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Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime
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We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum
in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained
by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-
atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the
warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-
dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic
conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation
for UFM aluminum, are in good agreement with experiment.
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I. INTRODUCTION

Short-pulsed x-ray photons, e.g., from the Linac Coherent
Light Source (LCLS), have begun to provide data in hitherto-
inaccessible regimes of matter [1,2]. Such information is of
interest in understanding normal matter under extreme condi-
tions [3–6], as well as at new frontiers in high-energy-density
matter, astrophysics, fusion physics, etc. Such nonequilibrium
systems are also produced in semiconductor devices [7]. The
theory involves complicated quantum many-body effects of
finite-temperature nonequilibrium systems. Standard ab initio
methods are inapplicable or computationally prohibitive for
this ultrafast matter (UFM) regime. Extensions of elementary
plasma models or Thomas-Fermi models fail badly. Hence
computationally simple realistic theories of these systems are
essential in the interpretation of experiments on UFM which
is a subclass of warm dense matter (WDM) [8]. Here we use
a finite-T density-functional-theory (DFT) calculation of the
electronic charge distribution n(r) and the ion charge distribu-
tion ρ(r) around an Al ion in the system as the basic ingredient
of such a theory. The neutral pseudoatom (NPA) model of
Perrot and Dharma-wardana [9–11] is used in this study.

The LCLS results [1] of the plasmon feature and the
dynamic and static conductivities σ of Al up to 6 eV,
isochorically held at solid density, dramatically improve on the
accuracy of the earlier UFM experiments [6,12]. Surprisingly
low static conductivities σ (0) of UFM aluminum are reported
in Ref. [1], even at 0.2 eV.

We present two-temperature (2T ) calculations for isochoric
aluminum. Atomic units (a.u., |e| = � = me = 1) are used,
and the temperature is in energy units. The ion temperature
Ti is the initial “room” temperature, while only the electron
temperature Te is likely to be raised to 6 eV by the 50 fs
x-ray pulse. Sperling et al. [1] have presented experimental
evidence to support a Te = 6 eV but no evidence for the ion
temperature Ti . A two-temperature 2T model may be sufficient
[4,6] or too simplistic, as in Medvedev et al. [13], pointing
to nonequilibrium electron distributions, but the experimental
information is insufficient to go beyond a 2T model. Using
such a 2T model, we do not get the gradual decrease of
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σ (0) with T found for equilibrium nonisochoric aluminum.
Instead, we reproduce the low static conductivities reported in
the experiment. The high conductivities of the normal solid
and the molten metal (Te = Ti) at low T are partly attributed
to the position of the scattering momentum 2kF falling within
the second minimum in the ion-ion structure factor S(q). In an
isochoric UFM solid, the ions have no time to adjust to the
rapidly heated electrons. The ions (and their bound electrons)
remain frozen at their lattice sites, and at Ti . Hence S(q), and
the bare electron-ion pseudopotential W (q), remain essentially
unchanged, even up to Te = 6 eV. The thermal smearing of
the Fermi sphere is set by f ′(k,Te) = f (k,Te)[1 − f (k,Te)],
where f (k,Te) is the electron Fermi function. Its overlap with
the ion-ion S(q) and the electron-ion scattering cross section
determine the conductivity σ (0) as well as σ (ω).

The experiment provides the profile of the plasmon
resonance. We present a simple theory of the momentum
relaxation and energy dephasing frequency ν(ω) (also known
as the “collision frequency”), using a Born approximation
constructed to match the ω → 0 conductivity obtained from
the NPA phase shifts. The calculated plasmon profile is in good
accord with experiment.

