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Stability of a liquid bridge under vibration
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We examine the stability of a vertical liquid bridge between two vertically vibrating, coaxial disks. Assuming
that the vibration amplitude and period are much smaller than the mean distance between the disks and the global
timescale, respectively, we employ the method of multiple scales to derive a set of asymptotic equations. The
set is then used to examine the stability of a bridge of an almost cylindrical shape. It is shown that, if acting
alone, gravity is a destabilizing influence, whereas vibration can weaken it or even eliminate altogether. Thus,
counter-intuitively, vibration can stabilize an otherwise unstable capillary structure.
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I. INTRODUCTION

It is well known [1–25] that sufficiently slender liquid
bridges between coaxial disks are unstable due to Plateau-
Rayleigh instability. It has also been shown [2–4,7,10] that, for
bridges with vertical axes, gravity strengthens the instability.

This paper examines vertical bridges between coaxial
disks, experiencing high-frequency small-amplitude vertical
vibration. Given the generally destabilizing nature of vibration,
one would expect it to reduce the parameter range of stable
bridges. It turns out, however, that this is not necessarily the
case.

Mathematically, we shall demonstrate that the (fast) vi-
bration and (slow) natural motions of the bridge can be
separated asymptotically: the former is described by a mixed
Dirichlet-Neumann problem for the Laplace equation in the
domain occupied by the bridge, and the latter is governed by
the Navier-Stokes equations with a vibration-induced force
and pressure fields (the latter is applied at the free surface).
It turns out that, if the vibration amplitude of the upper disk
is greater than that of the lower disk, the vibration-induced
pressure gradient is opposite to the hydrostatic one. As a
result, the destabilizing effect of gravity can be weakened or
even canceled altogether. A similar mechanism of stabilization
has been observed experimentally using the radiation pressure
of acoustic waves [20] and a surrounding flow of a different
fluid [21,25].

This paper has the following structure. In Sec. II, we
formulate the problem mathematically, and in Sec. III, derive
asymptotic equations for a vertical liquid bridge affected
by high-frequency, small-amplitude vibration. In Sec. IV,
these equations are used to examine almost cylindrical
bridges (which implies that surface tension is stronger than
gravity and vibration, and the disks’ radii do not differ
much from the bridge’s mean radius). This simple particular
case has been extensively studied for static bridges (e.g.,
Refs. [2–4,11,12,24]), so it should be a reasonable departure
point when studying vibrating ones.

In fact, it turns out to be sufficient for answering the
most interesting question: Can vibration stabilize an otherwise
unstable liquid bridge?
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II. FORMULATION

Consider a flow with velocity u and pressure p, in an incom-
pressible liquid of density ρ, kinematic viscosity ν, and surface
tension σ . Let the z axis of the cylindrical coordinate system
(r,θ,z) be directed upward, and u = (u,v,w), where u, v, and w

are the radial, azimuthal, and axial components, respectively.
The Navier-Stokes equations can be written in the form

∂u
∂t

+ ∇ · (u ⊗ u) + 1

ρ
∇p = −gez + ν∇ · S, ∇ · u = 0,

(1)

where t is the time, g is the acceleration due to gravity, ez is
the upward unit vector, and

S =

⎡
⎢⎢⎢⎢⎣
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⎥⎥⎥⎥⎦

(2)

is the viscous stress tensor in cylindrical coordinates.
Let the liquid be bounded above and below by two

horizontal coaxial disks and laterally, by a free surface (see
Fig. 1). The disks are assumed to vibrate vertically with the
same frequency ω, but different amplitudes D± and phases α±
(where the “+” corresponds to the upper disk). This implies
that the disks are located at z = ±H + D± sin(ωt + α±),
where 2H is the mean distance between them, and the no-slip,
no-through-flow condition takes the form

u = ezD±ω cos(ωt + α±) at z = ±H + D± sin(ωt + α±).

