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We derive the von Kdrman—Howarth equation for a full three-dimensional incompressible two-fluid plasma.
In the long-time limit and for very large Reynolds numbers we obtain the equivalent of the hydrodynamic

“four-fifths” law. This exact law predicts the scaling of the third-order two-point correlation functions, and puts
a strong constraint on the plasma turbulent dynamics. Finally, we derive a simple expression for the 4/5 law in
terms of third-order structure functions, which is appropriate for comparison with in situ measurements in the

solar wind at different spatial ranges.
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I. INTRODUCTION

In the paradigmatic case of incompressible hydrodynamic
turbulence, von Karman and Howarth [ 1] obtained an evolution
equation for the second-order correlation tensor under the
assumptions of isotropy and homogeneity. This is the so-called
von Karman-Howarth (vKH) equation, and is one of the
cornerstones of turbulence theory. The equation, which relates
the time evolution of the second-order correlation velocity
tensor to the divergence of the third-order correlation velocity
tensor, has been extensively studied in the literature [2—5]. One
of its most important corollaries is the so-called “four-fifths”
law. Assuming the existence of an inertial energy range for very
large Reynolds number, it predicts a linear scaling of the longi-
tudinal two-point third-order velocity structure function with
the distance between the two points. This scaling puts a strong
constraint on the dynamics of fully developed turbulence. In
particular, one crucial consequence is that the increment of
the velocity field du between two points separated by r is
proportional to #'/3, which in Fourier space leads to the famous
Kolmogorov spectrum E(k) ~ k=/3 for the energy [6].

Multiple attempts have been made to extend these results
to turbulent plasmas. Chandrasekhar [7] derived vKH equa-
tions in the one-fluid incompressible magnetohydrodynamic
(MHD) approximation. Using Elsasser variables, Politano and
Pouquet [8,9] derived the equations for third-order structure
functions and for correlation functions, and assuming full
isotropy (i.e., including mirror symmetry), homogeneity, and
equipartition between kinetic and magnetic energy, they
obtained the corresponding 4/5 law. In the absence of mirror
symmetry the structure of the second-order correlation tensors
is more complex. In particular, Politano et al. [10] reported an
exact equation for homogeneous and isotropic MHD turbulent
flows with nonzero helicity. In the large Reynolds number and
long-time limit, the authors recovered linear scaling for the
third-order correlation tensors.

At spatial scales approaching the ion skin depth (although
still larger than the electron skin depth) the MHD model is
no longer appropriate. It can be replaced by the Hall-MHD
(HMHD) model, which is an extension to MHD including the
Hall current and the electron pressure (see, e.g., [11]). The
HMHD model has been extensively studied in recent years,
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both analytically [12—15] and numerically [16-18]. Galtier
[19] derived the vKH equation for the three-dimensional (3D)
incompressible HMHD equations in the nonhelical case, i.e.,
when mirror symmetry is considered, and obtained exact scal-
ing laws for the third-order correlation tensors. However, the
HMHD model also has limitations to describe a plasma. First,
it ignores the inertia of the electrons, which plays a role in the
nonlinear dynamics at small scales. Second, it misses kinetic
plasma dissipation mechanisms such as Landau damping,
cyclotron-resonant damping, and other mode-coupling dissi-
pative processes. As a result, the HMHD model can only be ex-
pected to hold down to scales of the order of the ion-skin depth.

Interestingly, many of the results for a turbulent flow de-
scribed above can be derived independently of the mechanism
of dissipation. Here we use this fact to derive the vKH equation
for the 3D incompressible two-fluid equations (vKH-TF)
describing a fully ionized hydrogen plasma, extending all
previous MHD and HMHD results, which can be regarded
as particular cases in the proper asymptotic limits. As a
result, we obtain scaling predictions for a turbulent plasma
while retaining the whole dynamics of both the electron and
ion flows throughout all the relevant spatial scales. These
predictions should be valid down to the largest scale in which
a plasma dissipation mechanism is present. The derivation is
done considering in particular applications in space plasmas.
We start by considering some of the implications of the
“four-fifths” law for turbulence in hydrodynamics and in
MHD, followed by the derivation of the vKH-TF equation,
and its relevance to the description of turbulent space plasmas.

