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Wakes in complex plasmas: A self-consistent kinetic theory
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In ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity
by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the
electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral
collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually
a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic
theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution. We focus on
various limiting cases and demonstrate how the interplay of these factors results in different forms of the shielding
potential.

DOI: 10.1103/PhysRevE.93.063201

I. INTRODUCTON

A complex (or dusty) plasma is a plasma that contains
charged dust microparticles [1–17]. Complex plasma experi-
ments are generally performed with weakly ionized plasmas
and microparticles of a few μm in diameter, which are charged
negatively by collection of free electrons and ions from the
plasma [2–6]. The equilibrium charges, typically of the order
of −104e, are large enough to give rise to strong mutual
electrostatic interaction between particles and, as a result, a
plethora of self-organization phenomena. This allows us to
use complex plasmas as a model system to study various
processes in fluids and solids, by directly observing individual
microparticles (see, e.g., studies of shock waves [18,19],
crystallization and melting fronts [20], and dislocations in
crystals [21]). In contrast to colloidal suspensions [22,23],
which can be used for similar purposes, complex plasmas
are characterized by weak damping and therefore enable
investigations at the intrinsic dynamic time scales.

While there have been many studies of complex plasmas
under microgravity conditions, most experiments are carried
out on the ground. Usually they are performed in a radio-
frequency discharge, where microparticles are levitated against
gravity by the average electric field of the discharge [2,4]
(although there have been experiments where the levivation
was mainly due to the termophoretic force [24–26]). This
electric field naturally arises to maintain the balance of the ion
and electron currents on the electrodes; it increases toward the
lower electrode (see, e.g., Fig. 7 or Ref. [27]), so microparticles
find their equilibrium position at the height where the resulting
electrostatic force on a particle is just enough to compensate
for gravity (and the ion drag force [2,4], which is usually
considerably smaller than the gravity force).

The electric field that levitates microparticles against
gravity also drives ion flow in the parent neutral gas. Usually,
the ion flow at the levitation position is more or less mobility
limited, so its velocity can be estimated by equating the gravity
force and the electrostatic force and using published data on
mobility of ions in their parent gases [28]. Such estimates
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show that, depending on the pressure and particle size (mass),
the flow velocity varies considerably from one experiment to
another and can easily be smaller than, about the same as, and
many times larger than the thermal velocity of neutrals.

The ion flow is a key factor determining the plasma
shielding of, and hence the electrostatic interaction between,
microparticles. It has long been known that the screening of the
Coulomb potential in an anisotropic plasma is not exponential
[29–31]. Moreover, an excess of positive charge is formed
downstream of microparticles, which leads to nonreciprocal
interaction forces between them [32–34]. Various theoretical
models have been proposed to describe the interaction between
microparticles in the presence of ion flow, predicting, in
particular, the formation of an oscillatory wake structure
downstream of the particle [35,36] and the possibility of
attraction between particles in the plane perpendicular to the
flow [37–39].

Existing analytical approaches to describe the shielding of
microparticles generally ignore the presence of the field and
ion-neutral collisions, assuming free ion flow with a certain
approximation for the ion velocity distribution function,
usually a shifted Maxwellian or, as a particular case, a shifted δ

function (i.e., cold ion flow). However, there are three principal
issues with such approaches:

(i) Measurements of ion velocity distributions in weakly
ionized gas discharges show that in regions with considerable
ion flow relative to the neutral gas, the distributions are
generally far from being shifted Maxwellians [40]. The
physical reason for this is quite obvious—ions collide with
neutrals much more frequently than with each other, so the ion
velocity distribution function cannot equilibrate.

(ii) The neglect of collisions is not justified for many
experiments, because the ion-neutral collision length is often
about or smaller than the characteristic interparticle distance.

(iii) It is not obvious when the electric field driving the
flow can indeed be neglected in the analysis of the plasma
perturbation due to a micropartile.