(3)

Let the free surface be described by the equation r = R(θ,z,t)
and assume that the contact lines are pinned to the disks’ edges,
i.e.,

R = R± at z = ±H + D± sin(ωt + α±), (4)

where R± are the disks’ radii. Condition (4) is usually justified
by the fact that the rapid change of the tangent at the disks’
edges prevents the contact line from moving, which has also
been ascertained experimentally [22]. Furthermore, a contact
line can be pinned even to a flat part of the disk, provided
the flow is week enough to not force the contact angle outside
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the hysteresis interval—which can indeed be assumed in a
stability study, where linear perturbations imply infinitesimal
change of the contact angle [26,27].

The kinematic condition at the free surface is
∂R

∂t
+ u · n = 0 at r = R, (5)

whereas the dynamic condition can be written in the form

[(σC − p)E + ρνS] · n = 0 at r = R, (6)

where E is the unit matrix,

C = R2 + 2
(

∂R
∂θ

)2 − R ∂2R
∂θ2 + R2

(
∂R
∂z

)2 − R3 ∂2R
∂z2 − R

[(
∂R
∂z

)2 ∂2R
∂θ2 − 2 ∂R

∂θ
∂R
∂z

∂2R
∂z ∂θ

+ (
∂R
∂θ

)2 ∂2R
∂z2

]
[
R2 + (

∂R
∂θ

)2 + R2
(

∂R
∂z

)2]3/2 , (7)

is the curvature of the free surface in terms of the cylindrical
coordinates [28], and

n =

⎡
⎢⎣

−1
1
R

∂R
∂θ

∂R
∂z

⎤
⎥⎦. (8)

The problem will be non-dimensionalized as follows:

r̃ = r
H ′ , t̃ = ωt, ũ =

√
ρH ′

σ
u, p̃ = D

σ
p,

R̃ = R

H ′ , R̃± = R±
H ′ , C̃ = CH ′,

where

H ′ = π−1H, D =
√

D2− + D2+. (9)

When rewritten in terms of the non-dimensional variables with
the tildes omitted, expressions (2) and (7)–(8) do not change,
whereas Eqs. (1) and (3)–(6) become

W
∂u
∂t

+ ε∇ · (u ⊗ u) + ∇p = −εγ ez + εμ∇ · S, (10)

∇ · u = 0, (11)

u = ezW± cos(t + α±)

at z = ±π + εW± sin(t + α±), (12)

z

r

    R+

  R-

       R(z)

g
2H

FIG. 1. The setting: a cross section of a liquid bridge between two
coaxial disks. The disks experience high-frequency, small-amplitude
vertical vibration.

R = R± at z = ±π + εW± sin(t + α±), (13)

[(εC − p)E + εμS] · n = 0 at r = R, (14)

W
∂R

∂t
+ εu · n = 0 at r = R, (15)

where

ε = D

H ′ , (16)

γ = ρgH ′2

σ
, μ = ν

√
ρ

σH ′ ,

(17)

W = ωD

√
ρH ′

σ
, W± = ωD±

√
ρH ′

σ
.

The Bond number γ and the parameter μ (sometimes called
the Ohnesorge number) characterize the effects of gravity
and viscosity relative to surface tension. W and W±, in turn,
characterize the effect of vibration–again, relative to surface
tension. Note also that Eq. (9) implies that W =

√
W 2

− + W 2
+.

Equations (10)–(15), (2), and (7),(8) form a governing set
for the unknowns u, p, and R.

III. ASYMPTOTIC ANALYSIS OF THE GOVERNING
EQUATIONS

Let the displacement of the disks due to vibration be much
smaller than the average distance between them, in which case
Eq. (16) implies

ε � 1.

No assumptions are made about γ , μ, W , and W± [defined by
Eq. (17)]: they can be either small, or order-one, or large (but
not as large as ε−1).

The smallness of ε will be exploited using the method of
multiple scales. In addition to the (fast) time t , a slow time is
introduced, T = W−1εt (where the order-one factor of W−1

is included for future convenience). Equations (10) and (15)
should then be rewritten in the form

W
∂u
∂t

+ ε

[
∂u
∂T

+ ∇ · (u ⊗ u)

]
+ ∇p

= −εγ ez + εμ∇ · S, (18)

W
∂R

∂t
+ ε

(
∂R

∂T
+ u · n

)
= 0 at r = R. (19)
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Seek a solution as a series in ε,

(u,p,R) = (u,p,R)(0) + ε(u,p,R)(1) + · · · .

