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Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction
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We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent
flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the
droplet has a natural two-way coupling to the background fluid. We show that the probability distribution
function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are
consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays
multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E(k),
when the wave number k is large; this enhancement leads to dissipation reduction.
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I. INTRODUCTION

The advection of droplets, bubbles, or particles by a fluid
plays a central role in many natural and industrial settings [1],
which include clouds [2,3], fuel injection [4], microfluidics [5],
inkjet printing [6], and the reduction of drag by bubbles [7].
These studies require an accurate modeling of the motion of
particles or droplets inside a turbulent fluid. The advection
of finite-sized particles or droplets is especially challenging
because they cannot be modeled as Lagrangian tracers [8], or
even like heavy particles, which do not affect the motion of
the carrier phase [1].

Finite-size, deformable droplets affect the background fluid
considerably, even as they are transported and deformed by the
flow. This makes a systematic characterization of the statistical
properties of turbulence difficult, because boundary conditions
have to be implemented on the surface of the droplet, which
changes as a function of time. The Cahn-Hilliard-Navier-
Stokes (CHNS) equations that we use allow us to treat droplets
elegantly via gradients in an order-parameter field φ; therefore,
we do not have to enforce complicated boundary conditions at
the moving boundary between the droplet and the background
fluid; and, we can follow the deformation of the droplet
boundary in far greater detail than has been possible so far.
Our ability to track this boundary, along with our efficient
computer code on a GPU cluster has enabled us to show,
among other things, that fluctuations of the droplet boundary
are multifractal; this has not been investigated hitherto.

The simplest droplet-advection problem arises in a binary-
fluid mixture, in which a droplet of the minority phase moves
in the majority-phase background that is turbulent. We study
this problem in two spatial dimensions (2D) by using the
coupled CHNS equations, which have been used extensively
in studies of critical phenomena, phase transitions [9–13],
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nucleation [14], spinodal decomposition [15–19], and the late
stages of phase separation [20]. We use the CHNS approach
to carry out a detailed study of droplet dynamics in a turbulent
flow and characterize the turbulence-induced deformation of
a droplet and its acceleration statistics. We then elucidate
the modification of fluid turbulence by the fluctuations of
this droplet. Our study uses an extensive direct numerical
simulation (DNS) of the CHNS equations in 2D, where we
use parameters such that we have one droplet in our simulation
domain. We track such a finite-sized droplet (for similar studies
of Lagrangian or inertial particles, see Ref. [21]) and obtain
the statistics of the deformation of the droplet and its velocity
and acceleration statistics as a function of the surface tension
and size.

Two-dimensional (2D) fluid turbulence, which is of central
importance in many flows, is fundamentally different from its
three-dimensional (3D) counterpart [22–26]. The fluid-energy
spectrum E(k) in 2D turbulence shows (a) a forward cascade
of enstrophy (or the mean-square vorticity), from the forcing
wave number kf to wave numbers k > kf and (b) an inverse
cascade of energy to k < kf . We use parameters that lead to
an E(k) that is dominated by a forward-cascade regime. Our
study leads to new insights and remarkable results: we show
that the turbulence-induced fluctuations in the dimensionless
deformation of the droplet are intermittent. We characterize
this intermittency of the droplet fluctuations by obtaining
the probability distribution function (PDF) P�(�) and the
multifractal spectrum f�(α) of the time series �(t). We show
that the PDF of the components of the acceleration of the
center of mass are similar to those for finite-size particles in
turbulent flows [27] and are consistent with predictions based
on pressure spectra [28,29]. We also find that the large-k tail
of E(k) is enhanced by the droplet fluctuations; this leads to
dissipation reduction, in much the same way as in turbulent
fluids with polymer additives [30–32]. The spectrum E(k) also
displays oscillations whose period is related inversely to the
mean diameter of the droplet. We show that such oscillations
appear prominently in the order-parameter spectrum S(k),
which is the Fourier transform of the spatial correlation
function of φ, the Cahn-Hilliard scalar field that distinguishes
between the two binary-fluid phases.
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The remainder of the paper is organized as follows.
Section II introduces the CHNS equations and the numerical
methods we use to solve them. We present the results of our
DNS in Sec. III, which comprises subsections on (a) droplet-
deformation statistics, (b) droplet-acceleration statistics, (c)
energy-dissipation time series and energy and order-parameter
spectra. Section IV contains a discussion of our results
and conclusions. An Appendix contains some details of our
calculations.