II. THE IMPORTANCE OF THE 4/5 LAW

As mentioned in the Introduction, the vKH equation [1] can
be used as the starting point to obtain several essential results
in turbulence theory. In particular, the hydrodynamic 4/5 law
[20] states that in the limit of infinite Reynolds number, the
longitudinal two-point third-order velocity structure function,

B/(r) = ({[v(x + 1) — v(x)] - 1}’), (1)

evaluated for spatial increments r, is given in terms of the
spatial increment itself and of the mean energy dissipation per
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unit of mass € by
Bjji (1) = —3er, @

where r = |r|, and the angular bracket in Eq. (1) denotes
ensemble average. The prefactor 4/5 in Eq. (1) gives its name
to this exact result.

It is interesting that this result is independent of the
dissipation mechanisms acting in the flow, and it only requires
the existence of some dissipation at sufficiently small scales
to get rid off all the power injected at large scales. As
such, this law links information that is accessible from flow
measurements at intermediate scales (the third-order moment
of the velocity structure function, associated with the energy
flux transported among scales by nonlinear effects) to small-
scale quantities such as the rate of energy dissipation. As a
result, this exact law has been used to identify the range of
scales in which dissipation is negligible (the so-called “inertial
range” of scales in a turbulent flow, for which the exact law
holds), to measure energy dissipation rates, and to define
a Reynolds number without precise knowledge of the flow
viscosity or of the microscopic dissipation mechanisms (see,
e.g., [21] and references therein).

The generalization of Eq. (2) to the MHD case [8,9] relates
longitudinal two-point third-order structure functions of the
velocity and magnetic fields to the spatial increment and to the
energy dissipation rate. Although the prefactor changes, the
law is still known as “four-fifths.” The validity of the MHD
law has been subjected to several numerical testings (see, e.g.,
[22-25]). Among several important results, the 4/5 law in
MHD has been used to measure the energy cascade rate at
large scales of the solar wind [26-28], to estimate the Reynolds
number of solar wind turbulence [21], to investigate large-scale
solar wind models [29,30], to predict the decay of MHD
turbulence [31,32], and to determine scaling exponents in mea-
surements and in simulations using the so-called extended self-
similarity (ESS) hypothesis [33,34]. This last example high-
lights the importance of having an exact law: the ESS method
uses the 4/5 law to calibrate structure functions, decreasing
uncertainties and improving the analysis of the measurements.

The generalization of the vKH and the corresponding
4/5 law for a plasma would thus be useful not only to study
scaling laws at large and intermediate turbulent plasma scales,
but also to discern at what scale dissipation becomes relevant,
and therefore the scaling would become invalid. In the solar
wind and in space plasmas, there is a debate on whether
scaling laws observed at high frequencies correspond to the
inertial or dissipative ranges (see, e.g., [35]). A derivation of
exact laws for two-fluid equations for a fully ionized plasma is
therefore a decisive step to elucidate this point, which should
include previous MHD and HMHD results as asymptotic
limits. Next, we define the correlation tensors used to derive
the 3D vKH-TF equation, and the two-fluid equations used
to describe the plasma, and proceed to derive the 3D vKH-TF
equation and the 4/5 law.

III. CORRELATION TENSORS

The properties and structure of second-order correlation
tensors are extensively discussed in [36]. A derivation of the
general form of homogeneous third-order correlation tensors
can be found in [10]. For completeness, we briefly present the
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main results of tensorial algebra needed to obtain the vKH-TF
equation. Given two solenoidal vector fields a(x) and b(x), we
define the second-order correlation tensor as

R (x,X) = (a;(0)b;(X)) = (a;b}), €

where X' = x + r, and the angular brackets denote ensemble
average. Spatial homogeneity implies that all regions of space
are similar so far as statistical properties are concerned, which
suggests that the results of averaging over a large number of
realizations can be obtained equally well by averaging over
a large region of space for one realization [37]. Therefore,
under this assumption, the second-order correlation tensors
depend only on the relative separation r and are independent
of its origin.