We have previously proposed a self-consistent kinetic
theory to address these issues [41]. The model includes the
electric field and ion-neutral collisions, and the unperturbed
(by the microparticle) ion velocity distribution function is
self-consistently calculated by considering the balance of the
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acceleration of ions in the field and collisions with neutrals.
The field and collisions are included not only to calculate
the unperturbed distribution but also are accounted for in the
analysis of the plasma perturbation due to a microparticle.
Of course, such an approach generally requires cumbersome
calculations. We avoided this difficulty by considering the
common case where the dominant mechanism of collisions
is charge transfer, in which the ion and neutral simply
exchange identities, and thus momenta [42,43]. Our fur-
ther approximation was to assume the collision frequency
to be velocity independent, which allowed for an elegant
solution not only for the steady state but also for the ion
susceptibility.

In reality, it is not the collision frequency but the cross
section that is characterized by a weak (logarithmic) velocity
dependence [43,44] (in the regime where charge transfer
is the dominant mechanism of collisions). Nevertheless,
the constant-collision-frequency model is a reasonable ap-
proximation to describe the particle shielding, as it yields
velocity distributions qualitatively similar to those given by the
constant-cross-section model [45,46]: Even in the strong-flow
regime (i.e., where the flow velocity substantially exceeds the
thermal velocity of neutrals), for both models the parallel-to-
the-field velocity distribution very quickly reaches a maximum
(at a velocity about the thermal velocity of neutrals) and then
decays slowly (at velocities comparable to the flow velocity),
which is also in accord with measurements [40]. In the
strong-flow regime (which is the only limit where the shielding
can be analytically calculated in the constant-cross-section
model), we did not find any qualitative difference between the
potentials given by the two models (see Sec. VII and Ref. [47]).

While we have previously used our constant-collision-
frequency model for particular purposes, such as the calcula-
tion of the ion drag force [41] and investigation of the possibil-
ity of attraction between particles aligned perpendicular to the
flow [47], in this paper we provide a comprehensive analysis,
focusing on various limiting cases and demonstrating how the
interplay of the field, collisions, and the non-Maxwellian form
of the distribution function results in different forms of the
shielding potential.

II. MODEL

We consider a microparticle of charge Q immersed in a
weakly ionized plasma with ion flow. In our model, the ions
are described by the kinetic equation,

v · ∇f + e

m
(E0 − ∇ϕ) · ∂f

∂v
= St[f ], (1)

where f (r,v) is the ion velocity distribution function, E0 is the
electric field driving the ion flow, ϕ(r) is the potential due to the
microparticle, e is the elementary charge, and m is the ion mass
(ions are assumed to be singly ionized). For the ion-neutral
collision operator St[f ], we use the Bhatnagar-Gross-Krook
(BGK) form:

St[f ] = −νf (v) + ν�M (v)
∫

f (v′) dv′, (2)

where

�M (v) = 1(
2πv2

T

)3/2 exp

(
− v2

2v2
T

)
(3)

is the normalized Maxwellian velocity distribution of neutrals,
ν is the (velocity-independent) collision frequency, vT =√

Tn/m is the thermal velocity of neutrals, and Tn is the neutral
temperature. The BGK operator allows us to probe into the
principal roles of the electric field and collisions. This operator
exactly describes ion-neutral collisions under assumptions that
(i) their dominant mechanism is charge transfer and (ii) the
collision frequency is velocity independent. At room temper-
ature, for argon (the gas most frequently used in complex
plasma experiments), charge transfer is indeed the dominant
mechanism when the flow velocity substantially exceeds the
thermal velocity of neutrals; however, in this regime, charge
transfer is characterized by a weak (logarithmic) velocity de-
pendence of its cross section rather than the collision frequency
[43,44]. In the opposite regime, where the flow velocity is less
than the thermal velocity of neutrals, the dominant mechanism
is polarization scattering [43], so the collision frequency is
indeed velocity independent (as assumed), although the BGK
operator does not precisely describe polarization scattering.
Nevertheless, as we already pointed out in the Introduction,
for large flow velocities (corresponding to the cold-neutral
approximation), we have demonstrated that the BGK model
and the constant-collision-length model yield similar results
for the shielding of a microparticle (see Sec. VII and Ref. [47]).

