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Comparative analysis of nonlinear optofluidic processes in microdroplets
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Our prior work has shown that high quality (Q) factor whispering gallery modes (WGMs) in liquid
microdroplets can potentially induce single-photon-level nonlinear effects through radiation pressure on the
interface. However, little is known about the nonlinear effects of other processes involving scattering force and
thermocapillarity. In this study, we establish a numerical framework that can calculate the fluid motion and
the resultant nonlinearity induced by the optical scattering force and thermocapillarity. Then, we compare the
magnitude of various nonlinear optofluidic processes induced by the radiation pressure, the thermocapillary
effect, the scattering-induced optical force, and the Kerr effect. Using realistic fluid parameters, we show that the
radiation pressure due to the WGM produces the strongest nonlinear optofluidic effect.
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I. INTRODUCTION

Optofluidics was originally developed for important appli-
cations such as lasing [1], sensing [2,3], and display [4–6].
The mechanical interplay between light and liquid, however,
has not been thoroughly investigated, even though the first
demonstration of liquid motion actuated by a focused laser
beam was reported as early as 1973 [7]. Since the classic work
by Ashkin and Dziedzic, the distortion of a liquid system
induced by a high intensity laser beam has been studied
in [4,8–16], where both flat and spherical fluid interfaces were
considered.

Recently, in Ref. [17,18], we analyzed a highly nonlinear
optofluidic system that is composed of light circulating in a liq-
uid droplet in the form of a high quality (Q) factor whispering
gallery mode (WGM). In such a system, the radiation pressure
of the high-Q WGM can push the droplet surface outward and
form the bulge depicted in Fig. 1. Perhaps the most interesting
result of our theoretical analysis is that the strength of the
radiation pressure induced nonlinearity exceeds that of the
Kerr nonlinearity by up to six orders of magnitude. As a result,
the radiation pressure induced nonlinear optofluidics may ulti-
mately produce nonlinear effects at single-photon energy level.
Our prior work only considered nonlinear effects due to the
radiation pressure. Yet besides radiation pressure, optical fields
can also actuate fluid motions through scattering force [13]
and thermocapillary force [19]. In this paper, we compare the
magnitude of nonlinear effects induced by the scattering force
and the thermocapillary force, as well as radiation pressure
induced nonlinearity and other nonlinear effects.

When light is elastically scattered by inhomogeneities in
a fluid (e.g., suspended particles or density fluctuations),
the light momentum can be changed, which results in a
scattering force that may induce fluid motion in the volume.
For example, a cylindrical dripping liquid jet was produced
by light scattering in a microemulsion and the dripping rate
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was theoretically predicted [20]. The fluid motion due to the
light scattering was also observed in a fluid layer with a
flat interface [21], where a toroidal fluid recirculation was
produced by a vertically incident laser beam. The scattering
force induced an interface deformation that was found to be
of the same order of magnitude as the deformation induced
by the radiation pressure. The effects of light scattering in
a similar setup were simulated numerically by the boundary
element method in [14], which showed good agreement with
experimental observations. In these studies, the scattering
force in the fluid has been modeled as a body force that
depends on the light intensity. Similarly, in the case of WGMs
circulating in a liquid droplet, the effect of light scattering
should also produce a body force in liquid resonators in the
same direction as the WGM propagation. For experimental
studies of nonlinear effects in microdroplets, it is highly
relevant to theoretically estimate the magnitude of interfacial
deformation due to the scattering force.

Another potentially relevant factor is the thermocapillary
force. The localized light heating in the liquid may result
in a temperature gradient, which leads to thermocapillary
stresses on the fluid interface. The thermocapillary effect
of laser heating has been applied in drop sorting, merging
and microfluidic valves [19,22,23], etc. Baroud et al. [19]
demonstrated that the thermocapillary force could induce a
circulation of fluid in a droplet and thus control the motion
of the droplet. In our work on microdroplets as whispering
gallery resonators [18], we computed the temperature increase
due to the WGM energy absorption, from which the vol-
ume expansion and refractive index change were estimated.
Since the temperature varies along the fluid interface, the
thermocapillary effect may arise and induce interfacial flow
on the droplets. Such effect can therefore lead to another class
of nonlinear optofluidic processes, which was not analyzed
quantitatively in our previous publication [18].

