physical approximation:
In the regions where k

KS,super
e (r) significantly differs from the

full orbital-based value, the electron kinetic energy density
is approximated by the TF model. This is reasonable since

8 10 12

Density [g/cm
3
]

40
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100

P
re

ss
ur

e 
[M

ba
r]

QMD
PAMD-KS
AA-KS

5 10 15 20

Temperature [eV]

10 eV 10 g/cm
3

FIG. 2. Pressures from PAMD-KS compared to QMD [26] for
beryllium. Also shown are pressures from an average atom model
(AA-KS). PAMD-KS agrees significantly better with the QMD
calculations.

for electrons moving in a constant potential the KS and TF
treatments are identical, and the physical regions where such
a differences exists are the interstitial regions (i.e., not near
the nuclei), where the potential is relatively weak and slowly
varying.

In Figs. 2 and 3 we compare PAMD results for pressure
using this approximation for the Kohn-Sham functional
(PAMD-KS) to QMD results [26]. We also plot the pressure
from KS-based AA atom calculations (see the Appendix). For
beryllium, PAMD-KS (Fig. 2) improves the agreement with
the QMD data relative to the AA model, though differences
up to ∼10% remain at high temperatures and densities. For
aluminum (Fig. 3) both AA and PAMD give similar pressures,
and both agree quite well with the QMD results.

By combining QMD simulations at low temperatures and
PIMC simulations at high temperatures, it has recently been
possible to generate a wide-ranging ab initio EOS table for
silicon [8] that covers temperatures from 4.3 eV to 11.2 keV.

0 5 10 15 20
Temperature [eV]

0
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3

4

5

P
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e 
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ba
r]

QMD
PAMD-KS
AA-KS

2.7g/cm
3

FIG. 3. Pressures from PAMD-KS compared to QMD [27] for
aluminum. Also shown are pressures from an average atom model
(AA-KS). Both PAMD-KS and AA-KS agree well with the QMD
calculations.
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FIG. 4. Isochores of the total pressure for silicon from PAMD-KS
compared to the QMD and PIMC results of Militzer and Driver [8].
The isochores shown are in multiples of the normal solid density
of ρ0 = 2.33 g/cm3, from ρ0 (bottom) to 6ρ0 (top). The differences
remain below 9% everywhere and a generally below 5%.

A comparison of pressure isochores with our PAMD-KS
calculation is shown in Fig. 4. The agreement is excellent over
the full temperature and density range shown. The differences
in pressure generally remain below 5% and at worst reach 9%.

In Table I we compare QMD, OFMD in the TF approxima-
tion (TFMD) to PAMD-KS, and PAMD-TF results for iron.
For the higher temperatures PAMD-TF and PAMD-KS give
similar results for the pressure. For the lower temperatures the
QMD and TFMD results differ significantly. PAMD-KS tracks
the QMD result nicely, while PAMD-TF agrees well with the
TFMD calculation. This demonstrates that our approximation
to the KS kinetic energy [Eq. (44)] does not mask the KS
character of the calculation.

F. Hugoniot calculations

In this section we use the PAMD model to assess the
impact of a self-consistent treatment of ionic correlations on
calculated shock compression curves. Given an equation of
state, the Hugoniot is the solution to the Rankine-Hugoniot
jump condition across the shock front

U − U0 + 1
2 (V − V0)(P − P0) = 0, (46)

where P is the pressure (for which we use P vir), V is the
volume per atom, and U is the internal energy per atom. The
subscript “0” indicates the initial state (i.e., preshock) value.

TABLE I. A comparison of total pressure (Mbar) for iron between
PAMD and corresponding DFT-MD simulations [27,28] for a range
of temperatures (T ) and densities (ρ).

