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Concentration effects on turbulence in dilute polymer solutions far from walls
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We report measurements of the modification of turbulence far from any walls by small concentrations of
long-chain polymers. We consider a range of statistical properties of the flow, including Eulerian and Lagrangian
velocity structure functions, Eulerian acceleration correlation functions, and the relative dispersion of particle
pairs. In all cases, we find that the polymer concentration has a strong effect on the extent to which the statistical
properties are changed compared to their values in pure water. These effects can be captured by the recently
proposed energy flux-balance model (when suitably extended into the time domain for Lagrangian statistics).
However, unlike previous measurements, which found that the concentration effect could be completely scaled
out, we consistently find that our data collapse onto two different master curves, one for small concentration
and one for larger concentration. We suggest that the difference between the two may be related to the onset of
interactions among polymer chains, which is likely to be more easily observed at the small Weissenberg numbers
we consider here.
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I. INTRODUCTION

Both the material and the flow properties of fluids can
be changed by adding mesoscale structure. Such complex
fluids display a vast range of behaviors, from shear thinning
or thickening to viscoelasticity and more. In the context of
turbulent flows, it has been known since the pioneering work
of Toms [1] that additives can dramatically reduce the skin-
friction drag in turbulent wall-bounded flows [2]. Toms worked
with long-chain polymers, and we focus on polymers here;
however, macroscopically similar turbulent drag reduction has
also been demonstrated for other kinds of additives such as
surfactants [3], rigid fibers [4], or microbubbles [5,6]. Rather
remarkably, this drag reduction can be observed with only a
tiny amount of additive (on the order of parts per million by
weight), well below the limit where material properties such
as the shear viscosity are modified significantly from their
Newtonian values.

The essential physics underlying skin-friction drag reduc-
tion appears to be a thickening of the buffer layer and an
associated modification of the near-wall turbulent structures,
which in turn disrupts the turbulence regeneration cycle in
the boundary layer [2,7]. However, experimental observations
over the past few decades have demonstrated that the statistical
properties of isotropic turbulence far from any boundaries can
also be modified by polymers [8–17]. Thus, the presence
of a wall and the turbulent structures it produces are not
a necessary condition for turbulence modification, although
it remains possible that the mechanisms responsible for the
flow modifications may be qualitatively different in the wall-
bounded and isotropic cases.

Qualitatively, the addition of polymers to the flow has
been observed to lead to an effective attenuation of the usual
Richardson-Kolmogorov energy cascade at small scales. The
signature of this attenuation is usually a reduction in the
mean-field energy dissipation rate per unit mass ε at a length
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scale near the lower end of the cascade but still within the
inertial range [16,17]. In some previous experiments, the
turbulence was driven via boundary-layer interactions, such as
in grid-generated turbulence [8,12], Taylor-Couette turbulence
[9], or in a counter-rotating-disk von Kármán swirling flow
with smooth disks [10]. In these cases, the reduction in the
energy dissipation may partially be attributable to a decrease
in the energy injection into the turbulence via standard skin-
friction drag reduction. However, experiments that drove the
flow inertially and therefore roughly maintained the energy
injection rate when polymers were added [11] have also
seen changes to the effective small-scale energy dissipation
[14,16,17]. Numerical simulations of isotropic turbulence in
polymer solutions, where the polymers are modeled by a
continuum field that couples to the turbulence, have also
found modifications of the energy cascade, where polymers
can extract turbulent kinetic energy from the flow and at least
partially dissipate it directly [18].

Here we focus on the role played by the polymer con-
centration in modifying the statistics of a turbulent counter-
rotating disk flow. We consider a wide range of turbulence
statistics, including Eulerian and Lagrangian velocity structure
functions, the spatial correlation functions of acceleration, and
the relative dispersion of particle pairs. In all cases, we find
that the recently proposed elastic energy flux-balance model
[17] captures the essential effect of the polymer concentration,
when appropriately extended into the time domain. However,
unlike in previous work that found that this model could
collapse data from a broad range of polymer concentrations
and flow conditions onto a single master curve [17], our results
show two clearly distinguishable families of curves. Although
a complete understanding of this behavior remains elusive, we
argue that the different behavior we see may be due to the
onset of possible interactions between polymer molecules as
they are stretched by the turbulent velocity gradients.

We begin below by outlining the essential aspects of the
interplay between polymers and turbulence in Sec. II. We
then describe our experimental apparatus and data acquisition
methods in Sec. III. Our results for Eulerian statistics are
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presented in Sec. IV, followed by measurements of Lagrangian
statistics in Sec. V. Finally, we discuss the implications of our
measurements in Sec. VI.

II. BACKGROUND

Long-chain polymer molecules can be thought of as
entropic springs. In equilibrium, they coil into tightly packed
conformations, maximizing their entropy. Under applied
stresses, however, they can be stretched out into elongated
configurations, at the cost of a stored elastic energy. Once
the applied stress is removed, they will tend to recoil
on a characteristic relaxation time scale τp. For polymers
suspended in a fluid, the ratio of τp to the inverse of the shear
rate, known as the Weissenberg number Wi, will determine
whether the polymers tend to be elongated (when Wi > 1 and
shearing occurs more quickly than relaxation) or coiled (when
Wi < 1). In turbulence, the Weissenberg number is typically
defined as Wi = τp/τη, where τη is the Kolmogorov time scale,
since the inverse of the shear rate is of order τη.