II. THE DFT-NPA MODEL FOR ISOCHORIC UFM
ALUMINUM

Currently, several NPA models are referred to in the
literature. The model used here [9,10] considers an aluminum
nucleus placed in an electron subsystem and an ion subsystem,
with the nucleus defining the center of a “correlation sphere”
(R ∼ 30 a.u.) large enough to ensure that all interparticle
correlations reach bulk values as r → R. Thus, unlike in
“average-atom cell-models” [14], the interacting electron
system is mapped to a noninteracting Kohn-Sham system with
the noninteracting chemical potential μ0, and at the density
of the interacting system, as required by density-functional
theory. This voids any ambiguities in fixing the chemical
potential [15]. The bulk electron density, viz., ne is 1.81 × 1023

electrons/cm3 and has an electron-sphere radius rs = 2.07 a.u.
The free-electron pileup nf (r) and the scattering phase shifts
δkl around the Al nucleus are calculated via the Kohn-Sham
equations. A step function mimics the ion-ion pair distribution
function g(r) and works well for Al [10] for the purpose of
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FIG. 1. (a) The pseudopotential form factor M(q) at T = 0.2 eV
and 6 eV, and the thermal-smearing functions f ′(k,Te) = f (k)[1 −
f (k)]. (b) The overlap of S(q) and f ′(k,Te). The ion S(q,Ti) with
Ti = 0.06 eV.

calculating Kohn-Sham eigenstates. The phase shifts satisfy
the Friedel sum rule, and the DFT formulation uses a finite-
T exchange-correlation contribution [16,17]. All subsequent
calculations use inputs from this DFT-NPA calculation. The
many-ion system is built up as a superposition of NPAs, using
the S(q) derived within the theory.

At room temperature, the NPA yields an ionization Z = 3
and an ion Wigner-Seitz radius rws � 2.99 a.u. The rws is held
constant while Te is increased, to mimic the isochoric UFM,
where as normal solid or liquid Al expands (i.e, rws increases)
with temperature. A static electron response function χ (q,Te)
is constructed, with its local field correction (LFC) satisfying
the compressibility sum rule at each temperature. This defines
a fully local pseudopotential W (q) = nf (q)/χ (q,Te), and
an ion-ion pair potential Uii(q) = Z2Vq + |W (q)|2χ (q). The
pseudopotential W (q) = −ZVqMq, Vq = 4π/q2 is fitted to
a Heine-Abarenkov form for convenience. The form factor
Mq = nf (q)/n0

f (q) obtained from the NPA is shown in
Fig. 1(a) at T = 0.2 and 6 eV. Here n0

f (q) is the linear-response
charge pileup. Thus the electron-ion and ion-ion interactions
are constructed entirely from Kohn-Sham quantities. This
approach is capable of millivolt accuracy and reproduces even
WDM phonons [18] as discussed by, e.g., Recoules et al. [19]
(but phonons do not form during UFM time scales).

The resulting Uii(q) is used in the modified hyper-netted-
chain equation (MHNC), yielding the S(q) at the ion temper-
ature Ti (which is the initial temperature at the arrival of the
x-ray pulse). Since the initial Al-crystal has an FCC structure,
we use the spherically averaged S(q) taken as a “frozen fluid,”
say, at 0.06 eV. This is the lowest temperature at which the
HNC could be converged, since the melting point is �0.082 eV.
The results are insensitive to the use of an S(q) at 0.06 eV or,
say, 0.082 eV. Our MHNC accurately reproduces the S(q) of
normal liquid aluminum [20].

III. THE COMPLEX CONDUCTIVITY σ (ω)

The Drude theory with a static ν(0) is inadequate for σ (ω)
except at small and high ω [21]. Sperling et al. [1] have

used a Mermin model (diffusion pole) [22] augmented by
plasma many-body theory [23]. They use a sum of Born
(B), Lenard-Balescu (LB) Gould-DeWitt(GDW), and Mermin
(M) approaches in their analysis where Ti = Te. The real
part of the complex conductivity σ (ω) = σ1 + iσ2, obtained
via B-LB-GDW-M, is two orders of magnitude too large
compared to experiment, although the imaginary part σ2(ω)
and the plasmon profile are in better accord. They use
several models of S(q), point-ion Coulomb potentials, as well
as pseudopotentials, but the S(q) is not derived from the
pseudopotentials used. The theory of the Mermin response
assumes that the ions have sufficient time to respond to
the electron-density fluctuations. This is true if time scales
t are much larger than the electron-ion temperature relaxation
time τei which is many picoseconds [24] if Ti �= Te or for
time scales significantly larger than phonon time scales if
Ti = Te. Thus the Mermin model is largely inappropriate for
most UFM-WDM systems. Furthermore, no low-ω “diffusion
pole” is seen in the experimental spectra, as expected from
Mermin theory.