Note that in Eq. (1), we have neglected the absorption of
ions by the microparticle. This effect has received considerable
attention in the case when the ion flow is absent [48–51].
However, in the regime of strong ion flow, the characteristic
ion absorption cross section is considerably reduced [2], so the
effect on the shielding potential is rather weak in this case (see
Ref. [52] for a detailed discussion). It follows that stating from
a certain (quite small) ion flow velocity, the ion absorption does
not significantly modify the shielding potential. Formally, the
absorption can be included in our model by using the approach
of Refs. [48,53].

Concerning the electrons, we assume that they obey the
Boltzmann distribution with a certain temperature Te or,
as a particular case, are just a homogeneous neutralizing
background (which corresponds to the limit Te → ∞).

The model is closed by Poisson’s equation,

∇ · E0 − ∇2ϕ = e

ε0

[∫
f dv − ne + Qδ(r)

]
, (4)

where ne is the electron density, ε0 is the permittivity of free
space, and the microparticle is treated as a point charge.

To solve Eqs. (1)–(4), we make two key assumptions.
(i) Liner perturbation approximation. We linearize Eqs. (1)

and (4) with respect to the perturbations induced by the
microparticle. This approximation is justified when the charac-
teristic kinetic energy of ions is much larger than the potential
energy eϕ at the distance equal to the characteristic screening
length. This is usually the case for experiments in which
the flow velocity significantly exceeds the thermal velocity
of neutrals; even when the above energies are comparable
(which is often the case for the remaining experiments),
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our results should still provide a good representation of the
wake structure, because the shielding becomes linear at large
distances anyway.

(ii) Homogeneous plasma approximation. We assume that
all unperturbed quantities are constant in space. Physically,
this implies that the inhomogeneity scale is much larger than
the distances characterizing the problem. Strictly speaking,
this assumption requires Te → ∞, to ensure a homogeneous
electron density profile. However, we will keep Te finite to
include the Boltzmann electron response into our model, i.e.,
while the unperturbed electron density is considered to be
homogeneous, its response to the microparticle is taken to
be δne = neeϕ/Te. To justify this assumption, we note that
in experiments, microparticles can be levitated quite high in
the presheath, where the inhomogeneity scale is considerably
larger than the characteristic shielding length. Microparticles
can also be levitated in the sheath, where the inhomogeneity
is quite strong; for instance, for the well-known experiment of
Ref. [54], where the interaction potential between microparti-
cles was directly measured, the field inhomogeneity length at
the levitation height was only twice as large as the observed
screening length (see Ref. [55] for an analysis). However, we
have recently demonstrated (in Ref. [56]) that even such a
strong inhomogeneity does not affect the shielding potential
significantly, unless very large distances from the microparticle
are considered: We calculated the exact shielding potential of
a point charge (in the collisionless Bohm sheath, using the
linear-perturbation approximation) and found no considerable
deviation from the potential obtained in the homogenous
approximation, even when the point charge was located very
deep in the sheath (see, e.g., Figs. 3 and 4 of Ref. [56]).

We find the homogeneous steady-state solution f = f0

from Eqs. (1) and (4) by setting ϕ = 0 and ∂f/∂r = 0, i.e., the
unperturbed velocity distribution is determined simply by the
balance of the electric field and collisions, (eE0/m) · ∂f/∂v =
St[f ]. The resulting function f0(v) is not a shifted Maxwellian
distribution. It can be written as

f0(v) = n0(
2πυ2

T

)3/2

∫ ∞

0
exp

(
− ξ − |v − ξvfl|2

2υ2
T

)
dξ, (5)

where n0 is the unperturbed ion density and

vfl = eE0

mν
(6)