The objective of this work is to develop a boundary element
model to evaluate the nonlinear optofluidic effects induced by
the light scattering and the thermocapillary force associated
with the WGMs in microdroplets. We quantify the magnitudes
of these two nonlinear processes, and compare them with
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FIG. 1. (a) Schematics of a high-Q WGM circulating along the
equator of a droplet induced by the laser propagating in a nearby fiber.
The yellow arrows indicate light propagation directions. A cylindrical
coordinate (x,r,φ) and a spherical coordinate (R,θ,φ) are defined to
assist further analysis. (b) The electric field intensity |E|2 of the
WGM in a a = 100 μm droplet within the x-z plane. The white
curve indicates the droplet interface. (c) The |E|2 distribution along
the radial direction within the x = 0 plane. The |E|2 field shown in (b)
and (c) has been normalized by its maximum value on the interface.

nonlinearities induced by the radiation pressure as well as
the thermal and Kerr effects. Specifically, in Sec. II, the
boundary element formulations for Stokes equations with
scattering force and thermocapillary force are derived in an
axisymmetric domain. The fluid motion induced by various
optofluidic processes are analyzed and compared in Sec. III.
The nonlinearities associated with the interfacial deformation
are also compared with purely thermal effects such as
volume expansion and refractive index changes induced by
temperature changes, as well as the Kerr nonlinearity.

II. OPTICAL FIELD INDUCED FLUID MOTION

We consider a system of a high-index liquid microdroplet
(core) immersed in a low-index immiscible fluid (cladding).
Such a system can support a high-Q WGM circulating along
the equator of the droplet, as illustrated in Fig. 1. By assuming a
transverse electric (TE) mode, the optical field in the resonator
has been calculated analytically in [17,24], the derivations
of which will not be repeated here. In this paper, we denote
variables associated with the core phase with subscript “co”
and the cladding phase with subscript “cl”.

In this section, we derive boundary element models to
quantitatively calculate the fluid motion actuated by the
scattering force, thermocapillary force, and radiation pressure
induced by the WGM in the droplet.

A. Effect of light scattering

Due to the fluid inhomogeneity, the optical field in the
droplet can induce a scattering force in the same direction as
the light propagation [14,20],

F = �
nco

c
Sφeφ, (1)

where � is the forward light momentum attenuation coef-
ficient (or turbidity), nco is the refractive index of the core
phase, c is the speed of light, and Sφ is the φ component of
the Poynting vector, which represents the light intensity. Note

that Sφ (and thus F) is independent of φ. Due to its direction,
the scattering force F may cause a circulational motion of the
fluid. With known force magnitude, it is possible to compute
the fluid velocity numerically.

The motions of the fluid interface and volume are governed
by the Navier-Stokes equations. For a typical drop with radius
a ∼ 100 μm, characteristic velocity U ∼ 10−3 m/s, density
difference ρ ∼ 200 kg/m3, and fluid viscosity μ ∼ 13 mPa s,
the Reynolds number is approximately Re = ρUa/μ ∼ 10−2.
As a consequence of the low Reynolds number, the Stokes
assumption is valid for our system. In the presence of the
scattering force, the Stokes equations and incompressibility
condition can be written as

−∇pd + μ∇2u + F = 0, ∇ · u = 0, (2)

where the dynamic pressure pd is defined as the sum of actual
fluid pressure and centrifugal effect of the fluid motion pd =
p + ρu2

φ/2.
The boundary element method (BEM) has been widely

used to solve the stokes equations numerically [25–27]. For
a two-phase fluid system with a sharp interface in the three-
dimensional domain, the interfacial velocity and pressure are
related by the following boundary integral equations (BIE):

uj (x0) = b1

∫
S

Gji(x0,x)fi(x) dS(x)

+ b2

∫
S

ui(x)Kijm(x0,x)nm(x) dS(x)