In our approach, the ion-S(q,Ti) at Ti remains intact for all
Te. We use a simple model where the ions are mere immobile
scatterers during the 50-fs signal and obtain good agreement
with experiment using a simple Born approximation that has
been refitted to capture strong electron-ion scattering effects,
as explained below.

The conductivity σ (ω) = ω2
pτ (ω)/4π , where τ (ω), i.e.,

1/ν(ω) is the relaxation time and ωp is the plasma frequency.
It can can be expressed via the force-force correlation function
as given in standard texts (e.g., Ref. [25], Sec. 4.6). The Born
approximation formula for the relaxation frequency is

ν(ω) = 1

6π2Z

∫
q4|W (q)|2S(q,Ti)
(q,ω)dq, (1)


(q,ω) = {χe(q,ω,Te) − χe(q,0,Te)}
iω

. (2)

Equation (1) is basically Hopfield’s formula [21] for the
dynamic relaxation frequency ν(ω) in the Born approximation.
Modern discussions are found in Refs. [23,26]. The relevant
S(q) in our 2T model is for cold ions at Ti = 0.06 eV, as shown
in Fig. 1(b).

The limit ω → 0 gives the static relaxation frequency
ν(0) and Eq. (1) reduces to the Ziman formula for the
static conductivity σ (0) which uses a weak electron-ion
pseudopotential, viz., the W (q) given in Fig. 1. However,
it predicts a somewhat higher conductivity than reported in
the LCLS experiment. Thus the electron-ion scattering is
manifestly stronger than predicted from our linear-response
pseudopotential or as found by Sjostrom et al. [27] using
DFT+MD with Te = T i. The σ (0) data from Sperling et al.,
shown in Fig. 7 of Ref. [27], calculated for Te = Ti , cannot be
correct as they disagree strongly with the MD simulation [27].
Furthermore, we noted that their S(q) are not calculated to be
consistent with the pseudopotentials they employ. Hence we
turn to the phase-shift formulation of the conductivity [28] to
include strong collisions.

ν(0) = 1

3πZTe

∫ ∞

0
f (k)(1 − f (k))k2dkF (k) (3)

063205-2



DYNAMIC CONDUCTIVITY AND PLASMON PROFILE OF . . . PHYSICAL REVIEW E 93, 063205 (2016)

0.1 1 10
Te [eV]

1

10

C
on

du
ct

iv
ity

σ,
  [

10
6  S

/m
]

LCLS-expt.,  UFM, Ref. [1]
phase-shift σ,  UFM
Normal Solid   (Ti=Te)

0 1 2
k/kF

-4

-2

0

2

δ kl
(r

ad
)

l=0

l=1 l=2

l=3

Lines:   T=6.0 eV
Circles: T=0.2 eV

phase shifts

Ti=0.06 eVM
el

tin
g 

Po
in

t

(a)

(b)

Te≠Ti in UFM,

FIG. 2. (a) The static conductivity σ (0) of aluminum in the UFM
state. LCLS experiment and the σ (0) from theory, with Ti �= Te, for a
range of Te. (b) The low-angular-momentum phase shifts δkl used for
the conductivity calculation are shown at two electron temperatures
for l = 0–3, as a function of k/kF .

F (k) =
∫ 2k

0
q3�(q,k)S(q)dq; q = k(1 − cosθ )1/2,

�(k,q) =
∣∣∣∣∣k−2

∑
l

(2l + 1)eiδkl sin(δkl)Pl(cosθ )

∣∣∣∣∣
2

. (4)