is the flow velocity (1/n0)
∫

vf0 dv. Equation (5) here is Eq. (3)
of Ref. [41] but rewritten using another integration variable
in order to show that f0(v) is an integral superposition of
shifted Maxwellian distributions with exponential weights.
The longitudinal velocity distribution f0,z(vz) is plotted in
Fig. 1. The difference from a shifted Maxwellian distribution
becomes especially evident at large vfl/vT , when the solution
(5) becomes highly asymmetric with respect to the position of
its maximum. This can also be illustrated by considering the
limit of cold neutrals, vT → 0. Equation (5) becomes

f0(v) = n0

vfl
exp

(
− vz

vfl

)
δ(vx)δ(vy), vz > 0,

f0(v) = 0, vz < 0, (7)

where δ denotes the δ function and the z axis is in the direction
of E0.

FIG. 1. Steady-state solution. Shown is the longitudinal velocity
distribution f0,z = ∫ ∞

−∞
∫ ∞

−∞ f0 dvx dvy , where the z axis is in the
direction of the field. Different lines correspond to different strengths
of the field, measured in terms of the parameter vfl/vT (marked by
numbers).

We have analyzed the stability of this steady state with
respect to ion perturbations (see Ref. [57] for detailed
investigation). For Te → ∞, the stability region is approx-
imately described by vfl/vT � 8 and ν/ωp � 0.3, where
ωp = [n0e

2/(ε0m)]1/2 is the ion plasma frequency. A finite
Te results in the increase of the above threshold on velocity
and decrease of the threshold on the collision frequency. Our
linear analysis, reported below, is physically meaningful only
inside this stability domain. Note that most experiments fall
within that domain, although some are near its boundary.

The resulting particle potential is [41]

ϕ(r) = Q

4πε0r
+ Q

8π3ε0

∫
exp(ik · r)

k2

(
1

D(k)
− 1

)
dk, (8)

and the static dielectric function D(k) is given by

D(k) = 1 + n0e
2

ε0mν2

B(k)

1 − A(k)
, (9)

where

A(k) =
∫ ∞

0
exp[−�(k,η)] dη (10)

and

B(k) =
∫ ∞

0

η exp[−�(k,η)]

1 + ikzvflη/ν
dη (11)

are defined via the function �(k,η) given by

�(k,η) = η + 1

2

[
ikzvfl

ν
+

( |k|vT

ν

)2]
η2. (12)

We use the following transformation to normalize
quantities:

ϕ

Q/(4πε0λ)
→ ϕ,

ν

ωp

→ ν,

(13)vfl

vT

→ vfl,
r
λ

→ r,
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where

λ = vT

ωp

(14)

is a characteristic length. (In the absence of the flow,
λ becomes the ion Debye length; for finite E0, the ion
Debye length is not defined because of the non-Maxwellian
form of the velocity distribution.) We also introduce the
neutral-to-electron temperature ratio,

τ = Tn

Te

. (15)

In our analysis below, we mainly focus on limiting cases in
which the potential can be calculated analytically. The calcu-
lations are highly tedious but conceptually straightforward, as
they are mainly based on expansion of an integrand in a series
of a small parameter and subsequently integrating the required
number of terms of the series. We omit the derivations and
point out that the analytical results presented below have been
verified by comparing them with direct numerical calculations
of the exact potential (8).

III. WEAKLY COLLISIONAL LIMIT

Let us first consider the limit of infinitely small E0 and
ν but a finite ratio of these, i.e., a finite vfl. Physically,
this corresponds to free ion flow (in the absence of field
and collisions) with the unperturbed velocity distribution of
the non-Maxwellian form described by Eq. (5). Considering
this limit allows us to address specifically the role of the
non-Maxwellian shape of the distribution.