+ b1

∫
V

Gji(x0,x)Fi(x) dV (x), (3)

where b1 = −1/[4πμcl(1 + λ)]; b2 = (1 − λ)/[4π (1 + λ)];
λ = μco/μcl is the viscosity ratio of the core and cladding
phases; f is the total stress on the interface; S denotes the
interface of the droplet; position vectors x and x0 are located
on the fluid interface. Indices i,j,m take values of 1,2,3 and
repeated indices are summed. The Green’s functions Gij and
Kijm for Stokes flow in free space take the form

Gij (x, y) = 1

s
δij + 1

s3
sisj , Kijm(x, y) = − 6

s5
sisj sm, (4)

with si = xi − yi , s = |s|, and δij is the identity tensor.
Due to the axial symmetry of the droplet geometry,

boundary conditions, as well as the WGM-induced scattering
force, all the velocity and force variables in Eq. (3) should be
independent of the coordinate φ. Therefore, we can integrate
Eq. (3) over the φ direction analytically to lower the dimension
of numerical discretization and integration. We can show that
the integration over φ direction results in the decomposition
of Eq. (3) into the following x-r and φ components:

uα(x0) = b1

∫
C

Mαβ(x0,x)fβ(x)dl(x)

+ b2

∫
C

Qαβγ (x0,x)uβ(x)nγ (x)dl(x), (5a)

uφ(x0) = b2

∫
C

uφ(x)Qφφγ (x0,x)nγ (x)dl(x)

+ b1

∫
A

Fφ(x)Mφφ(x0,x)dA(x). (5b)
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In Eq. (5), indices α,β,γ take the value of 1 and 2,
representing the x and r directions, respectively. C and A

represent the interface and the volume of the fluid domain
intercepted with a φ = constant plane. Note that Eq. (5a) is the
same as the BIE in axisymmetric domain with no φ component
of velocity or force derived in literature [26], whereas Eq. (5b)
is the new BIE that governs the swirling motion of the fluid
induced by the azimuthal component of the scattering force.
As shown by Eq. (5), the φ component of the velocity field is
decoupled from ux and ur . However, the centrifugal effect of
uφ can produce an interface force that subsequently induces
fluid motion in x and r directions. This is evidenced by the
expression of the total force on the interface,

f = (
2σκm − �ρu2

φ

/
2
)
n, (6)

where κm is the mean curvature of the interface. The detailed
derivations of Eq. (5) are shown in Appendix A.

In our simulations, the fluid interface on the φ = constant
plane is discretized into N circular arc elements, and x0 is
located at the center of each element. On each element, the
surface velocity and pressure are assumed to be constant, and
the axisymmetric Green’s functions are integrated numerically
using Gauss quadrature. Note that Green’s functions may
exhibit logarithmic singularities as x → x0, and special treat-
ment is needed to ensure the accuracy of numerical integration.
The detailed derivations of the singularity behaviors and their
numerical integration schemes are shown in Appendix B.

Equation (5) can then be discretized and written as
linear systems relating the unknown interface velocity vector
({vxr},{vφ}) with the interface force vector ({f }) or the volume
force integral ({IF }):

[A]{vxr} = [B]{f }, (7a)

[H ]{vφ} = {
IF

}
, (7b)

where [A], [B], and [H ] are matrices whose entries are
related to the integrals of Mαβ and Qαβγ nγ on the interface
elements.

In the simulation, the linear system Eq. (7b) is solved first
and the uφ distribution is obtained. The total interface force
including the centrifugal effect of uφ is then computed and
used in Eq. (7a), the solution to which results in the velocity
components within the φ = constant plane. The solution to
the above linear systems gives the velocity at the center of
each element on the interface. Velocity values at the end
points of each element are interpolated by a cubic spline
with vanishing derivatives at x = ±a. The element edges and
center displacements are integrated over a time step �t by
the explicit Euler scheme, i.e., �x = u�t , and a new interface
shape is produced for the following time step. At each time
step, a new linear system Eq. (7) is generated based on the up-
dated interface shape. The time step size is chosen by
the criterion �t � τm = (μco + μcl)δ/(2σ ), where δ is the
element size [28]. This process is iterated until the max-
imum velocity magnitude |u| is 1000 times smaller than
the initial velocity magnitude. In our simulations, we find
that N = 128 elements can provide results with adequate
accuracy.