Various aspects of this picture of polymers as springs have
been used to suggest mechanisms for how polymers affect tur-
bulence and, in particular, to estimate at what scale the energy
cascade is likely to be modified. Lumley [19] focused on the
temporal behavior of the polymers and chose the relaxation
time τp to be the most important parameter characterizing
the polymers. Applying Kolmogorov-style arguments, he then
argued that the cascade should be modified beginning at a
length scale r∗ = (ετ 3

p)1/2, at which the local scale-dependent
Weissenberg number exceeds unity and the polymers will be
stretched by the action of the turbulent eddies faster than they
can relax. This argument, however, leaves no room for the
effects of varying polymer concentration, and its predictions
have not been verified by experiments outside the boundary
layer [16,17].

A different picture based on the polymer energetics was
proposed by Tabor and De Gennes [20,21]. They argued
that it is not the change in polymer conformation per se
that modifies the turbulence; rather, it is the the fact that
stretched polymer molecules store elastic energy that is the
more fundamental mechanism for flow modification. The only
source for this elastic energy is the kinetic energy of the
turbulent fluctuations, which must therefore be damped by
the addition of polymers. Indeed, numerical simulations have
demonstrated that polymers can effectively siphon kinetic
energy from the turbulence [18]. Thus, although Tabor and
De Gennes agreed with Lumley [19] that the polymers are
stretched by the flow beginning at a scale r∗, they introduced
a new (smaller) length scale r∗∗ to characterize the onset of
the polymer backreaction on the flow. r∗∗ is defined to be
the length scale at which the elastic energy stored in the
polymer molecules balances the scale-dependent turbulent
kinetic energy, determined by Kolmogorov-style arguments.
Specifically, r∗∗ is defined implicitly by

1

2
cpkBT

(
r∗

r∗∗

)5n/2

= 1

2
ρu2

r∗∗ = 1

2
ρ(εT r∗∗)2/3. (1)

The left-hand side of this equation is the elastic energy (per
unit mass) stored by the polymers; cp is the number of polymer
molecules per unit volume, kB is Boltzmann’s constant, and

T is the temperature. Together, cpkBT is an estimate of the
net elastic modulus of the polymer phase. n is an exponent
that depends on the characteristics of local flow deformation
that stretches; n = 1 corresponds to the case of two stretching
directions and one compressive, as is typically found in
turbulent flows [17]. The right-hand side of this equation is
the turbulent kinetic energy (per unit mass) at the scale r∗∗.
ρ is the mass density of the fluid, and standard Kolmogorov
scaling is used to reexpress the scale-dependent velocity in
terms of the length scale r∗∗ and the rate of energy transfer
per unit mass through the inertial range εT . We note that
this notation is somewhat nonstandard; typically, ε with no
subscript is used. In non-Newtonian turbulence, however, it is
necessary to distinguish the rate of energy injection into the
turbulent cascade, which we denote by εI , the rate of energy
transfer through the inertial range εT , and the rate of energy
dissipation by viscosity εD [16,17]. In Newtonian turbulence,
εI = εT = εD = ε, by conservation of energy. In the polymer
case, however, these equalities need not hold, as (particularly
in the Tabor and De Gennes framework) the polymers can
provide a nonviscous mechanism for drawing energy out of
the turbulent cascade.

This elastic energy balance model has the appealing feature
that r∗∗ is concentration dependent, since higher polymer
concentration means more polymer molecules, and more
molecules can store more energy. This model also introduces
the possibility of a critical concentration: If r∗∗ falls below
the Kolmogorov length scale η, the polymers will no longer
affect the turbulence. However, the assumptions underlying
this model have been criticized [22], and, more seriously,
it is not internally self-consistent [17]. It assumes that the
polymers are stretched at r∗, but only affect the flow at r∗∗; but
at the same time they are assumed to affect the flow because
polymer stretching siphons kinetic energy from the cascade,
which should occur whenever they are stretched.

A resolution of this conundrum that keeps some of the
appealing features of the elastic energy balance model was
recently proposed and tested experimentally by Xi et al. [17].
They modified the Tabor and De Gennes picture by arguing that
the relevant quantity that should be balanced to determine the
scale at which polymers affect the flow is not the energy itself,
but rather (as this is a dynamically evolving system) the rate
of energy transfer. The rate of elastic energy transfer can be
estimated by dividing the Tabor and De Gennes estimate of the
elastic energy stored in the polymers by the polymer relaxation
time τp, since τp is the time scale on which the polymers
will release this stored energy, while the rate of turbulent
kinetic energy transfer is simply given by εT . Balancing these
quantities predicts that the polymers should affect the cascade
at a scale

rε = A

(
kBT

ρ

)2/(5n)

c2/(5n)
p ε

(1/2)−[2/(5n)]
T τ (3/2)−[2/(5n)]

p , (2)

where A is an unknown scaling constant and n is the same
exponent that appears in equation (1). By analyzing data from
an experiment similar to the one described here, Xi et al.
[17] determined that n ≈ 1 and A ≈ 100 and were able to
collapse the data from experiments over a range of Reynolds
numbers and polymer concentrations by rescaling by rε . For
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FIG. 1. (a) Root-mean-square (rms) velocity as a function of the
polymer concentration φ. Data are shown for the three independent
directions in the experiment (y is the axial direction) and for the
turbulence intensity u′. (b) Estimate of the energy injection rate εI =
u′3/L as a function of φ.