The zeroth and first orders of the expansion will be presented
in Secs. III A and III B, respectively, then Sec. III C will
summarize the asymptotic equations derived.

A. The zeroth order

Equation (19) shows that R(0) is slow, i.e., independent
of t ,

R(0) = R̄(r,θ,z,T )

with R̄ satisfying the zeroth-order version of Eq. (13),

R̄ = R± at z = ±π. (20)

In turn, the zeroth-order version of Eq. (18),

W
∂u(0)

∂t
+ ∇p(0) = 0, (21)

implies that, even if u(0) involves both slow and fast compo-
nents, p(0) can only be fast. Furthermore, since the fast flow is
forced by the disks’ motion, it inherits from it the sinusoidal
dependence on t—hence,

u(0) = ū(r,θ,z,T ) + u(0)
s (r,θ,z,T ) sin t

+ u(0)
c (r,θ,z,T ) cos t, (22)

p(0) = ps(r,θ,z,T ) sin t + pc(r,θ,z,T ) cos t (23)

with Eq. (21) yielding

u(0)
s = −W−1∇pc, u(0)

c = W−1∇ps. (24)

Substitution of Eqs. (22)–(24) into Eqs. (11), (12), and (14)
shows that the slow flow satisfies

∇ · ū = 0, (25)

ū = 0 at z = ±π, (26)

whereas ps,c are fully determined by

∇2ps = 0, ∇2pc = 0, (27)

ps = pc = 0, at r = R̄, (28)

W−1 ∂pc

∂z
= −W± sin α±,

W−1 ∂ps

∂z
= W± cos α±

}
at z = ±π. (29)

Observe that, the no-slip condition for the fast flow was omitted
[if it were not, the boundary-value problems for the Laplace
equations (27) would be over-determined]. The omission is due
to the fact that viscosity does not appear in the zeroth-order
equation (21) and, thus, does not affect the fast flow.1 The slow
component, however, is governed by the next-order equations,

1To enforce the no-slip boundary condition for the fast flow, one
needs to examine the near-wall boundary layers. The effect of these
layers on the global flow, however, is weak [15].

where viscosity will be taken into account—which is why
the no-slip condition has been retained for ū [it is a part of
Eq. (26)].

B. The first order

In the first order, Eqs. (18), (19), and (14) yield

W
∂u(1)

∂t
+ ∂u(0)

∂T
+ ∇ · (u(0) ⊗ u(0)) + ∇p(1)

= −γ ez + μ∇ · S(0), (30)

W
∂R(1)

∂t
+ ∂R̄

∂T
+ u(0) · n(0) = 0 at r = R(0), (31)[(

sC(0) − p(1) − ∂p(0)

∂r
R(1)

)
E + μS(0)

]
· n(0) = 0

at r = R(0), (32)

where the expressions for S(0), C(0), and n(0) can be obtained
from Eqs. (2), (7), and (8) by changing (u,R) → (u(0),R(0)).
Note that the term p(0)n(1) has been omitted from Eq. (32), be-
cause p(0) = 0 at r = R(0) [as follows from Eqs. (23) and (28)].

Equation (30) implies that the secular growth of u(1) can
be avoided only if all non-oscillating terms in this equation
cancel— hence, taking into account Eqs. (22) and (24), one
obtains

∂ū
∂T

+ ∇ ·
[

ū ⊗ ū+ 1

2

(
∇pc ⊗ ∇pc + ∇ps ⊗ ∇ps

)]
+∇p̄

= −γ ez + μ∇ · S̄, (33)

where p̄ is the slow component of p(1) and S̄ can be obtained
from Eq. (2) by changing u → ū. Equation (33) can be
simplified using the incompressibility conditions (25) and (27),
and thus becomes

∂ū
∂T

+ (ū · ∇)ū + ∇
[

1

4W 2
(|∇pc|2 + |∇ps |2) + p̄

]

= −γ ez + μ∇ · S̄. (34)

Next, Eqs. (31) and (22) imply that the secular growth of R(1)

can be avoided only if

∂R̄

∂T
+ ū · n̄ = 0 at r = R̄, (35)

where n̄ can be obtained from Eq. (8) by changing R → R̄.
Then Eqs. (31), (22), and (24) yield

R(1) = −W−1(∇pc · n̄ cos t + ∇ps · n̄ sin t) at r = R̄.