B. Thermocapillary effect

As shown in [18], the absorption of the WGM energy
by the droplet may result in the temperature change in the
fluid, which should increase the droplet volume and change
its refractive index. In addition, the temperature gradient on
the fluid interface can also induce the thermocapillary effect,
i.e., a shear stress along the interface. Using the well-known
Eötvös rule [29], the interfacial tension of the fluid system at
a given temperature T is

σ = k̄V̄ −2/3(Tc − T ), (8)

where k̄ and V̄ are material properties and Tc is the critical
temperature of the fluid. Assuming that the interfacial tension
at room temperature T0 is σ0, the value of σ can then be derived
as

σ = σ0
Tc − T

Tc − T0
. (9)

With known temperature distribution on the fluid interface, the
gradient of the interfacial tension, ∂σ/∂s, can be calculated and
the total stress on the interface is

f = (2σκm)n − (∂σ/∂s)t. (10)

The fluid velocity induced by the thermocapillary effect can
then be computed by Eqs. (5a) and (7a).

Note that as modeled in Ref. [18], the fluid motion induced
by the optical radiation pressure, popt = 1

2ε0(n2
co − n2

cl)|Esurf|2
[9,17], is also governed by Eqs. (5a) and (7a) with the total
stress on the interface f = (2σκm − popt)n.

So far, we have developed BEM models that can simulate
the fluid motion and interface dynamics of the droplets
under scattering force, thermocapillary and radiation pressure
effects. In the following section, the fluid motion and the in-
terface deformation induced by the aforementioned nonlinear
optofluidic processes will be computed and their magnitudes
will be compared.

III. WGM INDUCED NONLINEAR PROCESSES
IN LIQUID DROPLETS

In this study, we choose a liquid system based on an oil
droplet immersed in water, which has the same properties as
the system analyzed in [18]. Fluid viscosities of the core and
cladding media are μco = 13 mPa s and μcl = 1 mPa s. The
forward light momentum attenuation coefficient of the core
fluid is assumed to be � = 70 m−1. (For a transparent liquid
with low attenuation, such as an index matching fluid, the
value of � = 70 m−1 is likely an overestimate. However,
as will be shown later, a more accurate estimate for �

is unnecessary.) The oil-water interfacial tension at room
temperature is σ = 30 mN/m. The properties of the WGMs
depend on the liquid refractive indices as well as the geometry
of the resonator. This liquid droplet can possess high Q

factor in the visible wavelength range. For simplicity, we
choose the WGM wavelength to be λ ≈ 700 nm, with the
effective refractive indices of the core and cladding phases
nco = 1.44 and ncl = 1.33, respectively. The mode numbers
and resonance wavelengths of the fundamental WGMs |l,l〉
are provided by [18] and shown in Table I. The electric field
E and the Poynting vector φ-component (Sφ) distribution
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TABLE I. Angular mode number l and resonance wavelength λ

of WGMs in liquid droplets [18].

a (μm) 400 300 250 200 150 120
l 5145 3847 3204 2569 1918 1529
λ (nm) 699.35 700.66 700.45 698.05 699.95 701.26

a (μm) 100 80 70 60 50 40
l 1275 1018 889 761 632 504
λ (nm) 699.75 699.65 700.05 699.75 700.55 700.59

are computed following the formula provided in Ref. [18].
The circulating WGM power is assumed to be 1 W for all
calculations in this work.

In this section, the fluid motion in the droplet as a result of
the radiation pressure, light scattering and thermocapillarity
are calculated following the numerical procedure described
in Sec. II. The optofluidic nonlinearities due to the interface
deformation are computed and compared.

A. WGM induced fluid motion

We first look at the fluid motion due to the light scattering
force, Eq. (1), in the volume of the droplet. The rotational
velocity (uφ) of the droplet is shown in Fig. 2. The rotational
motion of the droplet leads to an centrifugal force on the
interface, which results in a velocity field on the x-r plane.
This velocity field at t = 0 is shown in Fig. 4(a).