The original numerical implementation (see the Appendix,
Ref. [28]) has been improved, using up to 38 l states if needed,
an energy cutoff of EF + 2Te with asymptotic corrections.
Typical δkl from the NPA are shown in Fig. 2(b). Results for
σ (0) for isochoric Al, from Eq. (3) covering 0.2 to 10 eV, are
given in Fig. 2(a) while σ (0) up to 100 eV are in Table 1 of
Ref. [29]. The conductivity changes very little as the S(q) and
�(k,q) remain essentially unchanged in the isochoric material
where Te/EF changes only from ∼0.002 to ∼0.51. Changes
in the conductivity are due to the change in the smearing of
the Fermi surface [Fig. 1(b)] via the f (k){1 − f (k)} thermal
factor. The differences in the transport properties of UFM
aluminum and normal equilibrium aluminum in the WDM
state are highlighted in Fig. 3, where static conductivity
calculations are presented. The conductivity of normal liquid
aluminum (2.7 g/cm3) with Ti = Te for the 0.1 eV � Te �
10 eV reported by Sjostrom et al. [27] is seen to be about a
factor of 2 to 5 higher than the conductivity of UFM aluminum,
calculated using phase shifts or in comparison with the two
experimental data points [1]. The weak-scattering approxima-
tion to the conductivity uses the Ziman formula which invokes
the pseudopotential W (q) and the ion structure factor S(q)
calculated from it at Ti = 0.06 eV, depicted in Fig. 1. The
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FIG. 3. The static conductivity σ (0) of normal liquid aluminum
from MD+DFT is compared with that of UFM aluminum. Some
data for the normal solid are also shown. The DFT+MD (Ti = Te)
calculation (boxes) (Ref. [27]) assumes that Te = Ti , i.e., normal
molten aluminum. A weak-scattering approximation calculation
(using the NPA pseudopotential) and a strong-scattering calculation
(from the NPA phase shifts, see Fig. 2) for UFM-Al with the ions
“frozen” at Ti = 0.06 eV are presented.

strong-scattering calculation using phase shifts to calculate the
conductivity is shown as triangles. Both the strong-scattering
calculation and the weak-scattering calculation approximate
the two available UFM data points better than the equilibrium
DFT+MD simulation. This supports the picture where the
WDM aluminum in the experiment is better modeled as a 2T

UFM system. It should be noted that a DFT+MD calculation
of the UFM aluminum conductivity, with the aluminum ions
frozen at Ti = 0.06 eV, cannot be conveniently achieved using
available simulation methods because generating enough ionic
configurations for a solid at Ti = 0.06 eV to dampen the
random oscillations in the calculated σ (ω) is beyond our
reach. Hence the NPA phase-shifts approach seems to be
practically the only method currently available for including
strong electron-ion collision effects in a reliable way.

The above physical picture can be exploited to construct
a simple revalidation of the Ziman formula as well as the
dynamic relaxation-frequency formula. We refit the pseu-
dopotential so that the Ziman formula reproduces the strong-
scattering static conductivity σ (0) obtained from the phase
shifts. An Ashcroft pseudopotential VA(rc) specified only by
the core radius rc could be found to reproduce the σ (0) obtained

063205-3



M. W. C. DHARMA-WARDANA PHYSICAL REVIEW E 93, 063205 (2016)

-3 -2 -1 0 1

Energy Shift:  ω/ω
p

0

0.2

0.4

0.6

In
te

ns
it

y 
[a

rb
. u

ni
ts

]

Theory-Sperling et al .

Theory-This work

LCLS-experiment 

7980 eV.

T
i
=0.06 eV, T

e
= 6 eV.

n
e
=1.8 x 10

23
cm

-3

ω
p
=15.8 eV

FIG. 4. The UFM-aluminum plasmon line shape at Te = 6 eV,
from experiment and theory.

from the phase-shift calculation in the range Te = 0.2 to 6 eV.
This rc is consistent with the NPA value of the bound core of
the Al3+. We use this pseudopotential VA(rc) instead of W (q)
in Eq. (1) to evaluate ν1(ω) + iν2(ω).