T (eV) ρ (g/cm3) QMD PAMD-KS TFMD PAMD-TF

5 18.71 16.1 15.60 25.64
10 22.5 32.4 36.72 51.3 48.25
100 34.5 663.6 683.3 672.8
1000 39.65 14568 14765 14818
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FIG. 5. Principal Hugoniot of aluminum from the PAMD-KS
model for different choices of the initial internal energy U0 (indicated
in parentheses) in Hartree. The curve labeled “AA” uses the initial
internal energy calculated using the KS average atom model. The
experimental data are from Refs. [29–31]. The Hugoniot is shown as
a function of the compression ratio ρ/ρ0 where ρ0 = 2.7 g/cm3 is
the initial density. All PAMD curves cover a temperature range of 1
to 500 eV. The structure seen at high compression ratios is caused by
the electronic shell structure of the bound states of Al.

In Fig. 5 we show the Hugoniot for aluminum using the
equation of state from PAMD-KS, for several values of U0,
including that calculated with the AA-KS model. We take
the initial temperature and density to be T0 = 0.025 eV and
ρ0 = 2.7 g/cm3. In principle, we could solve the PAMD-KS
model under these conditions to obtain the initial energy;
however, we were unable to obtain converged results for these
conditions due to the presence of very long range Friedel
oscillations in the pseudoatom electron densities. While the
Hugoniot curve is not very sensitive to the initial pressure
P0 (since generally P � P0) it is sensitive to the initial-state
internal energy U0 (Fig. 5). For Fig. 6, which also shows
the principal Hugoniot of Al, we have chosen the curve
that best fits the experimental data of Knudson et al. [29]
(U0 = −240.27 Eh). We also show Hugoniots calculated with
PAMD-TF, AA-TF, and AA-KS. For these models numerical
convergence was possible at the initial conditions. At the larger
compression ratios (ρ/ρ0), the data have large error bars and do
not discriminate among the models (top panel of Fig. 6). At low
compressions, the Hugoniots from the Thomas-Fermi-based
models are significantly softer than the data. The PAMD-KS
curve also agrees with the QMD calculations of Ref. [32],
better than the average atom calculation (AA-KS). However,
this agreement is partly due to the fact that we have chosen U0

for PAMD-KS to agree with the experimental data, which is
reproduced very well by the QMD data. At high compression
the structure in the Hugoniot curve (Figs. 5 and 6) due to
quantum shell effects is preserved in PAMD-KS [22,33,34]. As
an additional comparison we also show the VAAQP Hugoniot
curve from Ref. [22]. VAAQP is a variationally consistent
Kohn-Sham average atom model. At the higher compressions
it agrees very well with PAMD-KS (top panel), while at lower
compressions it is somewhat softer than the data and closer
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FIG. 6. Principal Hugoniot of aluminum from several models.
The experimental data are from Refs. [29–31]. The range of
temperatures for the calculated Hugoniots is 1–500 eV. The QMD
Hugoniot is from Ref. [32]. The top panel shows the full range of
compression ration ρ/ρ0, while the lower panel focuses on the smaller
compression region only. Results from the VAAQP [22] model are
also shown. The initial density is ρ0 = 2.7 g/cm3.

to AA-KS. However, this may in part be due to the U0 value
which was calculated using VAAQP, despite those conditions
being beyond the regime of validity of that model [22].

Comparison of AA to PAMD results allow us to isolate
the effects of a realistic treatment of ionic structure on the
principal Hugoniot. Comparing PAMD-TF to AA-TF (Fig. 6)
we see a modest effect on the Hugoniot that remains below
10% for ρ/ρ0 � 3. In Fig. 7 we show a contour plot of the
percentage difference in pressure predicted by the AA-TF and
PAMD-TF models as a function of temperature and density.
The largest differences along the Hugoniot path (solid white
line) are ∼15%. In general, the average atom model provides
a remarkably good estimate of the pressure except at low
temperature and density where the difference grows to ∼25%.
We find that the maximum difference between the models
occurs when the effective one component plasma ion-ion
coupling parameter is �eff ≈ 30 [17]. The comparison between
the AA and PAMD pressures along the Hugoniot for the KS
calculation is quite similar (Fig. 8). The difference in pressure
peaks at ∼15% at low temperature and decreases steadily as
the temperature rises along the Hugoniot. The �eff = 30 curve
still approximates the ridge formed by the largest pressure
differences.
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FIG. 7. Percentage difference in the total pressure of aluminum
calculated with the PAMD-TF and AA-TF models. The solid white
line is the temperature-density path of the PAMD-TF Hugoniot.
The dashed white line marks �eff = 30. The reference density is
ρ0 = 2.7 g/cm3.