The fluid motion induced by the radiation pressure has been
studied in [18], which is also shown in Fig. 4(b). To calculate
the thermocapillary effect, the temperature distribution on the
droplet interface is also computed by the BEM. The detailed
BEM formulations are available in [18] and the steady state
temperature increase on the droplet interface is shown in Fig. 3.
With the shear stress due to the interfacial tension gradient
given by Eqs. (9) and (10), the fluid motion in the droplet can
be produced by the BIE (5a), which is shown in Fig. 4(c).
As evidenced in Fig. 4, the velocity field in the x-r plane
due to the droplet rotation is several orders of magnitude
smaller than the velocity induced by the radiation pressure
and thermocapillarity.

The droplet interface deforms under nonzero ux and ur

distribution on the interface. The interface forces under the
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FIG. 2. Velocity uφ component distribution induced by light
scattering in the volume of the a = 100 μm droplet on a φ = constant
plane.
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effect in a droplet with balanced interface shape. The radius of the
droplet is a = 100 μm.

effect of centrifugal force and radiation pressure are eventually
balanced by the surface tension force resulting from the
interface deformation. On the other hand, the shear stress
due to thermocapillarity would still actuate fluid motion on
a balanced droplet. The velocity field in a balanced droplet
due to thermocapillarity is shown in Fig. 5. Similar to the fluid
motion reported in other systems [19], Fig. 5 shows that fluid
circulations are also present in our system.

Under the velocity field shown in Fig. 4, the balanced
interface shape can be obtained by time integration of the
interface position until the normal component of the interface
velocity vanishes. The droplet interface deformation for all the
twelve cases shown in Table I under the effects of radiation
pressure, light scattering, and thermocapillarity are shown in
Fig. 6. Since the overall shapes of the interface deformation are
self-similar, when normalized by the interface displacement at
θ = π/2, each curve shown in Fig. 6 is in fact a collection
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FIG. 6. Droplet interface deformation under the effects of ra-
diation pressure, light scattering, and thermocapillarity, normalized
by the interface displacement magnitude at θ = π/2. Due to the
normalization, each curve shown here is in fact a collection of twelve
curves (see Table I) collapsed together. The inset shows the magnitude
of the droplet interface deformation at the equator (|�R(π/2)/a|).

of results for the twelve microdroplets listed in Table I, each
with a different radius. We also observe that the interface
deformation induced by the light scattering is several orders
of magnitude smaller than the radiation pressure effect. This
phenomenon is different from the results reported on a flat fluid
interface [14], where micron-scale deformation was induced
by the scattering of a vertically incident laser beam. On a flat
fluid interface, the scattering force and the radiation pressure
were in parallel directions and were observed to induce
the interface deformation on the same order of magnitude.
However, in our system, the interface deformation is in an
orthogonal direction to the scattering force and is induced
indirectly by the weakly coupled centrifugal effect.

In order to estimate the rate at which the experiments can be
repeated, we calculate the characteristic time scales associated
with the deformation and heat transfer of the system. For
the dynamic response of the droplet with a = 100 μm, the
time for the interface to reach equilibrium is around τ =
μa/σ ≈ 4 × 10−5 s. The time to reach the steady temperature
is τ = L2/α ≈ 3 × 10−5 s, where L ≈ 1.5 μm is the size of
the WGM mode volume and α ≈ 8 × 10−8 m2/s is the thermal
diffusivity of the resonator. Therefore, with different droplet
radii assumed in our analysis, the response time of the system
is estimated to be below 10−3 s.

B. Comparison of nonlinear effects

In this section, we compare the magnitude of nonlinear
effects associated with the fundamental WGM |l,l〉, with
the mode number l given by Table I. As discussed in
Ref. [17,18], the droplet interface deformation may induce
a WGM resonance frequency shift, which is similar to the
Kerr effect. In addition, the increase of temperature in the
droplet leads to the volume expansion as well as refractive
index changes, which also result in WGM resonance frequency
shifts. The refractive index change and the droplet radius
expansion have been estimated in Ref. [18] as �nT =
(dn/dT )Tmax and �RT = αT Tmax/3, respectively, where Tmax

is the maximum temperature increase in the droplet, dn/dT =
−3.9 × 10−4 K−1 is the thermal coefficient of refractive index,
and αT = 8 × 10−4 K−1 is the thermal expansion coefficient
of the proposed system.