our purposes, the key prediction of this energy flux-balance
model is that, for fixed turbulence parameters and polymer
properties, we would expect lengths in the cascade to be
rescaled by a factor of c

2/5
p . The energy flux-balance model

also predicts that rε should vary with the energy transfer
rate εT , which may (weakly) change with the addition of
polymers to the flow [see, for example, Fig. 1(b) below]. With
n = 1, however, rε scales only as ε

1/10
T , and so we neglect it

here and only consider the (stronger) scaling with polymer
concentration.

III. APPARATUS AND DATA ACQUISITION

A. von Kármán swirling flow

We generated turbulence in a closed plexiglass cylindrical
tank measuring 89 cm in height and 58 cm in diameter

by counter-rotating two impellers aligned axially along the
centerline of the cylinder. The impellers themselves have a
diameter of 44 cm, so that they occupy a large fraction of
the cross-sectional area of the tank. The distance between the
impellers is 50 cm, so that the actively driven volume of the
flow has a nearly unit aspect ratio.

As discussed above, we seek a driving mechanism that is
as inertial as possible, rather than one that couples to the fluid
though boundary-layer interactions. Each of the impellers is
therefore fitted with 5 cm straight vanes rather than being
smooth. The impellers are driven by independent ac motors
that are mechanically geared down to provide sufficient torque
to drive the fluid without undue rotation speed. As the injected
kinetic energy is dissipated by viscous action, heat is generated
in the working fluid. To prevent the water temperature from
rising over time, we run temperature-controlled water through
double-spiral channels in the aluminum top and bottom plates
of the apparatus. Because the turbulence mixes efficiently, this
boundary cooling is sufficient to maintain a roughly uniform
temperature throughout the apparatus with no mean gradients.
We monitor the temperature via four thermocouples placed
inside the apparatus; measurements from these thermocouples
show that the temperature is constant in time and uniform in
space to within less than 0.1 ◦C.

For the data presented here, the rotation rate of each impeller
was controlled to be 0.23 Hz. By measuring the Eulerian
velocity structure functions (see below), we find that in pure
water this rotation rate corresponds to a Taylor-microscale
Reynolds number of Rλ = 420. The integral length scale L is
measured to be 14.2 cm by estimating the energy dissipation
rate ε from the structure functions for several different rotation
rates and assuming that ε = u′3/L, where u′ is the turbulence
intensity, as is typically done in these kinds of flows [23]. The
Kolmogorov length scale η is 124 μm, and the Kolmogorov
time scale τη is 15.2 ms, as determined from their definitions.

B. Particle tracking

To measure the flow, we use three-dimensional Lagrangian
particle tracking [24]. We seed the fluid with 30-μm
polystyrene microspheres that contain a fluorescent dye that
absorbs in the green and fluoresces in the red. We excite
the particles with a Q-switched Nd:YAG laser running at a
pulse rate of 10 kHz and with an average power of 45 W.
The motion of the particles is then recorded by three Photron
Fastcam SA5 cameras at a rate of 2000 frames per second at a
resolution of 1024×1024 pixels. This frame rate corresponds
to approximately 30 images per τη at this Reynolds number.
The three cameras have an angular separation of 45◦ in the
horizontal plane; the central camera is positioned 30◦ out of
plane to improve the depth resolution of the system. Using
the method of Tsai [25], we calibrate the imaging system by
assuming a pinhole model for each camera, and fix the model
parameters by imaging a grid of evenly spaced dots with a
known spacing. We can then use this model to reconstruct
the three-dimensional positions of the tracer particles using
standard stereoimaging techniques [24]. For the data presented
here, we image a volume with a linear dimension of 2.3 cm in
the center of the apparatus.
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We use a three-frame best-estimate predictive tracking
algorithm to combine the time-resolved three-dimensional
particle positions into trajectories [24]. Accurate velocities
and accelerations are then computed along the trajectories by
convolving the tracks with a smoothing and differentiating
kernel [26]. Lagrangian statistics can be naturally computed
from the raw trajectories; and since we measure many particles
at each time step, Eulerian statistics can also be obtained from
the contemporaneous particle measurements.

C. Polymer solutions

For the results presented here, we used a high-molecular-
weight (18×106 amu) polyacrylamide (PolySciences 18522)
as our flow additive at concentrations φ ranging from 1 to 20
parts per million (ppm) by weight. We note that cp defined
above is the number density of polymer chains, whereas φ

is the weight/weight concentration; one is easily obtainable
from the other, given knowledge of the solvent, and they
scale linearly with one another for any given polymer. The
concentrations we consider here are low enough (an order of
magnitude below the overlap concentration, for example) that
the change in shear viscosity due to the polymers is negligible
and that the longest relaxation times of the solutions should be
independent of concentration [27].