The relative differences between the AA and PAMD
pressures in Figs. 7 and 8 can be explained by two competing
effects. The total pressure is the sum of four contributions
[Eq. (30)], two of which [the electron kinetic (2/3V )Ke and the
electrostatic (1/3V )F el] are large and of opposite sign. While
they mostly cancel each other, they dominate the trends seen in
the figures. On the one hand, while the ionization fraction is by
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FIG. 8. Percentage difference in total pressure of aluminum
calculated with the PAMD-KS and AA-KS models. The solid white
line is the temperature-density path of the PAMD-KS Hugoniot.
The dashed white line marks �eff = 30. The reference density,
ρ0 = 2.7 g/cm3, is the density of solid Al at room temperature.
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construction the same in PAMD and AA (but different in TF
or KS) the spatial distribution of the free (screening) electrons
differs. In the AA models the screening takes place entirely
inside the ion sphere radius, while this is not a constraint
in PAMD. In general, this leads to more screening electrons
being further from the nucleus in the PAMD model, resulting
in a larger electron kinetic pressure, which is positive. On
the other hand, strong ionic correlations [as measured by
the height of the first peak of gii(r)] correspond to a larger
negative contribution to the pressure. At high temperatures
the screening electrons become essentially free, which is
well modeled by the average atom model, and their kinetic
contribution dominates the total pressure. The net result is
that at high temperature the PAMD and AA pressures are
similar, at intermediate ion coupling (∼10 eV in the figures)
the PAMD pressure is larger than that of AA, and at the lowest
temperatures the negative effect of increased ion correlations
partially cancels the positive effect from the increased electron
density further from the nuclei. At conditions corresponding
to the bottom left of Figs. 7 and 8, the PAMD-KS gii(r) is more
strongly peaked than that of PAMD-TF, leading to a stronger
negative effect. At the top left of the figures, the situation
is reversed, with gii(r) from PAMD-TF being more strongly
peaked than that of PAMD-KS. This switch is due to the larger
ionization in the TF models relative to the KS models. The
ionization fraction in the KS models is relatively stable due
the quantum shell effect and remains close to 3 as we transition
from the bottom left to top left of Fig. 8. In the TF models the
ionizion fraction steadily increases from approximately 3 to 6
over the same range, leading to increased ion-ion coupling.

Figure 9 addresses the question of the accuracy of a TF
EOS model compared to a KS calculation. The most striking
feature is a ridge that runs almost vertically at T ∼ 20–30 eV
where the PAMD-TF pressure can be as much as 15% higher
than the PAMD-KS pressure. This is caused by the electronic
shell structure in the PAMD-KS model and is located where

10 1 10 2

Temperature [eV]

1

2

3

4

5

6

ρ
/ρ

0

-20

-15

-10

-5

0

5

10

15

20

25

30

Δ
 (

T
F

 -
 K

S
) 

%

FIG. 9. Percentage difference in total pressure of aluminum
between the PAMD-TF and PAMD-KS. Here ρ0 = 2.7 g/cm3 is the
density of solid Al at room temperature.

first the 2p and then the 2s electrons are ionizing. We find
that above ∼10 eV, the differences in pressure are caused by
the differences in the electronic structure model as embodied
in the TF and KS AA models. At lower temperatures new
structures appear in Fig. 9 that generally reflect the strength of
the ion coupling in the plasma, as discussed above.