The most general expression for a solenoidal second-order
correlation tensor is [37]

R (r

B2y, + Lo opy + ep e, @

Cab 2 r

where c,, = ab, @ is the root mean square value of a,
and ¢y, f%(r) is the (dimensionless) longitudinal (along r)
scalar correlation function. In addition, we have introduced
a new pseudoscalar function f’(r) which is related to the
not-mirror-symmetric (or helical) part of the tensor. This
pseudoscalar function is, in general, not zero and related to the
helicity of the fields involved. Finally, P;;(r) = &;; — rirj/r?
is the projector into the subspace of incompressible flows.

Third-order correlation tensors needed to derive the vKH-
TF equation are of the form

See(x,x) = (a;(0b X, X)) = (@ibic}), ()
where ¢(x) is another vector field. These tensors satisfy
SEre(r) = su(r)r;di + s )iy + 130 )ridy
+ 83(r)rirgrj + 53(r)ri€kjmrm
+ S0P )rk€jimtm + 521(F)F j€ikmPm, (6)
where the seven scalar functions are even functions of r,
as for the second-order correlation tensor. Note that we
omitted the superscript abc for the sake of simplicity. The
incompressibility condition leads to relationships between
these seven functions and reduces the problem to only four
generating functions (see [10]). If the first two indices (i.e., i
and k) are symmetric, the tensor is generated only by one scalar
and one pseudoscalar function (the latter related to helicity
[38-40]).

Finally, the second and third order structure functions are
defined in terms of the increments of the vectors as

B (r) = ((a] — a)(b; — b)), )
Bfki}c(l‘) = ((aj — a;)(b;, — bk)(c; — ;). ®)

Using homogeneity the following relations between structure
functions and correlation tensors can be derived:

B (r) = 2R} (0) — R{Y(r) — R{Y(—), ©)
Bebe(r) = [Sehe(r) — She(—n)] + [Sicb ) — Sicb (1))
+ [Shit ) = Shi(=o)]. (10)
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IV. TWO-FLUID EQUATIONS

The equations of motion for a quasineutral incompressible
plasma of ions and electrons with mass m, ., charge +e, den-
sities n; = n, = n, pressures p®, and respective velocities v
and u are [41-43]

d 1
mend—l; = —en (E + —ux B> —Vp© + u©¥viu—D,
c
(1n
av 1 D 4, y2
m,-nE:en E+-vxB|—-VpY+u¥vv+D, (12)
&
J= SV xB=en(v—u). (13)
4

Here d/dt = /9t +u - V is the total derivative, B and E are
the magnetic and electric fields, J is the electric current density,
c is the speed of light, (- are viscosities, and D is the rate of
momentum gained by ions due to collisions with electrons, and
assumed proportional to the relative speed between species,
D = —nm;v;.(v —u), where v;, is the collisional frequency
of ions against electrons. Incompressibility implies V - u =
0 = V - v. Note that these equations neglect kinetic plasma
dissipation mechanisms due to either electrons or ions. As
mentioned in Sec. II, the 4 /5 law will hold for scales larger than
any of the scales associated with these dissipation mechanisms,
and as such, it should be independent of the actual damping
mechanism acting in the plasma. The vKH-TF equation, on
the other hand, will have explicit dissipation terms, and these
terms may differ if other damping mechanisms are considered.

Equations (11) and (12) can be written in dimensionless
form in terms of a typical length L, the particle density n,
a typical velocity vy = By/(4mnM)'/? (the Alfvén velocity,
where By is a typical value of B, and M = m; + m,), and with
the electric field in units of £y = vaBy/c,

du

Mdt
d 1 ) . d

(1— “)d_: = (E+vxB)- VO 4y OV2y 4 o (9)

1 d
= —X(E+u x B) — Vp© + 1OV — o (14)

J=— %(v—ux (16)

where we have introduced the dimensionless parameters yu =
m,/M and A = c¢/wy Ly, where wy = (47'(62n/M)1/2 has the
form of a plasma frequency for a particle of mass M. The
dimensionless momentum exchange rate is d = —nJ, where
n = m;c*vie / (4mwe*nvaLy) is the (dimensionless) electric re-
sistivity. Dimensionless ion and electron inertial lengths can
be defined in terms of their corresponding plasma frequencies
wi.. = (4e’n/m; )"/ simply as A;, = c¢/w; Lo, and their
expressions in terms of 4 and A are simply A; = (1 — pu)/?A
and A, = u'/?A. Note that in the limit of electron inertia equal
to zero, we obtain wy; = w;, and therefore A = A; = c/w; Ly
reduces to the usual Hall parameter.