For this polymer, the radius of gyration Rg at equilibrium
is roughly 0.5 μm, and the fully stretched length is about
75 μm. The relaxation time τp (calculated using the Zimm
model) is 43 ms, giving us a Weissenberg number (based on
the Kolmogorov time scale) of Wi = 2.8.

To prepare the polymer solutions, we dissolve the appro-
priate mass of dry polymer in 2 liters of deionized water by
gentle stirring over a 12-h period to create a high-concentration
stock solution. We then gravity feed this stock solution into
the turbulence apparatus, avoiding any mechanical degradation
that may occur if we were to use a pump. To ensure that the
polymers are distributed homogeneously in the apparatus, we
spin the impellers at a low rotation rate (0.14 Hz) for periods
of up to a few hours before acquiring data. This procedure has
been shown in previous, similar experiments to lead to robust,
repeatable results [15].

Mechanical degradation and chain scission is always a
concern when studying polymers in turbulence: If the turbulent
strain rate is large enough to stretch polymers appreciably,
fluctuations in the strain rate may be large enough to break the
chains. If the chains begin to break, the effective polymer
concentration will decrease. To check for degradation, we
monitored the acceleration variance as measured from the
tracer particles as a function of time for each of our data
runs, as this variance has been shown to be quite sensitive to
the polymer concentration [15]. For each concentration, we
acquired data over a period of about 30 h. Although there are
certainly fluctuations in the acceleration variance, we observed
that the mean value of the variance did not change with time
over the course of the experiment. We also note that we used
this test to determine the fastest impeller rotation rate—and
therefore the largest Reynolds number—we could safely study
without polymer degradation; at higher rotation rates, we did
observe a change in the acceleration variance over time.

IV. EULERIAN STATISTICS

A. Large-scale flow

As described above, we drive the flow with baffled disks to
minimize the impact of drag reduction at the forcing element
[11]. Nevertheless, some modification of the large-scale flow
is likely unavoidable, since we are not injecting energy and
momentum into the flow via a volumetric body force. To
estimate how much the large scales of the flow were modified
after the polymers were added, we measured the root-mean-
square (rms) velocity as a function of polymer concentration
φ, as shown in Fig. 1(a). We show both the three velocity
components (with 〈u2

x〉1/2 and 〈u2
z〉1/2 in the radial plane of

the apparatus and 〈u2
y〉1/2 in the axial direction) as well as the

turbulence intensity u′ = [(1/3)〈u2
x + u2

y + u2
z〉]1/2

. The trend
for all the velocity components is similar, decreasing weakly
with concentration. By φ = 20 ppm, the rms velocities are
about 10% lower than their measured values in pure water.

Although the decrease in velocity is fairly small, it may
have a somewhat larger effect on the energy injected into the
cascade. The energy injection rate εI is of order u′3/L, where
L is the integral length scale; thus, a small change in u′ leads
to a larger change in εI . We show this estimate of εI as a
function of concentration in Fig. 1(b). εI does indeed fall off
more sharply with concentration, particularly for φ > 5 ppm.
Thus, some of the decrease in the measured energy dissipation
that we describe below should be attributed to a decrease in
energy injection.

B. Velocity structure functions

In addition to a potential global damping of turbulence
via a weakening of the energy injection, polymers are also
widely thought to selectively smooth the velocity field at small
scales, weakening some of the intense velocity gradients that
are responsible for a significant part of the turbulent dissipation
[10]. This effect is qualitatively apparent by simple observation
of the trajectories of tracer particles in Newtonian turbulence
and in water with a small concentration of polymers, as shown
in Fig. 2. However, to quantify the selective damping of various
turbulent scales, we must turn to a more precise statistical
measure.

The Eulerian velocity structure functions, defined as the
statistical moments of spatial velocity increments, are standard
tools to characterize the turbulent energy cascade, and, as
in a sense coarse-grained velocity gradients, are sensitive
to the spatial structure of the flow field in the inertial
range. Here we focus on the second-order structure functions.
Given values of the velocity field at positions x and y, we
define the velocity increment to be δu(x,y) = u(y) − u(x). In
homogeneous turbulence, δu depends only on the distance
between the two points r = y − x. The second-order Eulerian
velocity structure function tensor is then defined to be Dij (r) =
〈δui(r)δuj (r)〉. In isotropic turbulence, this tensor can be
completely characterized by the two scalar functions DLL(r)
(the longitudinal structure function, where the velocities are
taken to be parallel to r) and DNN (r) (the transverse structure
function, where the velocities are perpendicular to r). Here
we show only data for the transverse structure function DNN ;
in experiments, it is typically better resolved, since in three
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5mm

(a) (b)

FIG. 2. Long-exposure (50 ms ≈ 3.3.τw
η ) images of the trajectories of tracer particles as seen by the center camera in (a) pure water and

(b) a 10 ppm polymer solution. The trajectories are noticeably smoother and more spatially coherent in the polymer solution.