Substituting this expression into Eq. (32), taking into account
Eq. (23), and separating the fast and slow components, one
obtains for the latter{[

sC̄ − p̄ + 1

2W 2

(
∂pc

∂r
∇pc · n̄ + ∂ps

∂r
∇ps · n̄

)]
E

+μS̄
}

· n̄ = 0 at r = R̄, (36)

where C̄ can be obtained from Eq. (7) by changing R → R̄.
Equation (36) can be simplified: differentiating condi-

tions (28) with respect to θ or z, and using the resulting
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identities as well as Eq. (33), one can show that

∂pc

∂r
∇pc · n̄ + ∂ps

∂r
∇ps · n̄ = −|∇pc|2 − |∇ps |2

at r = R̄,

hence, Eq. (36) becomes{[
sC̄ − p̄ − 1

2W 2
(|∇pc|2 + |∇ps |2)

]
E

+μS(0)

}
· n̄ = 0 at r = R̄. (37)

C. The full asymptotic set (summary)

It is convenient to introduce a complex variable character-
izing the vibration-induced pressure,

q = W−1(−ps + ipc).

Then, the asymptotic equations (20), (25)–(29), (34), (35),
and (37) become (overbars omitted)

∇2q = 0, (38)

q = 0 at r = R, (39)

∂q

∂z
= −W±eiα± at z = ±π, (40)

∂u
∂T

+ (u · ∇)u + ∇
(

1

4
|∇q|2 + p

)
= −γ ez + μ∇ · S, (41)

∇ · u = 0, (42)

u = 0 at z = ±π, (43)[(
C − p − 1

2
|∇q|2

)
E + μS

]
· n = 0 at r = R, (44)

∂R

∂T
+ u · n = 0 at r = R, (45)

R = R± at z = ±π, (46)

where S, C, and n are given by their original expres-
sions (2), (7), and (8).

The equations derived can be subdivided into two groups:
the Dirichlet-Neumann problem (38)–(40) describes the spa-
tial distribution of the vibration amplitude q, whereas the
modified Navier-Stokes set (41)–(46) governs the slow flow
characterized by u, p, and R. Observe that vibration affects
the slow motion in two ways: firstly, it gives rise to a force
with the potential 1

4 |∇q|2 in Eq. (41) and, secondly, to a
free-surface-applied pressure − 1

2 |∇q|2 in condition (44). In
principle, one of these terms (but not both) can be eliminated
by an appropriate change of the pressure variable p.

Note that the inviscid equivalent of Eqs. (38)–(46) was
derived in Ref. [29], and several asymptotic models for liquid
films (but not bridges) under high-frequency vibration were
examined in Refs. [30–37] . Vibrating bridges, in turn, were
examined in Ref. [17], but the vibration frequency in this
study was comparable to the frequency of the bridge’s natural
oscillations.

IV. ALMOST CYLINDRICAL BRIDGES UNDER WEAK
GRAVITY AND VIBRATION

This section examines time-independent solutions of the
asymptotic equations derived. It turns out that the solution
bifurcates at a certain point of the parameter space, with
the bifurcation signaling a change in stability. This way, a
conclusion can be drawn about the stability of liquid bridges
without solving the linearized problem for small perturbations
(as has indeed been done many times for non-vibrating
bridges—see Refs. [19,24], and references therein).

Due to viscosity, the slow flow in a steady liquid bridge
dies out, whereas the oscillatory flow (forced by the vibrating
disks) does not. Thus, substituting u = 0 into Eq. (41), but
keeping q �= 0, one obtains

p = P − γ z − 1
4 |∇q|2, (47)

where P is a constant. Next, substitution of Eq. (47) and u = 0
into Eq. (44) yields

C − P + γ z − 1
4 |∇q|2 = 0 at r = R. (48)

Since the bridge is axisymmetric, expression (7) for the
curvature C can be simplified, reducing Eq. (48) to

1 + (
∂R
∂z

)2 − R ∂2R
∂z2

R
[
1 + (

∂R
∂z

)2]3/2 − P + γ z

−1

4

[(
∂q

∂r

)2

+
(

∂q

∂z

)2]
= 0 at r = R. (49)

One should keep in mind that R should also satisfy the
boundary condition (46).