IV. THE PLASMON PROFILE AND ν(ω)

An important result of the LCLS experiment is the plasmon
profile from UFM aluminum. We discuss T = 6 eV in detail.
Equation (1) evaluates ν1(ω) and ν2(ω) using the VA(rc)
pseudopotential. Obtaining ν1 via Im{χ (q,ω)} in Eq. (2) and
ν2 via Kramers-Krönig is computationally accurate. A direct
estimate of ν2 is also available from Eqs. (1) and (2). The
response function χ (q,ω) uses an LFC derived from the finite-
T xc potential [16]. The transverse dielectric function ε(q →
0,ω + iν(ω)) provides the optical scattering cross section
See(q → 0,ω). This is ∝ Im{1/ε(ω − ν2 + iν1)}nB(ω), where
nB(ω) is a Bose factor at the electron temperature Te. Instead
of Mermin theory, we use the simplest transverse dielectric
function in the q → 0 limit. The calculated scattered intensity
is shown in Fig. 4. The predicted profile differs on the red wing
of the experimental plasmon line shape. This can arise from
shortcomings in theoretical as well as experimental inputs. A
2T model may be too simplistic [13], or the refitting using
the Ashcroft pseudopotential may be inadequate and a better
theory of ν(ω) may be needed.

The quantities ν(ω) and σ (ω) can be extracted from the
experimental S(q → 0,ω). We use the ν1(ω),ν2(ω) reported
by Sperling et al. to test our results, although they assumed a
Mermin form to extract the data. That is, we assume that the
modeling differences fall within the error bars. The closeness
of the plasmon profile of Sperling et al. and ours justifies this
assumption. In effect, the error of using the Mermin model is
partly compensated via the error of using the “improved” Born
approximation of Ref. [1], made up of a mixture of many-body
theories.

The experimental νex
1 and νex

2 are compared with our
calculated ν1,ν2 in Fig. 5, where the energy shift ω is ω1 − ω0

with ω0 = 7980 eV and hence negative (for the plasmon
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studied here). The theoretical ν1 decays very slowly compared
the νex

1 .
The Drude formula provides σ (ω) from ν(ω). Setting � =

ω − ν2, d(ω) = ν1(ω)2 + � 2 we use α = ω2
p/(4π ), σ1(ω) =

αν1/d(ω), and σ2(ω) = α�/d(ω). We have recalculated σ1,σ2

from our theoretical ν1,ν2 given in Fig. 5(a) and from the
experimental ν1,ν2 at T = 6 eV given in Fig. 3 of the
Supplemental Material of Ref. [1]. The resulting σ1(ω),σ2(ω)
are displayed in Fig. 5(b). Note that although σ2(ω) is expected
to tend to zero as ω → 0, this happens only quite close to ω = 0
because of the strong negativity seen in both experimental and
theoretical numbers for ν2 [see Fig. 5(a)]. Although σ1 is close
to the experiment for small ω, it deviates from experiment as
ω increases.

V. CONCLUSION

In conclusion, we have questioned popular paradigms in
modeling warm-dense ultra-fast-matter systems. These are (i)
the use of the Mermin response function with its assumptions
of rapid local thermodynamic equilibrium and (ii) the use of
ion distributions with relative laxity (e.g., even hard-sphere
distributions), with Te = Ti even for ultrafast matter. (iii) The
use of a mixture of theoretical models with little regard to
consistency is contrasted with the DFT-NPA model where
all the needed quantities are calculated from the output of
a Kohn-Sham equation. As the DFT-NPA is an effectively
“single-ion” and “single-electron” Kohn-Sham calculation in
the sense of DFT, it is orders of magnitude faster than the
many-center “single-electron” DFT approach used in large
solid-state electronic codes. Furthermore, the method uses
the modified hyper-netted-chain equation instead of molecular
dynamics to generate the structure factors that are needed in
the theory. The static and dynamic conductivity, structures
factors, and plasmon profiles, calculated for 2T ultrafast
aluminum within DFT-NPA, give good agreement with the
LCLS data. (iv) The static conductivity of ultrafast matter
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is shown to be significantly lower than that of equilibrium
WDM aluminum. (v) Validity (or not) of the simple Born
approximation to the dynamic conductivity is examined. We
show that the Born approximation using a pseudopotential
fitted to the strong-scattering conductivity σ (0) obtained via
phase shifts successfully predicts the plasmon line shape
and the dynamic conductivity of the LCLS experiment,

without invoking the Mermin model and thermodynamic
equilibrium.
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