Due to the Kerr effect, the refractive index of the liquid
depends linearly on the optical field intensity. The maximum
refractive index change can be estimated as �n ≈ χ (3)|E|2max,
where χ (3) is the third order nonlinear optical susceptibility and
|E|max is the maximum electric field intensity in the droplet.
We use the susceptibilities of water and carbon disulfide (CS2)
(χ (3)

water = 2.5 × 10−22 m2/V2 and χ
(3)
CS2

= 3.1 × 10−20 m2/V2)
to provide an order of magnitude estimate of the Kerr effect.

We now compare the magnitude of various nonlinear
processes due to the radiation pressure, temperature induced
droplet expansion and index change, thermocapillary force,
Kerr effect and optical scattering force in liquid droplets. Let
us define the interface deformation at the equator [�R(θ =
π/2)/a] under radiation pressure, thermocapillary and light
scattering effects as �Rrad, �Rcap, and �Rscatt, respectively.
As shown in Fig. 7, interface deformation induced by
the radiation pressure (�Rrad) is higher than other nonlin-
ear effects. Additionally, nonlinearities associated with the
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thermocapillarity, volume expansion and index change due
to the temperature increase are also much stronger than the
Kerr effect. The interface deformation induced by the light
scattering, on the other hand, is smaller than the Kerr effect
and thus should not play significant roles in droplets with
diameter less than 1 mm. Finally, we point out that in order to
support high-Q WGMs, the liquid that forms the microdroplet
must possess low attenuation, which means that the value for
� should not exceed 100 m−1. Therefore, for sub-mm-scale
droplets that support high-Q WGMs, the nonlinearity induced
by the scattering force can be safely ignored. Note that for large
droplets with radii close to 1 mm, the interface deformation
caused by the thermocapillary effect and the radiation pressure
effect are of the same orders of magnitude and are in opposite
directions. Therefore, liquid resonators with sizes on the scale
of 100 μm or smaller should be used in the experiments in
order to distinguish these two effects.

In addition to the optofluidic effects discussed in this
work, the optical wave can also excite acoustic WGMs in
resonators containing liquids [30,31]. Acoustic modes with
frequencies up to 11 GHz and Q factors of the order of
103 were produced by forward and backward stimulated
Brillouin scattering (SBS) in a microfluidic optomechanical
resonator [31]. Such effect is also expected to exist in our
system of liquid resonators. However, investigating SBS and
acoustic WGMs in liquid resonators are beyond the scope of
this work.

IV. CONCLUSION

In this paper, we develop boundary element models to
calculate the fluid motion and droplet deformation due to
the scattering force and thermocapillary force produced by
a high-Q WGM in liquid droplets. The BIEs are derived in an
axisymmetric domain that incorporate the effect of radiation
pressure, scattering force and thermocapillary effect. We show
that for droplets smaller than a = 400 μm, the radiation

pressure should induce the highest velocity magnitude and the
largest interface deformation, and thus lead to the strongest
nonlinearity compared to the thermal effects, Kerr effect and
light scattering. Due to the weakness of the centrifugal effect,
the scattering force nonlinearity is several orders of magnitude
smaller than the Kerr effect and thus can be safely neglected.
The results presented here can guide future experimental
studies of WGM-induced nonlinear optofluidic processes in
liquid droplets.
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APPENDIX A: DERIVATION OF THE GREENS
FUNCTIONS IN AXISYMMETRIC DOMAIN

We start by writing all the position, velocity, and force
variables in Eq. (3) in terms of their x, r , and φ components.
Without loss of generality, we assume x0 is located on the
φ = 0 plane, then the left-hand side of Eq. (3) can be expressed
as u(x0) = (ux,ur ,uφ). Similarly, variables on the right-hand
side can be written as

x = (x,r cos φ,r sin φ),

x0 = (x0,r0,0),

n = (nx,nr cos φ,nr sin φ),

f = (fx,fr cos φ,fr sin φ),

F = (0,−Fφ sin φ,Fφ cos φ),

u = (ux,ur cos φ,ur sin φ) + (0,−uφ sin φ,uφ cos φ),

s = (x − x0,r cos φ − r0,r sin φ),

s = |s| = [
(x − x0)2 + r2 + r2

0 − 2rr0 cos φ
]1/2

. (A1)

Note that in Eq. (A1), all the velocity and force components
(ux,ur ,uφ,fx,fr ,Fφ) are functions of (x,r) only. The only
terms that are φ dependent are the Green’s functions, which
are predetermined. We can thus integrate the Green’s functions
in Eq. (3) along the φ direction analytically to reduce the
dimension of numerical integration.