dimensions there are two independent measurements of DNN

per pair of velocities.
In isotropic turbulence, one expects that

DNN (r) = 4
3C2(εT r)2/3 (3)

for η � r � L, where η is the Kolmogorov length scale
and L is the integral length scale. C2 is expected to be
a universal constant, with a measured value of 2.13 [28].
Although there may be some intermittency corrections to the
scaling exponents, at second order they are expected to be very
small [29]. Thus, the compensated structure function[

3

4

DNN (r)

C2r2/3

]3/2

= εT (4)

can be used to estimate the energy transfer rate through the
inertial range in Newtonian turbulence, since in the inertial
range it should be constant and equal to εT . Based on previous
results [16,17], we do not expect the scaling in Eq. (3) to
change in polymer solutions. Thus, we use the compensated
structure functions here to study the details of the statistics
of turbulence in polymer solutions with the baseline scaling
removed.

In Fig. 3(a), we show these compensated transverse struc-
ture functions both for pure water and for polymer data at
varying concentrations. The polymer concentration φ clearly
has a significant influence on the statistical properties of the
flow. As has been seen before [16,17], as the concentration
goes up, two effects are apparent: the compensated structure
functions reach their plateau values at larger length scales, and
the plateau values are different from the water data. These
effects are particularly apparent in our data for φ � 10 ppm.
We note that the plateau values for the φ = 1 ppm and
φ = 5 ppm data are actually slightly larger than for the pure
water case; they are likely, however, to be within the expected
uncertainty in this measurement, which can be large [30].

The horizontal axis in Fig. 3(a) is scaled by ηw, the
Kolmogorov length scale computed for pure water at this
impeller rotation rate. However, this scaling is expected to
be modified in the presence of polymers; Xi et al. [17], for
example, observed a collapse of data for different polymer

concentrations when scaling by rε as derived from their energy
flux-balance model. As discussed above, that model predicts
that lengths should rescale by a factor of φ2/5. Thus, in
Fig. 3(b), we scale the horizontal axis by ηwφ2/5. Like Xi et al.
[17], we do observe a collapse of the data; however, unlike Xi
et al. [17], our data collapses onto two distinctly different
curves, one for φ � 5 ppm and a second for φ � 10 ppm.
Our results are thus more similar to Ouellette et al. [16], who
reported a possible critical concentration of φ ≈ 7 ppm. Xi
et al. [17] ascribed the absence of a critical concentration in
their data to a redesign of the experimental apparatus, and in
particular to the lack of vanes on the sidewalls of the their
von Kármán flow (which were present in the experiments
of Ouellette et al. [16]). However, in our apparatus we also
do not have vanes and yet still see what may be a critical
concentration.

It should also be noted that the critical concentration
described by Ouellette et al. [16] separated concentrations for
which the structure functions measured in the polymer data
reached a plateau value of εT (as measured from pure water)
from those that did not. At first glance, we see similar behavior
here. However, as noted above in Fig. 1(b), we do see some
decrease in εI , the large-scale energy injection rate, for larger
concentrations. When we scale the compensated structure
functions by the measured, concentration-dependent εI , as
shown in Fig. 3(c), the peak values for all concentrations are
similar, although the two distinct families of collapsed curves
are still evident. Therefore, the potential critical concentration
we find may be distinct from that observed by Ouellette et al.
[16].

An understanding of the factors responsible for the differ-
ences between our results, those of Ouellette et al. [16], and
those of Xi et al. [17] remains elusive. All three experiments
were performed in flows with a similar geometry, the same
polymer, and the same measurement tools, but different results
were obtained. Each data set is also internally consistent; as we
show below, for example, different statistics calculated from
our data all give consistent results. The difference between
the three experiments therefore suggests that there may be
some as-yet-unknown additional parameters necessary for
characterizing turbulence in dilute polymer solutions.
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FIG. 3. (a) Compensated transverse structure function DNN [see
Eq. (4)] as a function of r/ηw , where ηw is the Kolmogorov scale
measured from the water data. (b) The same data as in panel (a),
but with length rescaled by a factor of φ2/5, as expected from the
energy flux-balance model. (c) The same data as in panel (b), but with
the vertical axis rescaled by the measured concentration-dependent
values of εI [see Fig. 1(b)].

C. Acceleration correlations

Turbulence in polymer solutions is often qualitatively
described as being more spatially smooth than Newtonian

turbulence at the same Reynolds number. This notion can be
made somewhat more concrete by studying, for example, spa-
tial correlation functions. The velocity correlations, however,
are not necessarily a good choice for this purpose. They fall
off (by definition) on length scales comparable to the integral
length scale, which is difficult to capture in any experiment
that seeks to resolve the small scales of the flow and where we
cannot make use of Taylor’s frozen-flow hypothesis due to the
finite number of camera pixels, and they can additionally suffer
seriously from finite-volume biases. In addition, the velocity
correlations are not local in scale, and so the Kolmogorov
hypotheses cannot be used to predict their scaling [31].