To obtain a hydrodynamic description of the two-fluid
plasma, we can write u and v in terms of two vector fields
(see [42]): the hydrodynamic velocity U = (1 — u)v + uu,
and J as given by Eq. (16). From these two fields, it is trivial
to obtainu and vasu=U— (1 — u)AJ and v=U + pAJ.
We will now see that this hydrodynamic description is useful
to obtain the vKH-TF equation.
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V. RESULTS FOR A TWO-FLUID PLASMA
A. The von Karman-Howarth equation

The ith component of Eqgs. (14) and (15) evaluated at point
X is

1
UOsu; = — [l Ot — X[Ei + €imU B
—(1 = r€itn Ji Bl = 3 p'

+0 O, + 3L (17)
1
(I = w)drv; = —(1 — wWvedy, vi + X[Ei + €iimUi B

o+ e i Bl = 0p® + 000 = L.
(18)

The time evolution equation for the second-order correla-
tion tensor R;(r) results from Eq. (17) after multiplying by
u; =uj(x+r), and adding the jth component of Eq. (14)
at point X' multiplied by u;. The time evolution of R!’(r) is
obtained by performing similar operations on Eq. (18). The
end result is

o[k o]
= on e[St @) = S (-n)]
— (1= w[SEFm = sE o]} — [RE )
+ R @] /3 = [€im Spg " (0) + €jm Sji* (=1)] /2
n 23rzkrk["(e)Rf,liu(r)] + n[R{j“(r) + Rffjj(r)]/?», (19)

(1 = R ()]
= 0, {(1 = WS = SH (1)
~ u[SE ) = A D)+ [RE 0 + REF @]
+ [eilmSleizlju(r) + €jim S]Lr;?v(_r)]/)‘
+202, [VORY®] = n[R}'@®) + RY ®] /%, (20)

where we have used the divergence-free condition for the fields
w,v,andB, 9, (.) = 9;(.) = —9,(.) from homogeneity, and the
relation

) = (a;(X)b; (X)ck (X 4 1))
= (@i(x + Db;(x + r)cr(x)) = S (-r). Q2D

Note that the gradient terms vanish because of isotropy [37].
Adding Egs. (19) and (20) we obtain

O [WRi (1) + (1 — R (0] — [RE (1) + R ()]
= oy, {[Se () — S (—0)] + (1 — W[ S @)
=SR] = (= w[sEm = $3 )]
— n[SEE ) — SEE D]} + [ein S @)
€S (<o) + 207, [V R ) + 0O R ()]

—2nR} (r). (22)
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The pseudotensor S,l,]n? 7(r) on the right-hand side of Eq. (22)
can be expressed in terms of the derivative of the proper tensor
SUBE(r), since
€ilm SjUrﬁJ(r) = Gilmequarp S[%gB(r) = ar,, Tl;jjBB(r) (23)
We can write this tensor using the velocity of the species
TYPEE) = uTufP @) + (1 = wSiEim.  (24)
Finally, noting that RiJjJ (¥) = —€ipg€jrs 8,2prr RJP(r), Eq. (22)
can be written as
B[R @) + (1 — R ®)] - [RE (1) + RIE ()]
= 0 {n[ S0 = ST 0] + (1 = w[SiF o
=S (=0)] = (1 = w[S§7" () = S5 (=)
u[SEP®) — SR (0] + [ TP )
+ TP (0] + (A = [T + TP (-n)]}
+202, [V R ) + VDR (1)]