At large distances, the potential has an r−3 dependence,

ϕ(r) = F (θ )

r3
+ o(r−3), (16)

where

F (θ ) = − i

π2
lim

η→+0

∫ 1

−1
dμ

∫ 2π

0

× dα

G(μ cos θ −
√

1 − μ2 sin θ cos α)(μ + iη)3
, (17)

G(x) = τ +
∫ ∞

0

t exp(−t2/2)

1 + ixvflt
dt, (18)

and θ is the angle between r and the flow direction. In the
plane perpendicular to the flow (θ = π/2), the potential at
large distances can be simplified,

ϕ(r,π/2) = vfl

2πr3

∂

∂vfl

∫ 2π

0

dα

G(cos α)
+ o(r−3). (19)

Figure 2 shows the coefficient of the r−3 dependence in
Eq. (19) as a function of vfl and τ . This coefficient remains
positive for all vfl and τ , meaning that the long-range
electrostatic interaction forces between microparticles are
always repulsive.

0.1 1 10 100
10 3

0.01

0.1

1

10

100

υfl

01.0=τ

03.0=τ

1.0=τ
310 −=τ

0=τ

1=τ

FIG. 2. The 1/r3 coefficient in Eq. (19) determining the potential
at large distances in the plane perpendicular to the flow in the weakly
collisional limit. The coefficient is plotted as a function of vfl for
several values of τ . The dashed line shows the ∝ v2

fl behavior at small
velocities and τ = 0, see Eq. (20) for θ = π/2.

A simple explicit expression for the potential can be
obtained in the limit of small vfl and large r:

ϕ(r) = exp(−r
√

1 + τ )

r
−

√
8

π

vfl cos θ

(1 + τ )2r3

+ 2

[
1 − π

4(1 + τ )

]
v2

fl(1 − 3 cos2 θ )

(1 + τ )2r3

+ o

[
exp(−r

√
1 + τ )

r

]
+ o

(
v2

fl

r3

)
. (20)

(It does not matter which limit is taken first, vfl → 0 or r → ∞;
however, it is essential that these limits are taken after the
limit ν → 0). The dominant term in Eq. (20) is dipolelike: It
has the same angular dependence as a bare dipole potential,
∝ cos θ , although the radial dependence is r−3, which differs
from the r−2 dependence of the bare dipole potential. In the
plane perpendicular to the flow, this term vanishes, so the next,
quadrupole-like, term comes into play. The latter is always
positive in that plane, which means repulsive interactions
between microparticles aligned perpendicularly to the flow.

Interestingly, if we replace the BGK velocity distribution
(5) by a shifted Maxwellian with the same flow velocity, and
set τ = 0 for simplicity, then the resulting potential (in the
limit of small vfl and large r) becomes

ϕ(r) = exp(−r)

r
−

√
8

π
vfl cos θ −

(
π

2
− 1

)
v2

fl(1 − 3 cos2 θ )

r3

+ o

[
exp(−r)

r

]
+ o

(
v2

fl

r3

)
. (21)
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While the first-order expansion term (∝ vfl) in Eq. (21)
coincides with its counterpart in Eq. (20), there is an important
difference between the second-order terms: For a shifted
Maxwellian, two particles aligned perpendicularly to the flow
attract each other at large distances. The difference in the
second-order terms is obviously due to the difference in
the distribution functions. This highlights the importance of
the shape of the velocity distribution function even for small
flow velocities.

Furthermore, our direct numerical calculations of the poten-
tial for finite vfl and r (in the limit ν → 0) show that only one
potential minimum is formed in the wake downstream of the
particle. This is in contrast to the case of a shifted Maxwellian,
where a series of potential minima can be formed, depending
on the flow-to-thermal velocity ratio and the electron-to-ion
temperature ratio [36,58].