Some of these issues can be mitigated, however, by
considering the correlations of the acceleration. As predicted
by Obukhov and Yaglom [32], these correlations both decay
over shorter length scales and have a Kolmogorov scaling
form in the inertial range that agrees well with experimental
measurements [33]. We define the acceleration correlation
tensor as

Rij (r) = 〈ai(x)aj (x + r)〉, (5)

where ai(x) is the ith component of the full material accelera-
tion; that is,

ai = ∂ui

∂t
+ u · ∇ui. (6)

Also, note that, strictly speaking, Rij is a covariance rather than
a correlation, since we are not normalizing by the acceleration
variance. Just as for the velocity structure function, assuming
statistical isotropy allows one to decompose Rij into longitu-
dinal and transverse components RLL and RNN , respectively,
and also like for the structure functions, we report here only
measurements of RNN .

Obukhov and Yaglom [32] showed that, under some
simplifying assumptions, RNN can be related to the velocity
structure function DNN (via the pressure structure functions)
and thereby predicted that

RNN (r) = 2
3C2

2ε
5/3
T r−2/3 (7)

in the inertial range [33]. As with the velocity structure
functions, we can compensate the acceleration correlation as[

3

2

r2/3RNN (r)

C2
2

]3/5

= εT (8)

to estimate εT and to make a detailed comparison of the effects
of polymer concentration.

In Fig. 4, we show our measurements of RNN , compensated
according to Eq. (8), for pure water and for varying polymer
concentrations. In Fig. 4(a), we scale the separation r by ηw,
while in Fig. 4(b) we also include the expected concentration
dependence of φ2/5. Although the results are less dramatic
than for the velocity structure functions, similar behavior is
seen: Once we include the concentration scaling, we see the
data collapse onto two master curves, with high-concentration
data behaving differently from low-concentration data. We
also note that the plateau value, which according to Eq. (8)
should be εT , is much lower than the estimate from the velocity
structure functions and is additionally nearly the same for
all values of φ without rescaling by εI , as in Fig. 3(c). The
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FIG. 4. (a) The transverse acceleration correlation function RNN ,
compensated by the inertial range scale prediction as in Eq. (8), with
lengths scaled by ηw . (b) The same data as in panel (a), but with
lengths rescaled by φ2/5.

most likely cause of this discrepancy is under-resolution of the
acceleration, since it is very difficult to measure the enormous
fluctuations of acceleration accurately [23], particularly with
the relatively low frame rate we have used here. However,
we also note the possibility that, since the acceleration is a
very small-scale quantity, the plateau value of the acceleration
correlations may be related more strongly to the viscous energy
dissipation rate εD rather than the energy transfer rate εT , even
though the inertial-range scaling prediction for the velocity
structure function is used in deriving Eq. (8). Obukhov and
Yaglom [32], of course, made no distinction between εD and
εT , since they are the same in Newtonian turbulence.

V. LAGRANGIAN STATISTICS

A. Velocity structure functions

Just as in the Eulerian context, velocity structure functions
have played a central role in characterizing the Lagrangian
properties of turbulence. In the Lagrangian framework, the
structure functions are still the statistical moments of the
velocity increments δu; in contrast to the Eulerian case,

however, the increments are now taken along Lagrangian
trajectories and are explicit functions of time only. In partic-
ular, the second-order Lagrangian structure function is given
by DL

ij = 〈δui(τ )δuj (τ )〉, where τ is the time lag separating
the two velocity measurements along a single trajectory. In
isotropic turbulence, DL

ij (τ ) must be an isotropic tensor and
therefore proportional to the identity tensor δij , since τ is a
scalar.

Applying Kolmogorov theory, one expects that

DL
ij (τ ) = C0εT τδij (9)

in the Lagrangian inertial range (that is, for τη � τ � TL,
where τη is the Kolmogorov time scale and TL is the integral
time scale). C0 is again a constant that is expected to be
universal, although there is less consensus on its value that
on the corresponding Eulerian constant C2. In a similar flow
at the Reynolds number considered, its value was measured
to be C0 ≈ 6 in the radial plane [34], and that is the value
we use here in defining the compensated structure function.
We also note that, as is typical in von Kármán flows, the
effective value C0, as well as the velocity fluctuations
themselves [see Fig. 1(a)], tend to be smaller in the axial
direction (y, in our convention). Here we therefore only report
one the radial components of DL

ij , DL
zz.

In Fig. 5(a), we plot DL
zz(τ ) compensated by C0τ for water

and for varying polymer concentrations, with time scaled by
τw
η , the Kolmogorov scale for the water data. Several features

are immediately evident. First, the scaling range is very short
even for the water data (if indeed the Lagrangian structure
functions scale at all [35]). Additionally, as with our Eulerian
results, there is a clear concentration effect: both the peak value
of the structure functions and the position of this peak shift
with φ.

The energy flux-balance model gives us a way to capture
the variation of spatial, Eulerian statistics with φ. However, it
is not obvious how to use the flux-balance model to capture
temporal rescaling. The elastic energy stored by the polymers
is explicitly due to their stretching and is therefore connected
to length scales, not time scales. The only natural time scale
in the model is the polymer relaxation time τp, but τp is not
concentration dependent.