Next, the axisymmetric version of Eq. (38) is

1

r

∂

∂r

(
r
∂q

∂r

)
+ ∂2q

∂z2
= 0, (50)

where q should satisfy the boundary conditions (39), (40).
Finally, it is convenient to distinguish bridges by their net
volumes—or, equivalently, by their mean-square radius R∗—
i.e., requiring that

1

2π

∫ π

−π

R2dz = R2
∗. (51)

Thus, the set of the problem’s control parameters comprises
γ , R∗, R±, W±, and α±.

The main difficulty associated with the boundary-value
problem (49)–(51), (46), (39), (40) stems from the fact that the
Dirichlet–Neumann problem (50), (39), (40) admits a reason-
ably simple analytical solution only in a cylindrical domain.
Thus, the simplest way to proceed consists in solving the prob-
lem asymptotically, under the assumption that the bridge is
almost cylindrical—which implies the following restrictions:

γ � 1, W± � 1, R+ ≈ R− ≈ R∗. (52)

Note that a perfectly cylindrical bridge is stable if and only
if R∗ � 1 (see Ref. [19], and references therein)—which
implies that the stability of almost cylindrical bridges should
be examined for

R∗ ≈ 1. (53)
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Indeed, if |R∗ − 1| = O(1), the bridge is either clearly
unstable or clearly stable, depending on whether R∗ < 1 or
R∗ > 1, respectively.

Summarizing assumptions (52), (53), we assume

γ = δ3γ̂ , R∗ = 1 + δ2R̂∗,
(54)

R± = 1 + δR̂s ± δ3R̂a, W± = δ3/2Ŵ±,

where δ � 1 whereas the parameters with hats are order-
one. Observe the different scalings of different parameters
(including those of the symmetric and antisymmetric parts of
R±): they were chosen by trial and error to ensure that they
‘affect’ the solution at the same order (as can be seen below).

Let

R = 1 + δR1 + δ2R2 + δ3R3 + O(δ4),
(55)

P = 1 + δP1 + δ2P2 + δ3P3 + O(δ4),

q = δ3/2[q0 + O(δ)]. (56)

In what follows, static bridges, i.e., those without vibration,
will be examined in Sec. IV A. This will enable us to assess the
accuracy of our approach by comparing the asymptotic results
to those obtained numerically from the exact equations (which
are relatively simple to solve for static bridges). Vibrating
bridges will be examined in Sec. IV B.

A. Static bridges

If W± = q = 0 (no vibration), Eqs. (49)–(51), (46),
and (54) reduce to

1 + (
∂R
∂z

)2 − R ∂2R
∂z2

R
[
1 + (

∂R
∂z

)2]3/2 − P + δ3γ̂ z = 0, (57)

R = 1 + δR̂s ± δ3R̂a at z = ±π, (58)

1

2π

∫ π

−π

R2dz = 1 + δ2R̂∗. (59)

Substituting expansions (55) into Eqs. (57)–(59) and resolving
the first and second orders in δ, one obtains

R1 = A sin z − R̂s cos z, (60)

R2 = A2 − R̂2
s

4
(−1 + cos 2z) + AR̂s

2
sin 2z

+B sin z +
(

R̂∗ − R̂2
s

2

)
(1 + cos z), (61)

where the undetermined constants A and B are to be fixed in
higher orders.

Next, consider the third-order approximation of Eqs. (57)
and (58),

d2R3

dz2
+ R3 = −R3

1 + 1

2

(
R1 + 3

d2R1

dz2

)(
dR1

dz

)2

+ 2R1R2 − dR1

dz

dR2

dz
+ γ̂ z − P3, (62)

R3(±π ) = ±Ra. (63)

To determine A, multiply Eq. (62) by sin z and integrate from
z = −π to z = π . Integrating the term involving d2R3/dz2 by
parts twice and taking into account Eqs. (63) and (60),(61),
one obtains, after some straightforward algebra,

3

4
A3 −

(
R̂∗ − 3

4
R̂2

s

)
A − γ̂ + R̂a

π
= 0. (64)

This equation determines the parameter A and, thus, completes
the first-order solution (60).