IV. SMALL FLOW VELOCITIES

Let us now consider the case of a finite collision frequency
and small electric field (i.e., a finite ν and small vfl). Expanding
the potential in a series of vfl, we obtain

ϕ(r) = ϕ0(r) + vflϕ1(r) cos θ + v2
flϕ2(r) cos2 θ

+ v2
flϕ3(r) sin2 θ + o

(
v2

fl

)
, (22)

where

ϕ0(r) = exp(−r
√

1 + τ )

r
(23)

and the functions ϕ1,2,3(r) are given in Appendix. At large r ,
these functions have the following asymptotic expressions:

ϕ1(r) = − ν

r2(1 + τ )2
+ o(r−2), (24)

ϕ2(r) = −2(ν2 − 2 − 2τν2 + 2τ 2)

r3(1 + τ )4
+ o(r−3), (25)

ϕ3(r) = τν2

2r(1 + τ )3
− 1

2
ϕ2(r) + o(r−3). (26)

Four important observations can be made about these
expressions, as discussed below:

(i) The asymptotic behavior of the potentials (22) and (20)
at large distances do not match in the limit ν → 0. This is
an expected effect: To derive the potential (20), we took the
limit ν → 0 before r → ∞, thereby restricting our analysis
to distances smaller than the ion-neutral collision length. In
contrast, Eq. (22) together with Eqs. (24)–(26) describes the
true asymptptic behavior at large distances as the parameter
ν is considered to be finite. Thus, at small but finite ν the
potential first reaches the “collisionless” asymptote described
by Eq. (20) and only thereafter, when r becomes larger than
the ion-neutral collision length, does it tend to the asymptotic
form of Eqs. (24)–(26). This is illustrated in Fig. 3, where we
show the function ϕ3(r) for a small ν.

(ii) The asymptotic expression for the function ϕ1(r) is
exactly a bare dipole potential, with the dipole moment
νvfl(1 + τ )−2.

(iii) At large distances, the dominant contribution to ϕ(r)
is the r−1 term in ϕ3(r). That term is proportional to τ , which is
of the order 10−2 in experiments, so that term generally plays

1

10
2−

10
3−

10
4−

10
5−

10
6−

10
7−

10
8−

10 100 r 

FIG. 3. The absolute value of the function ϕ3(r), characterizing
the potential in the plane perpendicular to the flow. The solid line
shows |ϕ3(r)| itself, plotted for ζ = 0.1 and τ = 5 × 10−3. The two
dashed lines indicate the following r−3 asymptotes: The upper line
is the second term in Eq. (26), and the lower line is the third term in
Eq. (20) (for θ = π/2). The dotted line is the r−1 asymptote described
by the first term in Eq. (26). (While in experiments distances r ∼ 103λ

are irrelevant, this calculation merely illustrates how the asymptotic
laws work together; for other parameter values, the r−1 term can come
into play at smaller distances and suppress the distance ranges where
the r−3 asymptotes are a good approximation).

a role only at very large distances. It exactly vanishes on the z

axis.
(iv) In ϕ3(r), which describes the asymptotic behavior in

the plane perpendicular to the flow (θ = π/2), the term −ϕ2(r)
is attractive for ν <

√
2 (assuming τ 	 1, as in experiments).

In this case, ϕ(r,π/2) first reaches a minimum and then,
when the Coulomb-like term comes into play, again becomes
positive, reaching a maximum and then slowly decaying to
zero.

V. LARGE FLOW VELOCITIES

Let us now consider the limit of very large flow velocities
(i.e., large vfl and finite ν). Perhaps the most convenient way
to do this mathematically is to take the limit of cold neutrals,
vT → 0. To do so, we use the flow velocity vfl instead of vT to
normalize ϕ and r , i.e., instead of λ we employ

λfl = vfl

ωp

. (27)

In this limit of cold neutrals, the potential can be written in
a relatively simple form for Te → ∞ as

ϕ(r) = 2

π
Re

∫ ∞

0

K0(kzr sin θ )

H (kz)
exp(ikzr cos θ ) dkz, (28)
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FIG. 4. A contour plot of the potential in the cold-neutral
approximation for ν = 0.3. The dimensions are 4λfl × 4λfl, the charge
is in the center, and the flow is to the right.