+ 2n€ipg €7, REE (D). (25)

rpryitgs

Equation (25) is an exact law, valid even for anisotropic
turbulence [44—46]. This is our first main result.
We can now take the trace of Eq. (25),

3[R (1) + (1 = R (1) + RF (0)]
= 3, {20 S () + 201 — W) S (r)
=201 = WS (1) = 21857 (0) + [T P ()
+ TP 0] + (4 = [T ) + TP (0]}
+207, [VORE @) + v O R (1) + nREP ()], (26)
where, for a equal to u or v,
T P (6) = €itm€ing Simg (©) = (81t8mg — 814 8mt) Sy (1)
= Sigg (¥ = Sg (). (27)
From homogeneity, we have noted that
RET(xr) + RIE(r) = —9,REB(x). (28)

In the asymptotic limit of r — 0, Eq. (28) corresponds to twice
the time variation of the total magnetic energy.

Now, assuming isotropy, we introduce the explicit form of
the second- and third-order correlation tensors,

aa
B _ 54y oo, 29)
Sk’ _ WL rORT gy, (30)
Caab 2r
S]?i};h(r) _ Slgkl;b(r) _ 2kabb + rarkabb _ 4qabb .
Cabb r
= T r)ry, (31)

where
Fr) = Rl [caar K*P(r) = SiiP(X)/Caap-

q“"(r) = SN (0)/can
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are the longitudinal and transversal correlations of the fields
a,b =u,v and B, and where c,, = aa and c,p, = abb. By
longitudinal (]|) and transversal (L), we mean in the direction
along and perpendicular to the displacement vector r, respec-
tively. Using these expressions and after some manipulation,
Eq. (26) reduces to

B+ rd)d e " + (1 — wew f + cp PP
=23+ rd){Cuuu S + (1 — )cypp S™™"
— (1 — p)cppaS®P — pepp, S + peuppT?®
+ (1= TP 420,170, 0y f 4 v Dy [
+neps fE/ Y, (32)

where we have used identities for isotropic turbulence [37]
, 2
O = 32 + =9, (33)
r

2, 2 _ 1L, 4
02+ 20, )B4rd) = G+ro)—0,0*9). (34
r r

A first integral of Eq. (32) is
Olpcun [ 4+ (1 = wew [ + cpp £ 7]
= 2 [Cuuu S + (1 — ()cyppy S™
— (1 — w)eppaSEP" — uepp, S + e pp T
+ (1 — T8 428, [r*8, vy
+ 0Oy [ + negs fEH1/ 7 (35)

This exact relation is the von Kdrmidn—Howarth equation for
an incompressible two-fluid plasma, which is the second main
result of the present paper.

B. The 4/5 law

The vKH-TF Eq. (35) can be written in terms of the structure
functions using the relation

R||(r) = (aja)) — B||'(r)/2, (36)
where we have used Eq. (9). Therefore
O [p(u) + (1 — w)(vj) + (B})]
— (B[ + (1 — wBj! + Bf}’]
= 2 [ e S + (1 — )y S™" — (1 — weppa ™2
— ueppoSPPY + weupp T8 + (1 — ) TVBP]
+20r ™49, [r*8, (uf) — Bji/2)]
+2v0r 749,149, ((v]) — By /2)]
+20r 0, [r*0,((B]) — B[ /2], 37)

where we identify the mean energy dissipation rate per unit
mass er for isotropic turbulence as

() + (1 — W) + (B)) = —3er.  (38)

Hereafter we adopt the usual assumption for fully developed
turbulence [5]; i.e., we use the long-time limit in which a
stationary regime is reached for sufficiently large Reynolds
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numbers, and in which &7 tends to a finite positive value.
Therefore, at the inertial range

2
—3rer = MCrp (K" 470, k")

+ (1= )cuwy (4™ + ro k")

= (1= weppu(@kP + ro, kP2)

— peppy (4P + 1o, kPP

+ SMCMBB(kuBB + rarkuBB/z _ 2tuB)

+ 8(1 — pwcypp(k"BE 4 r9,k"BE )2 — 24VBB),
(39)