It is interesting to examine the dependence of A on R̂∗, as
the latter characterizes the slenderness of the bridge (a decrease
in R̂∗ corresponds to the disks being slowly pulled apart). One
can readily show that Eq. (64) has either one or two, or three
real roots (see an example in Fig. 2), with more than one
existing if and only if

R̂∗ �
[

9

4

(
γ̂ − R̂a

π

)]2/3

+ 3R̂2
s

4
. (65)

It is well known (see Ref. [19] and references therein) that
only the middle root is stable (if it exists)—hence, Eq. (65) is
effectively the condition of stability. Note also that, for R̂s = 0,
Eq. (65) is equivalent to the corresponding reduction (no lateral
gravity, no eccentricity) of condition (7) of Ref. [19].

Equation (65) shows that R̂s (the symmetric part of the
deviations of the disks’ radii from unity) is a destabilizing
influence, as it reduces the range of stable R̂∗. The anti-
symmetric part R̂a , in turn, can be either destabilizing or
stabilizing—depending on whether |γ̂ − R̂a/π | is greater
or smaller than γ̂ —which coincides with conclusions of
Refs. [6,14].

The above asymptotic results have been compared, for a
wide range of parameters, with numerical solutions of the exact
problem (57)–(59). It appears that, if δ � 0.03, the first-order
solution provides a good approximation for the profile of the
bridge (see Fig. 3).

-4 -2 0 2 4 6 8

     R*
^

-3

-2

-1

0

1

2

3

A

FIG. 2. The roots of Eq. (64) vs. R̂∗, for γ̂ = 1 and R̂s = R̂a = 0.
The stable and unstable roots are shown by the solid and dotted lines,
respectively. The black dot corresponds to the liquid-bridge solution
shown in Fig. 3.
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0 0.2 0.4 0.6 0.8 1

R

-3

-2

-1

0

1

2

3

z

(a)

0.95 1 1.05

R

(b)

FIG. 3. The profile of a static (non-vibrating) liquid bridge with ε = 0.03, γ̂ = 1, R̂∗ = 5, and R̂s = R̂a = 0. The numerical solution of the
exact problem (57)–(59) and the first-order asymptotic solution (55), (60), (64), are shown in solid and dotted lines, respectively. The solutions
presented correspond to the middle (stable) root of Eq. (64), with the parameter values marked in Fig. 2 by a black dot. (b) is a blow-up of the
shaded region of (a).

B. Vibrating bridges

An asymptotic expansion similar to the one obtained
previously yields the following extension of the static stability
criterion:

R̂∗ �
[

9

4

(
γ̂ − R̂a

π
− I

8π

)]2/3

+ 3R̂2
s

4
, (66)

where

I =
∫ π

−π

(∣∣∣∣∂q0

∂r

∣∣∣∣
2

+
∣∣∣∣∂q0

∂z

∣∣∣∣
2)

r=1

sin z dz, (67)

and q0 is determined by

1

r

∂

∂r

(
r
∂q0

∂r

)
+ ∂2q0

∂z2
= 0, (68)

q0 = 0 at r = 1, (69)

∂q0

∂z
= −Ŵ±eiα± at z = ±π. (70)

The solution of problem (68)–(70) is presented in Appendix A.
Substituting Eqs. (A1), (A5) into Eq. (67) and carrying out the
integration with respect to z, one obtains

I = k(Ŵ 2
+ − Ŵ 2

−), (71)

where

k =
∞∑

n=1

∞∑
m=1

1

anam

[
tanh anπ coth amπ + 1

1 + (am + an)2

+ tanh anπ coth amπ − 1

1 + (am − an)2

]

and an are the zeros of the Bessel function of the first kind. k

can be readily computed numerically,

k ≈ 0.024794. (72)

Criterion (66), (71)–(72) shows that, for any γ and R̂a , the
effects of gravity and the disks’ different radii on the bridge’s

stability can be canceled by choosing appropriate values of the
vibration amplitudes W±. In the case of disks of equal radii,
R̂a = 0, it follows from Eq. (66), (71) that the effect of gravity
is compensated if

k(Ŵ 2
+ − Ŵ 2

−) = 8πγ̂ . (73)

This result can be interpreted as follows: if the vibration
amplitude of the upper disk is greater than that of the lower
one, the vibration-induced and hydrostatic pressure gradients
are of opposite signs and, thus, the destabilizing influence of
the latter can be canceled by the former.