The single layer integral in Eq. (3) can be calculated as

∫
S

Gji(x0,x)fi(x) dS

=
∫

S

(Gjxfx + Gjyfy + Gjzfz) dS

=
∫

S

[Gjxfx + (Gjy cos φ + Gjz sin φ)fr ] dS

=
∫

C

⎡
⎣Mxx Mxr

Mrx Mrr

Mφx Mφr

⎤
⎦{

fx

fr

}
dl, (A2)
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where⎡
⎣Mxx Mxr

Mrx Mrr

Mφx Mφr

⎤
⎦(x0,x)

= r

∫ 2π

0

⎡
⎣Gxx Gxy cos φ + Gxz sin φ

Gyx Gyy cos φ + Gyz sin φ

Gzx Gzy cos φ + Gzz sin φ

⎤
⎦dφ. (A3)

The integral of the Green’s function over φ can be converted
to elliptic integrals. For example,

Mxx = r

∫ 2π

0
Gxxdφ = r

∫ 2π

0

(
1

s
+ dx

2

s3

)
dφ

= r[I10 + d2
x I30], (A4)

where dx = x − x0, and [26]

Imn(dx,r,r0) = cm

∫ π/2

0

(2cos2ω − 1)
n

(1 − k2cos2ω)m/2 dω, (A5)

with

cm = 4km

(4rr0)m/2 , k2 = 4rr0

dx
2 + (r + r0)2 . (A6)

The integral in Eq. (A5) can be expressed by complete
elliptic integrals of the first and second kind [F (k) and E(k),
respectively] with the help of integral tables [32]. The values
of Mαβ for α,β = 1,2 are the same as those derived in
literature [26]. We can also show that Mφx = Mφr = 0.

The double layer integral in Eq. (3) can be calculated as∫
S

ui(x)Kijm(x,x0)nm(x) dS(x)

=
∫

S

[
uxKxjmnm + uσ (Kyjmnm cos φ + Kzjmnm sin φ)

+uφ(−Kyjmnm sin φ + Kzjmnm cos φ)
]
dS

=
∫

C

Qjβγ uβnγ dl, (A7)

where in the last integral indices j,β,γ = 1,2,3, representing
x,r,φ components. The value of Qjβγ in Eq. (A7) can be
expressed as (note nφ = 0),

Qjxx = r

∫ π/2

0
Kxjx dφ,

Qjxr = r

∫ π/2

0
(Kxjy cos φ + Kxjz sin φ) dφ,

Qjrx = Qjxr

Qjrr = r

∫ π/2

0
(Kyjy cos2 φ + 2Kyjz sin φ cos φ

+Kzjz sin2 φ) dφ,

Qjφx = r

∫ π/2

0
(−Kyjx sin φ + Kzjx cos φ) dφ,

Qjφr = r

∫ π/2

0
[−Kyjy sin φ cos φ

+Kzjy(cos2 φ− sin2 φ)+Kzjz sin φ cos φ] dφ. (A8)

By substituting the Green’s function Eq. (4) into Eq. (A8) and
with the help of Eq. (A5), we can show that for j,β,γ = 1,2,
the expressions of Qjβγ are the same as derived in literature.
We can also show that for the new terms associated with the φ

component (j = 3 or β = 3),

Qφxγ = Qφrγ = Qxφγ = Qrφγ = 0 (γ = 1,2) (A9)

and

Qφφx = 6r2r0dx(I52 − I50),

Qφφr = −6r2r0[r0(I53 − I51) + r(I50 − I52)].
(A10)

Similarly, the volume integral in Eq. (3) can be simplified
as ∫

V

Gji(x0,x)Fi(x) dV (x)

=
∫

A

[
r

∫ 2π

0
Gji(x0,x)Fi(x) dφ

]
dA(x)

=
∫

A

rMjφ(x0,x)Fφ dA(x), (A11)

where we have defined

Mjφ(x0,x) = r

∫ 2π

0
[−Gj2(x0,x) sin φ

+Gj3(x0,x) cos φ] dφ. (A12)