Equation (39) can also be written in terms of the third-order
correlation tensors as

— Lrep = pu(SIn 4+ LS 4+ (1 — (S, + LS
— (U= )(SPEL + S — m(SPEY + 5 S
+u(SUEE — SUBBY 4 (1 — p)(SPEE — SBP),
(40)

where 1=2 or 3 (no summation on _L). Finally, using
Egs. (7), (8) and the incompressibility condition [Sj‘_’jf’” (r) =
— BPaa(y) /2], we write Eq. (40) as a function of the third-order

[
structure functions:

—4rer =[Bjy () + BIEP(r) — BEYP(r) — BiP(v)]
+ u[Bj"(r) + Bﬁ‘,’fﬂ(r) — B/(r) — Bﬁi’fﬂ(r)].
(41)

This equation is the 4/5 law for the two-fluid plasma, and is
the third main result of the present paper.

C. Discussion

Equations (25), (35), and (41) give respectively (1) an exact
relation for the correlation functions of anisotropic turbulence
(e.g., in the presence of a guide field) in a two-species
incompressible plasma, (2) the vKH equation for isotropic
turbulence, and (3) the 4/5 law for the scaling of the flux in the
inertial range. Atthe large scales, i.e., whenA — Oand u — 0,
we recover the MHD results [7-9], and the hydrodynamic
result when the magnetic field is taken equal to zero. When
only 4 — 0 we obtain the HMHD case, previously studied by
Galtier [19]. However, unlike the results in Galtier [19], here
we also express the results in terms of structure functions. Also,
it is important to emphasize that our expressions are written
in terms of the velocity of each species in the plasma, which
allow easier comparison with observations in space physics
and with data from numerical simulations.

The exact Eq. (41) implies a scaling law for the third-
order structure functions in the large Reynolds numbers and
long-time limits. This law imposes correlations between the
basic fields u, v, and B, putting a strong constraint on the
plasma turbulent dynamics. Finally, the equivalent expression
involving only third-order structure functions is appropriate
for comparisons with in situ measurements in the solar wind
at different spatial ranges (such as those in [47]), or with
laboratory plasmas.
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Under certain assumptions, Egs. (35) and (41) also provide
predictions for the scaling of the energy spectrum in a turbulent
plasma. At the largest scales, using Eq. (41) and assuming
energy equipartition, we recover the well-known result § B ~
r!/3, which corresponds to the Kolmogorov spectrum for
the total (kinetic plus magnetic) energy E(k) ~ k=3, At
intermediate scales (assuming u = 0 and r > A), and using
the fact that the electron velocity du is proportional to
8B/r, Eq. (41) leads to §B ~ r2/3 which corresponds to
a magnetic energy spectrum Eg(k) ~ k~'/3. Finally, at the
smallest scales (r < X.) where the terms proportional to p in
Eq. (41) become dominant, a new scaling for the energy inertial
range emerges. At these scales, using éu ~ § B/r, we obtain
8B ~ r*3, and therefore Eg(k) ~ k~''/3. This scaling was
recently obtained from dimensional arguments and observed
in numerical simulations in [42]. It is also remarkable that
these three different scalings are compatible with previous
theoretical and numerical results [16,48-52] and with solar
wind observations [26,30,47,53-55].

Regarding the intermediate HMHD range, it is worth
mentioning that an energy spectrum with a slope equal to
—7/3 is incompatible with the assumption of an asymptotic
separation of scales between the forced scales and the
dissipative (assumed small) scales, as for a spectrum steeper
than —2 dissipation peaks at large scales (i.e., in the HMHD
range, at wave number k ~ 1/)). However, at scales below
the electron skin depth (where the HMHD model is no longer
appropriate), the total energy spectrum (dominated by electron
kinetic energy) is E; ~ k=>/3 [42]. Thus, as long as the
HMHD range in the plasma is not too broad (and as long
as kinetic plasma damping mechanisms can be neglected at
those scales), the scalings obtained above should hold. The
dissipation anomaly for steep spectra has been studied before
in the literature, for instance, in regularized MHD models
[56,57].