Instead, we here propose a simple physical picture to
estimate how times should rescale in the presence of polymers.
In the energy flux-balance model, the key physics involves
the stretching of the polymers by turbulent eddies of scale
rε , which is determined by balancing the rate of turbulent
energy transfer through an eddy of scale rε and the rate at
which polymers release the stored elastic energy when they
are stretched to a length rε . So, to define a time scale from this
picture, we use the Kolmogorov estimate of the lifetime of an
eddy of size rε , namely,

tε =
(

r2
ε

εT

)1/3

. (10)

Inserting rε from Eq. (2), we therefore expect that times should
rescale with concentration by a factor of φ4/15. We note that
tε is also the Kolmogorov estimate for the strain rate at the
scale rε ; thus, this argument is equivalent to requiring that the
scale-local strain rate be sufficient to stretch the polymers.
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FIG. 5. (a) The second-order Lagrangian structure function DZZ

(z is in the radial plane of the experiment) compensated by C0τ , with
time scaled by τw

η , the Kolmogorov time scale computed for the water
data. (b) The same data as in panel (a), but with time rescaled by a
factor of φ4/15.

To test this scaling prediction, in Fig. 5(b), we plot the
compensated Lagrangian structure function with the time axis
scaled by an additional factor of φ4/15. Although the collapse
is not as clean as it was for the Eulerian structure functions
[Fig. 3(b)], the position of the peak does approximately overlap
for the different concentrations. Just as with the Eulerian
structure functions, we find two classes of behavior, with
qualitative differences between φ � 5 ppm and φ � 10 ppm.

B. Relative dispersion

The Lagrangian description of fluid flow is intimately
connected to transport and mixing. In turbulence, one must
typically distinguish between the advection of material away
from a fixed source and the growth and spreading of an
initialized localized cloud of material [31]. The former
problem is dominated by the temporal velocity correlations and
can be modeled as a (turbulent) diffusion process [36]; but the
latter shows nontrivial turbulence scaling. As first described by

Richardson [37], the simplest parametrization of the spread of
a cloud is the separation of two initially nearby fluid elements,
termed relative dispersion [38,39].

In the inertial range, the mean-squared separation r(t) is
expected to show two distinct scalings [31],

〈(r(t) − r0)2〉 =
{

11
3 C2(εT r0)2/3t2, τη � t � t0,

gεT t3, t0 � t � TL,
(11)

where r0 is the initial separation of the pair. For short
times t � t0 = (r2

0 /εT )1/3 for which r0 remains an important
parameter, the separation scales ballistically in time in the
so-called Batchelor regime. In this time range, the pair can be
thought of as residing on the same turbulent eddy of scale r0,
and so their statistics are dominated by the difference in
velocity across this eddy—and therefore by the Eulerian
velocity structure function at scale r0. This is the origin of the
coefficient (11/3)C2(εT r0)2/3, the trace of the second-order
Eulerian structure function.

At longer times (but still shorter than the integral time
scale TL) for which the initial separation is forgotten and the
eddy the two particles initially belonged to has broken up,
the separation should enter the universal Richardson regime;
g is known as the Richardson constant. Because the scale
separation must be incredibly large to observe two distinct
power-law scalings in the inertial range, the Reynolds number
must be very high to distinguish these two cases [40]. At
our Reynolds number, therefore, we would not expect to see
Richardson dispersion even for the water case; however, we
do expect robust Batchelor scaling. Since relative dispersion
in the Batchelor scaling regime is dominated by the statistics
of the Eulerian structure functions [41], we would expect to
observe similar polymer effects, as we have shown above.

In Fig. 6(a), we plot the mean-squared pair dispersion
scaled by the Batchelor prediction, so that the curves would
plateau at εT if the Batchelor scaling holds (that is, we plot
〈[r(t) − r0]2〉3/2/[(11/3)C2r

2/3
0 t2]) for initial pair separations

lying in the range 10 mm < r0 < 11 mm. The time axis is
scaled by t0 = (r2

0 /εT )1/3. As would be expected given the
results shown above, there is a strong polymer concentration
effect; as φ increases, the effective value of εT appears to
decrease. Consistently, the curves begin to deviate from the
Batchelor scaling prediction (in the expected way [40,41]) at
later times as φ increases.

In Figs. 6(b) and 6(c), we attempt to collapse the dispersion
data by scaling time and space according to the energy
flux-balance model; that is, lengths are rescaled by φ2/5 and
times by φ4/15. We note that in the Batchelor regime, data must
be considered separately for different initial pair separations,
as r0 is an explicit parameter; thus, we must also scale the initial
separations by φ2/5. In Fig. 6(b), we show the compensated
dispersion data for initial separations of r0 ∈ [20,30]ηwφ2/5,
with both axes rescaled to account for concentration effects.
Just as we have shown above, the data fall onto two distinct
families of curves, one for lower concentrations (and pure
water), and one for higher concentrations. The collapse is not
quite as clean for the larger concentrations, some of which
could be due to the small initial separations: scales of ∼ 20ηw

are only marginally in the inertial range. We therefore also
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FIG. 6. (a) Mean-squared pair separation scaled by the Batchelor
prediction [see Eq. (11) and the text] to obtain εT , as a function
of time scaled by tw