It is easy to show that

Mxφ = Mrφ = 0, (A13)

and

Mφφ(x0,x)

= r

∫ 2π

0
[−G32(x0,x) sin φ + G33(x0,x) cos φ] dφ

= r

∫ 2π

0

[
− r(r cos φ − r0)

s3
sin2 φ

+
(

1

s
+ r2 sin2 φ

s3

)
cos φ

]
dφ

= r[I11 + rr0(I30 − I32)]. (A14)

It is obvious now that Eqs. (A2), (A7), and (A11) lead to
Eq. (5), and all the Green’s functions in the axisymmetric
domain are explicitly determined in this section.

APPENDIX B: SINGULARITY OF GREEN’S FUNCTIONS

Let us define the distance between x and x0 on a
φ = constant plane as d = (dx,dr ) = (x − x0,r − r0) and
d = [(x − x0)2 + (r − r0)2]1/2. It has been shown in litera-
ture [26,33] that as x → x0, Mxx,Mrr → −2 ln(d), while Mxr ,
Mrx , and Qαβγ nγ are finitely bounded, for α,β,γ = 1,2. We
now show that the newly derived nontrivial terms in this work,
Mφφ and Qφφγ nγ , also exhibit O(ln(d)) type singularity.

From Eq. (A5) and with the help of [32], we can show that

I11 = c1

k2
[−2E − (k2 − 2)F ],

I30 − I32 = 4c3

k4
[−2E − (k2 − 2)F ], (B1)
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where F and E are complete elliptic integrals of the first and
second kind, whose definition and asymptotic behaviors are

F (k) =
∫ π/2

0

1

(1 − k2 cos2 ξ )
dξ → − ln(d),

E(k) =
∫ π/2

0
(1 − k2 cos2 ξ ) dξ → 1. (B2)

Therefore, Eq. (A14) leads to

Mφφ = −4

k

√
r

r0
[2E + (k2 − 2)F ] → −4 ln(d). (B3)

Similarly, we can show

I52−I50 = c5

[
8

3k4
F+4(k2 − 2)

3k4k′ E

]
,

(B4)

I53−I51 = 4c5

3k6k′2 [−8k′2(k2 − 2)F−(k4 − 16k2+16)E],

with k′2 = 1 − k2. The values of Qφφγ (γ = 1,2) exhibit strong
singularities (∼1/d2). However, the product of Qφφγ and nγ ,
i.e., q33 = Qφφγ nγ , may exhibit weaker singularity. Here we
compute q33 explicitly,

q33 = Qφφxnx + Qφφrnr

= 6r2r0[(dxnx + rny)(I52 − I50) + r0ny(I51 − I53)]

= 8r2r0c5

k6
[gF (k)F + gE(k)E], (B5)

where gF and gE are functions k, which can be simplified as

gF (k)= 2[(dxnx + rny + 4r0ny)k2 − 8r0ny]

→ 2(dnx − 3r0)ny (x → x0),

gE(k)= 1

k′2 [(dxnx + rny + r0ny)k4

− (dxnx + rny + r0ny)k2 + 16r0ny]

= 1

k′2 [−(dxnx + drny)k2+ 16r0nyk
′2− 2r0nyk

2k′2].

(B6)

Note that in the last equation of Eq. (B6), d becomes
orthogonal to n as x → x0, and d · n ∼ d2. Therefore gE is
non-singular. Combining Eqs. (B2), (B5), and (B6) and noting
d ln(d) → 0 as d → 0, we have

q33 → 8r3
0 c5

k6
[6r0ny ln(d)] → 6ny

r0
ln(d). (B7)

In the present work x and x0 are located on a circle with unit
radius; in this case we have q33 → 6 ln(d).

The presence of ψ ln(d) (ψ = −2,−4 or 6) singularities
may cause large numerical integration error. To reduce the
numerical error, the singularity can be subtracted from the
singular Green’s functions to make the integration nonsingular.
The analytic integral of ψ ln(d) should then be added back to
the nonsingular integral. This technique has also been used in
literature and proved to be highly accurate [25–27,33].
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