For Al, ionization of the 1s2 electrons occurs at T �
300 eV. It does not result in a large effect on the pressure but the
Hugoniot shows a second turn to higher compressibility that
is smaller than the one due to the 2s2 2p6 ionization (Fig. 5).
This smaller effect is due to the large contribution from kinetic
degrees of freedom at this high temperature, as well as the
fact that the fractional change in the number of particles per
nucleus and of the ion charge is much smaller than for the
L shell ionization. We expect that the equation of state of
transition metals such as Fe will show a significant feature
associated with the ionization of 3d electrons, in addition to
the 2s22p6 feature seen in Al [34].

Since silicon is next to aluminum in the periodic table,
we expect their respective EOS in the dense plasma phase
to be fairly similar. This is borne out by a comparison of
their principal Hugoniots that both show the same structure
due to the ionization of the n = 2 and n = 1 shells at nearly
the same values of pressure and compression ratio (Figs. 5
and 10). The corresponding PAMD-KS Hugoniot (Fig. 10) is
in generally very good agreement with the QMD and PIMC
Hugoniot except around the maximum compression due to the
ionization of the 2s22p6 electrons. The PAMD-KS Hugoniot
reaches a compression of 5.25 while the PIMC Hugoniot peaks
at 5.0. Note that we have taken the initial state internal energy
for the PAMD-KS Hugoniot be be equal to the AA-KS value
(−287.16 Eh) and that the curve is not strongly affected by
small changes to this value (not shown). This comparison
shows for the first time that the structure in principal Hugoniots
associated with the ionization of electronic shells that are a
prediction of average atom models [33,34] are also found in
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FIG. 10. Principal Hugoniot of silicon from PAMD-KS compared
to the DFT-MD and PIMC results of Militzer and Driver [8]. The
initial density is ρ0 = 2.33 g/cm3. Ionization of, first, the 2s22p6

and, second, the 1s2 electronic shells cause the structure seen at
compressions ρ/ρ0 > 4.5.
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state-of-the-art ab initio simulations. Furthermore, the PAMD-
KS model puts those features in the same pressure ranges and
predict compressibilities that are close to the ab initio results.
It is reasonable to expect these features to manifest themselves
in experimental data once accurate Hugoniot measurements
can be achieved at these extreme pressures.

III. CONCLUSIONS

The PAMD model of warm and hot dense matter has found
successful applications in the calculation of pair distribution
functions [11,12], transport coefficients [13,35], and dynamic
structure factors [14]. In this contribution, we present how the
equation of state can be calculated with the PAMD model,
both for the Thomas-Fermi and the Kohn-Sham treatments of
the electrons.

A key assumption of the PAMD model is that the total
electron density is given by the linear superposition of identi-
cal, nucleus-centered electron densities. The accuracy of this
approximation is reflected in the consistency between the virial
and thermodynamic paths to calculate the pressure. We found
that for a dense aluminum plasma, the consistency is typically
<3% over a broad range of temperatures and densities.
However, the inconsistency rises rapidly at temperatures below
7 eV at low (solid) density.

We have developed a formally exact numerical trick to
efficiently and accurately evaluate volume integrals of the
electron density that diverge near each nucleus in the Thomas-
Fermi model. This trick could also be applied in orbital
free molecular dynamics simulations, allowing all-electron
calculations without the need for a pseudopotential.

We have developed an approximation inspired by this
numerical trick that permits the calculation of the equation
of state using PAMD with a Kohn-Sham treatment of the elec-
trons. Calculations based on this approximation were found to
agree well with state-of-the-art quantum molecular dynamics
and path integral Monte Carlo simulations for beryllium,
aluminum, silicon, and iron. Generally, the pressures computed
with the PAMD model over a wide range of elements, densities,
and temperatures—-in both the TF and KS versions—agree
with ab initio simulations to within a few percentages and
rarely differ by as much as 10%.