where

H (kz) = 1 +
∫ ∞

0 t exp(−tν − ikzνt2/2)(1 + ikzt)−1 dt

1 − ν
∫ ∞

0 exp(−tν − ikzνt2/2) dt

(29)

and K0 is the zero-order modified Bessel function of the second
kind. [Here, compared to Eq. (8), the integration variable kz is
normalized by λ−1

fl .]
At large distances, the potential (28) is simplified to

ϕ(r) = −ν cos θ

r2
+ ν2 − 2

r3
(1 − 3 cos2 θ ) + o(r−3). (30)

Interestingly, written in the dimensional form, the asymptotic
potential (30) exactly coincides with the asymptotic potential
for vfl 	 1 (for τ = 0), given by Eqs. (22)–(26), i.e., we
have the same dipole term and, for ν <

√
2, the possibility of

attraction between particles aligned perpendicular to the flow.
While the long-distance behavior of the potential at large

flow velocities is similar to the low-velocity case, there
are some important differences at shorter distances. By
numerically analyzing the potential (28), we have found that
it experiences oscillations downstream of the particle and
that it diverges logarithmically for θ = 0, both features being
absent for the low-velocity case. The divergence is due to the
cold-neutral approximation, i.e., it disappears for finite Tn. A
contour plot of the potential (28) is shown in Fig. 4. (To see
the oscillations, calculations must be performed for distances
considerably larger than the dimensions of the contour plot
shown in Fig. 4).

Another difference from the low-velocity case, found nu-
merically for finite Te, is that the potential decays exponentially
with the distance in the plane perpendicular to the flow.

VI. GENERAL CASE

By numerically analyzing the potential in the general case,
we have found that there is a smooth transition between all

FIG. 5. The contour plot of the potential for vfl = 8, ν = 0.3,
and τ = 10−2. The dimensions are 30λ × 10λ (or 3.75λfl × 1.25λfl),
the charge is in the center, and the flow is to the right.

the limiting cases considered above, so the dependence of
the shielding potential on vfl, ν, and τ can be qualitatively
understood by considering the above limits. To illustrate the
behavior at finite vfl, ν, and τ , we have chosen parameter
values of the experiment of Ref. [54] and plotted the resulting
potential in Fig. 5.

VII. ON THE RELIABILITY OF THE BGK
APPROXIMATION

Let us now address the reliability of the BGK approxima-
tion. As explained above, ion-neutral collisions in the regime
of strong ion flow are better described by the constant-cross-
section approximation:

St[f ] =
∫ |v′ − v|

�
[�M (v)f (v′) − �M (v′)f (v)]dv′, (31)

where � is the collision length. In the limit of cold neutrals,
the operator (31) simplifies to

St[f ] = −vf (v)

�
+ δ(v)

�

∫
f (v′)v′ dv′ (32)

(allowing semianalytical calculation of the shielding poten-
tial). The resulting steady-state velocity distribution is

f0(v) = 2n0

πvfl,�

exp

(
− v2

z

πv2
fl,�

)
δ(vx)δ(vy), vz > 0,

f0(v) = 0, vz < 0, (33)

where vfl,� = | ∫ vf0 dv|/n0 = √
2eE0�/(πm) is the flow ve-

locity in the constant cross-section case. Comparing Eq. (33)
with Eq. (7), we note that these distributions are similar
in that they both describe a smooth monotonic “decay”
characterized by the respective flow velocity. Clearly, the tail
of the distribution (i.e., v 
 vfl, vfl,�) does not play any role in
the particle shielding (because of the small number and high
energies of the ions in that tail); for the bulk of the distribution
(i.e., v ∼ vfl, vfl,�), which determines the shielding, there is
only a moderate quantitative (but not qualitative) difference
between the behaviors of the two distribution function.