VI. CONCLUSIONS

We derived the von Karman—-Howarth equation, and its
corresponding 4/5 law, for a 3D incompressible two-fluid
plasma model. In particular, the derived vKH-TF equation
can be written compactly in the usual form found for
hydrodynamics [2] as

. 2,2 [iir“D(Q)}, (42)

r4 or

a0~ ar Tar

where Q is a function associated with the second-order correla-
tion tensors of the fields, 7 with the third-order correlation ten-
sors, and D(Q) takes into account all dissipative effects. The
structure of the functions Q and T [see., e.g., Eq. (25), valid
in the more general anisotropic case, and Eq. (35), valid in the
isotropic case] is independent of the mechanism of dissipation
acting on the plasma. However, the structure of the function
D(Q) depends on the dissipation mechanism, and should
therefore be expected to change if kinetic plasma dissipation
mechanisms (e.g, Landau damping, cyclotron-resonant damp-
ing, or other mode-coupling dissipative processes) are present.
To obtain the generalization of the 4/5 law for a two-fluid
plasma [Eq. (41)] we adopted the usual assumption of fully
developed turbulence, where an asymptotic regime is expected
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to be reached for sufficiently large Reynolds numbers. This
allows for the existence of a range of scales for which
dissipation mechanisms are negligible (i.e., D ~ 0 at those
scales), and as a result 9,Q can be associated with the
mean energy dissipation rate per unit mass. Note that this
is independent of the particular dissipation mechanisms in the
plasma, as long as they act at sufficiently small scales, and as
long as they allow for an asymptotic regime to be reached
for sufficiently large scale separation. Another equivalent
approach to derive the 4/5 law is to consider that in the
turbulent steady regime, for which 9, Q ~ 0, the dissipative
term must be equal to the mean power injected into the system
per unit mass, which is equal to —e7. Therefore, regardless of
the particular mechanisms of dissipation present in the plasma
(and in particular, in the solar wind), Eq. (41) provides an exact
law which should hold as long as the energy injection rate
balances the energy dissipation rate, and for all scales larger
than the scale at which collisional or kinetic plasma dissipation
mechanisms become dominant. The length of this scale will
depend on specific properties of the plasma considered. As an
example, in the solar wind at 1 AU dissipation mechanisms
seem to become relevant for frequencies of 0.5 Hz [58],
although there is a debate on whether this scale is indeed
dissipative or inertial [35].

The 4/5 law for a two-fluid plasma thus includes the effect
of ion and electron inertia in the scaling of turbulence, and
generalizes previous results obtained for MHD and HMHD.
For scales larger than dissipative scales, it implies a specific
scaling for structure functions of the velocity of each species
and of the magnetic field, which can be related to the energy
dissipation rate at the smallest scales. Therefore, it provides
a way to test whether a range of scales in a plasma is inertial
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or dissipative: if scaling laws observed in that range satisfy
Eq. (41), then the scaling is the result of a turbulent cascade. It
also provides a way to calibrate observations (e.g., higher order
structure functions) against the 4/5 law, as often done when
the ESS hypothesis are used to analyze data. In the range of
scales in which it holds, it implies scaling laws for the energy
spectrum at scales larger and smaller than the ion-skin depth,
as discussed in Sec. V C. Equation (41) gives a way to quantify
the total energy dissipation rate per unit mass in a plasma from
observations at scales larger than the kinetic scales at which
the dissipation mechanisms become dominant. Finally, since
the expressions are given in terms of the velocity field of each
species, the procedure used here can be extended to consider
multispecies plasmas in a straightforward fashion.

In the study of turbulent flows, exact laws provide an
essential tool to analyze data and understand nonlinear
cascades. Over the last years, the sustained increase in the
spatial and temporal resolution of space missions such as
Cluster (ESA) or the new NASA MMS (Magnetospheric
MultiScale) mission has opened the possibility to study a
number of small-scale plasma phenomena as never before.
The exact laws derived here allow investigation of the nature of
turbulent magnetic field fluctuations at a broad range of scales
in space plasmas, and will be indispensable to understand the
nature of turbulence at the smallest scales in the solar wind.
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