0 , as calculated from the water data alone for
initial pair separations r0 ∈ [10,11] mm. (b) Similar data, but with all
lengths rescaled by φ2/5 and all times by φ4/15, for initial separations
r0 ∈ [20,30]ηwφ2/5. (c) Data scaled as in panel (b), but with r0 ∈
[50,60]ηwφ2/5.

consider larger initial separations with r0 ∈ [50,60]ηwφ2/5 in
Fig. 6(c). The trend is very similar, but the data are again
somewhat noisy. In this case, the noise is likely statistical; at
high concentrations, these initial separations are quite large
in physical units, and so not many pairs with these initial
separations remain in our measurement volume for long times.
For both Figs. 6(b) and 6(c), however, we note that the
temporal recalling (that is, rescaling the horizontal axis by
a factor of φ4/15) appears to work quite well: The curves
peel away from the Batchelor prediction at about the same
concentration-corrected time scale at a value that is consistent
with earlier experimental findings for pure water [40,41].

VI. DISCUSSION AND CONCLUSIONS

We have presented here a wide range of turbulence statistics
for flow in dilute polymer solutions. Although these metrics
include both Eulerian and Langrangian measures, and measure
position, velocity, and acceleration, they present a consistent
picture. In all cases, the concentration scaling predicted by the
energy flux-balance model [17] appears to work quite well,
even when translated into the time domain. However, unlike
what has been seen before in experiments, we also consistently
observe two families of curves that independently collapse: one
for small concentrations with φ � 5 ppm and one for larger
concentrations with φ � 10 ppm. This behavior is unexpected
and somewhat mysterious.

A full understanding of the effects we see will require
future detailed experimentation and testing; here, however,
we offer one possible explanation for the data. The energy
flux-balance model (and, indeed, most models of turbulence
modification by additives) assumes that the polymers are very
dilute, and therefore that each polymer chain can be treated
as independent. This is expected to be a good approximation
at concentrations such as those we consider here. For this
polymer, the overlap concentration φ∗ at which it begins
to break down has been estimated to be in the range of
200–250 ppm [42]. However, as the polymers begin to stretch,
their effective size grows, and they may begin to interact more
than would be expected given their equilibrium size in water.
φ∗ should scale as the inverse cube of the polymer radius
of gyration Rg , since it is determined by estimating when the
volumes occupied by nearby polymer chains begin to intersect.
We can use this scaling and the value of φ∗ at equilibrium to
estimate that if the difference in the two families of curves
we see between φ = 5 ppm and φ = 10 ppm were due to the
stretched polymers passing out of the dilute regime, we would
expect the effective size of the polymers to be about 3 to 4
times larger than their equilibrium radius of gyration Rg .

Measuring the actual extension of the polymer chains in
our experiment is not possible. We can, however, estimate the
likely mean polymer extension by comparing our experimental
parameters to models. Numerical simulations of bead-spring
models of polymer chains in turbulence have suggested that
a fairly sharp coil-stretch transition occurs at a Weissenberg
number (based on the Kolmogorov scale) of about 3 [43], after
which the polymers are nearly fully extended. Here, however,
our Weissenberg number is smaller (Wi = 2.8) and may be in
the narrow transitional range between fully coiled polymers
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and fully stretched chains. At this Weissenberg number, the
simulations suggest the mean polymer extension should be
about 5% of the fully stretched chain length [43]—quite similar
to our estimate above. Thus, it is plausible that the qualitative
difference between the families of curves we see may be due
to the polymers passing out of the dilute regime, given the
turbulent dynamics, for our higher concentrations but not our
lower concentrations. This argument would also explain why
Xi et al. [17] did not see the two families of curves we observe
here. Nearly all of their data were taken for Weissenberg
numbers larger than the coil-stretch transition, and so any
effects due to changes in the polymer conformation would be
frozen out; from the standpoint of the polymer concentration,
their data were all asymptotic. We note that a similar sensitivity
to Weissenberg number was found in numerical simulations
of homogeneous shear turbulence in polymer solutions by
Robert et al. [44]. These authors reported a low Weissenberg
number regime where the flow was very sensitive to small
changes in the polymer effects and a high Weissenberg number
regime where it was less so. Although their mechanism may be
different, both because the flow had a strong mean shear and
because the polymers were represented by a continuum field

so that there were no individual polymer chains to interact, the
core physics may be similar to what we argue here.

In summary, we conducted measurements of various tur-
bulence statistics, both Eulerian and Lagrangian, in a dilute
solution of long-chain polymers at high Reynolds number but
moderate Weissenberg number over a range of concentrations.
Our results are mostly consistent with the recently proposed
energy flux-balance model; however, we routinely see a
collapse of our data onto two master curves, not one, when
the effect of concentration is taken into account. Although a
full understanding of this effect is still elusive, we suggest that
the transition may be due to the onset of interactions between
the individual polymer chains. These results argue that the
detailed effects of polymer concentration on turbulence are
still not fully understood.
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