We present the principal Hugoniot of aluminum computed
with the Kohn-Sham version of PAMD up to T = 500 eV,
which agrees well with the experimental data. As expected,
structure in the Hugoniot reflects the electronic shell structure
of aluminum at pressures above several tens of Mbar but the
ultra-high-pressure data are not accurate enough to reveal this
behavior. A comparison with a Hugoniot calculated with a
simple average atom model shows that the self-consistent
treatment of the electronic and ionic structures has only a
modest effect on the Hugoniot. The difference reaches ∼15%
on the lower part of the Hugoniot for compression ratios
�3 and shrink below 5% for compression ratios >4. The
PAMD-KS principal Hugoniot of silicon is very similar to that
of aluminum and can be compared to an ab initio Hugoniot
up to very high temperatures. Both show the signature of the
ionization of electronic shells and agree well with each other.
This indicates that such features as predicted by the PAMD

model (and KS average atom models as well) are not model
artifacts and should be pursued experimentally.

In modeling warm and hot dense matter, ab initio molecular
dynamics must switch from the Kohn-Sham to the Thomas-
Fermi electron model at an intermediate temperature at the cost
of neglecting shell structure at the higher temperatures. Alter-
natively, path-integral Monte Carlo can be used to complement
Kohn-Sham molecular dynamics, but the method is limited to
low-Z elements and remains costly. A significant advantage of
PAMD is that it can accurately model both warm and hot dense
matter with the Kohn-Sham model of the electrons, accounting
for shell structure even at keV temperatures. However, the
electronic structure in Kohn-Sham PAMD is approximated
by the superposition of single-center calculations. Therefore
multiple scattering effects are neglected in the same way as
in average atom models. The advantage of PAMD over such
average atom models is an accurate accounting of the ionic
disorder.
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APPENDIX: EQUATION OF STATE
WITH THE AVERAGE ATOM MODEL

In this Appendix we describe the average atom models
(AA-TF and AA-KS) used for comparison to the PAMD
calculations. AA-TF is the usual Thomas-Fermi-Dirac model
with the T = 0 Dirac exchange [36–38]. The AA-KS model
is essentially the same as the NWS model of Ref. [22] and has
been summarized in Sec. 2 of Ref. [9]. We have used the virial
pressure P vir from this model, where

P vir V ion = 2
3KKS

e + 2
3KI + 1

3F el + Cxc. (A1)

Here V ion is the volume of the ion-sphere,

KKS
e =

∫
V ion

d3r

∫ ∞

−∞
dε gε ε χ (ε,r) −

∫
V ion

d3r ne(r)V eff(r)

(A2)
with

χ (ε,r) =
∞∑
l=0

2(2l + 1)

4π

∣∣∣∣yε,l(r)

r

∣∣∣∣
2

, (A3)

(see Appendix A of Ref. [12])

F el = 1

2

∫∫
V ion

d3r d3r ′ ne(r)ne(r ′)
|r − r ′| (A4)

−
∫

V ion
d3r

Zne(r)

r
,

Cxc = −F xc
ee +

∫
V ion

d3r ne(r)
δF xc

ee

δne(r)
, (A5)

and

KI = 3
2T . (A6)
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The internal energy per atom is

U = KKS
e + KI + F el + U xc, (A7)

where U xc is defined in Eq. (28).
The average atom models thus have no knowledge of

the ionic structure, the electron density is simply calculated
inside a charge-neutral ion sphere with a nucleus at the

origin. In contrast, in PAMD a pseudoatom is placed at each
nuclear position (which are determined by molecular dynamics
simulations) and the electron density is thus constructed via
the superposition approximation [Eq. (2)].

This method of calculating the equation of state with AA-
KS is qualitatively similar to the method we have used for
PAMD. Thus the comparison presented in Figs. 7 to 9 should
reflect the physical differences between the models and not the
method of calculation of the EOS.
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