V. SUMMARY AND CONCLUDING REMARKS

The main result of this paper is the stability criterion (66) for
an almost cylindrical liquid bridge. It will now be formulated
in terms of physical (dimensional) variables, and further
prospects of the results obtained will be outlined.

Since the parameter δ has already played its role of an
‘indicator’ of small terms, one can now set

δ = 1. (74)

Recalling that the disks’ radii R± were non-dimensionalized
by H ′ [defined by Eq. (9)] and taking into account
Eqs. (17), (54), and (74), one can rewrite criterion (66) in
the form

πV

2H 3
− 1 �

[
9

4

(
ρgH 2

π2σ
− R+ − R−

2H

− kω2
(
D2

+ − D2
−
)
ρH

8π2σ

)]2/3

+ 3

4

[
π (R+ + R−)

2H
− 1

]2

, (75)

where V is the bridge’s volume, H is the mean half-distance
between the disks, D± are the amplitudes of the disks’
vibrations, k is given by Eq. (72), and ρ and σ are the liquid’s
density and surface tension. In the case of disks of equal radii,
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R+ = R−, Eq. (75) shows that vibration compensates gravity
if

kω2(D2
+ − D2

−) = 8gH.

This equality is the dimensional analog of Eq. (73).
Note that, historically, this work was prompted by experi-

ments carried out in the Aerosol Research Laboratory (ARL)
of the Technion Institute of Technology, Israel. A rod was
dipped in a large vessel with liquid and then slowly lifted
up, so that a liquid bridge would rise attached to the rod.
Two sets of experiments were carried out, with vibrating
and non-vibrating rods, and it turned out that the former
would reach a noticeably higher height before the bridge
would rapture [38]. Note also that the parameters of the ARL
experiments agree with the assumptions used in the derivation
of the asymptotic equations (38)–(46).

Even though bridges originating from an unbounded vessel
are not cylindrical, one can conjecture that the mechanism of
this effect is the same as that examined in this work. To verify
the conjecture, one needs to develop an effective numerical
tool for the asymptotic equations derived in Sec. III, as they
are unlikely to admit an analytical solution for non-cylindrical
geometry. In fact, even the non-vibrating analog of this
problem [27,39,40] turned out to be less than straightforward.

Alternatively, an experiment could be carried out within the
standard liquid-bridge formulation, i.e., exactly as considered
in the present work. In fact, such experiments have already
been conducted in Refs. [18,23]—but, unfortunately, its
authors were interested in issues other than stability.
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APPENDIX: THE SOLUTION OF PROBLEM (68)–(70)

It can be readily shown that Eq. (68) and the boundary
condition (69) are satisfied by

q0 =
∞∑

n=1

J0(anr)(Bn cosh anz + Cn sinh anz), (A1)

where J0(a) is the Bessel function of the first kind and an are its
zeros. Substituting Eq. (A1) into the boundary condition (70),
one obtains

−
∞∑

n=1

J0(anr)(±Bn sinh anπ + Cn cosh anπ )an = W±eiα± .

(A2)

The following orthogonality conditions can be readily derived
from the Bessel equation:

∫ 1

0
r J0(amr) dr = − 1

am

J′
0(am), (A3)∫ 1

0
r J0(anr) J0(amr) dr = 1

2
[J′

0(am)]2δnm, (A4)

where δnm is the Kronecker delta and J′
0(a) is the derivative of

J0(a).
Now, multiplying Eq. (A1) by r J0(amr), integrating

from r = 0 to r = 1, taking into account Eqs. (A3)–
(A4), and solving the resulting equations for Bm and Cm,
one obtains

Bm = W+eiα+−W−eiα−

a2
m J′

0(am) sinh amπ
, Cm = W+eiα++W−eiα−

a2
m J′

0(am) cosh amπ
.

(A5)

Equations (A1) and (A5) deliver the desired solution of
problem (68)–(70).
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