It is therefore not an unexpected finding that the particle
potential ϕ�(r) in the constant-cross-section model (in the
cold-neutral approximation) at large distances is qualitatively
similar to its counterpart for the BGK model. By solving
the kinetic equation (1) with the collision operator (31), we
have derived the following expression for the potential at large
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distances for Te → ∞:

ϕ�(r) = − 2
√

2 cos θ

r2�(1 + cos2 θ )3/2

+
√

2J (θ,�)

12r3(1 + cos2 θ )7/2
+ o(r−3), (34)

where

J (θ,�) = 60�−2 − 1 − (456�−2 + 86) cos2 θ

+ (204�−2 + 215) cos4 θ, (35)

r and � are normalized by the characteristic length λ� =
[ε0E0�/(n0e)]1/2, and ϕ� is normalized by Q/(4πε0λ�). In
particular, the potential (34) has a dipolelike contribution
(i.e., the first term), which is merely corrected by a factor
(1 + cos2 θ )−3/2. Also, similarly to the BGK case, the term
following the dipolelike contribution is attractive when the
collision length is large enough. At finite distances, we found
numerically no qualitative difference between the particle
potentials given by the two models.

In the general case of a finite thermal velocity of neutrals,
the steady-state velocity distribution in the constant cross-
section case has been analyzed in Refs. [45,46]. In particular,
it has been pointed out that, regardless of the ratio between
the flow velocity and the thermal velocity of neutrals, the
BGK model is a very good approximation to describe the
distribution function in the vz range from negative velocities
to the location of its maximum. The physical reason for this is
quite obvious: As the maximum is always located at vz ∼ vT ,
the probability for an ion from the above velocity range to
encounter a collision with a neutral per unit time does not
strongly depend on the velocity of the ion (as neutrals move
with comparable velocities).

We conclude that the BGK collision integral is indeed an
excellent model to probe into the principal effect of the field
and collisions on the particle shielding.

VIII. CONCLUSIONS

We have analyzed a self-consistent kinetic model that
includes the electric field driving the flow, ion-neutral col-
lisions, and the non-Maxwellian velocity distribution of ions
and explained how the interplay of these factors results in
different forms of the shielding potential. Our main conclusion
is that it is generally essential to account for the above
factors, to ensure that the results are at least qualitatively
reliable. In particular, taking into account the non-Maxwellian
form of the distribution function in the weakly collisional
regime results in the disappearance of both the oscillatory
wake structure and attraction between microparticles aligned

perpendicular to the flow—effects predicted by the model
with a shifted Maxwellian distribution. However, a finite
field and collision frequency can again give rise to the above
effects, in addition to the collisional dipole contribution and
a 1/r asymptotic behavior at large distances in the plane
perpendicular to the flow. Overall, the form of the shielding
potential varies considerably across parameter regimes, and
our work, focused on various limiting cases, provides a basic
guide as to how changing parameters affects the interaction
between microparticles.
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APPENDIX: EXPRESSIONS FOR ϕ1,2,3(r)

The functions ϕ1,2,3(r) are given by

ϕ1(r) = − 2

πr2

∫ ∞

0

kr cos kr − sin kr

(k2 + 1 + τ )2
g1(ν/k) dk, (A1)

ϕ2(r) = − 2

πr3

∫ ∞

0

2kr cos kr + (k2r2 − 2) sin kr

k(k2 + 1 + τ )3

× [
g2(ν/k)(k2 + 1 + τ ) + g2

1(ν/k)
]
dk, (A2)

and

ϕ3(r) = 2

πr3

∫ ∞

0

kr cos kr − sin kr

k(k2 + 1 + τ )3

× [
g2(ν/k)(k2 + 1 + τ ) + g2

1(ν/k)
]
dk. (A3)

They are expressed via two auxillary functions,

g1(x) = erfcx(x/
√

2)

−√
2/π + x erfcx(x/

√
2)

(A4)

and

g2(x) =
√

2π x(7−x2)erfcx(x/
√

2) −4πx2 erfcx2(x/
√

2) + 2x2−8

[2− √
2π x erfcx(x/

√
2)]2

,

(A5)

where

erfcx(x) = 2√
π

exp(x2)
∫ ∞

x

exp(−t2) dt, (A6)

is the scaled complementary error function. At large r ,
Eqs. (A1)–(A3) are reduced to Eqs. (24)–(26).
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