II. MODEL AND NUMERICAL METHODS

Two-way coupling, between the droplet and the back-
ground turbulent fluid, appears naturally in the CHNS
equations [33–36]. In 2D, the Navier-Stokes equations
can be written in the following stream-function vorticity
formulation [20]:

(∂t + u · ∇)ω = ν∇2ω − αω − ∇ × (φ∇μ) + Fω; (1)

(∂t + u · ∇)φ = γ∇2μ and ∇ · u = 0. (2)

Here u ≡ (ux,uy) is the fluid velocity, ω is the vorticity, μ is
the chemical potential; ω and μ are connected to u and φ in
the following way:

ω = (∇ × u)êz, (3)

μ(x,t) = δF[φ]/δφ, (4)

F[φ] = 


∫
[(φ2 − 1)2/(4ξ 2) + |∇φ|2/2]dx, (5)

where F[φ] is the free energy. In Eqs. (1) and (2) 
 is the
energy density with which the two phases mix in the interfacial
regime [33], ξ sets the scale of the diffuse interface width,
ν is the kinematic viscosity, γ is the mobility [35] of the
binary-fluid mixture, Fω = F0 cos(kf y) is a Kolmogorov-type
forcing [37] with amplitude F0 and forcing wave number
kf , and α is the air-drag induced friction. For simplicity, we
concentrate on mixtures in which γ is independent of φ and
both components have the same density and viscosity. In our

model, σ = 2
√

2

3ξ

is the surface tension. The Grashof number

Gr = L4F0
ν2 is a convenient dimensionless ratio of the forcing

and viscous terms (here L is the linear size of our simulation
domain). We keep the diffusivity D = γ


ξ 2 of the system

constant. The forcing-scale Weber number We ≡ ρL3
f F0/σ ,

where Lf = 2π/kf , is a natural dimensionless measure of the
inverse of the surface tension.

The minority and majority phases in our model is de-
scribed by an order-parameter field φ(x,t) at the point x
and time t with φ(x,t) > 0 in the background (majority)
phase and φ(x,t) < 0 in the droplet (minority) phase [see
Fig. 1(a)]. At time t = 0 we begin with the order-parameter
profile [33,36],

φ(x,y) = tanh

{
1√
2ξ

[
√

(x − xc)2 + (y − yc)2 − d0/2]

}
,

(6)
which ensures that the droplet is circular at t = 0, with its
center at (xc,yc), diameter d0, and has a diffuse interface,
because φ change continuously in the interface. The interface
width ξ is measured by the dimensionless Cahn number
Ch = ξ/L.

Our direct numerical simulations (DNSs) of Eqs. (1)
and (2) use a pseudospectral method and periodic boundary
conditions; L(= 2π ) is the linear size of our square simulation
domain, which has N2 collocation points. We have a cubic
nonlinearity in the chemical potential μ [Eq. (2)], so we
use N/2-dealiasing [38]. For time integration we use the
exponential Adams-Bashforth method ETD2 [39]. We use
computers with Graphics Processing Units (e.g., the NVIDIA
K80), which we program in CUDA [40]; our efficient code
allows us to explore the CHNS parameter space and carry
out very long simulations that are essential for our studies. In
the following paragraph we introduce the quantities that we
calculate from the fields ω(x,t) and φ(x,t), which we obtain
from our DNSs of Eqs. (1) and (2).

From the field φ(x,t) we calculate the droplet deformation
parameter, which we define as [41]

�(t) = S(t)

S0(t)
− 1, (7)
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FIG. 1. (a) Pseudocolor plot of the φ field; (b) plots versus t/τeddy of the perimeter S(t) (deep-blue line), area A(t) (light-blue line),
perimeter S0(t) (green line), of a circular droplet of area A(t), and the deformation parameter �(t) (red line) for the run R7 (We = 5.34).
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TABLE I. The parameters Gr, d0, We, 〈dp〉t /L, 〈λ〉t /L, 〈η〉t /L, 〈E〉t , 〈ε〉t , and 〈Reλ〉t for our DNS runs R1-R28. The number of
collocation points is kept fixed at N2 = 10242 in each direction. The friction coefficient α = 0.001, the forcing wave number is fixed at kf = 3,
ν = 4.67 × 10−3 is the kinematic viscosity, the diffusivity D = 4 × 10−3, d0/L is the nondimensional droplet diameter at the initial time, the
forcing-scale Weber number We ≡ ρL3

f F0/σ , where σ is the surface tension, the Cahn number Ch = ξ/L, where ξ is the interface width,
is kept fixed at Ch = 0.0028, 〈dp〉t /L is the steady-state droplet diameter nondimensionalized with the box length L, the dissipation scale

η = (ν3/ε)
1
4 , where ε is the fluid-energy dissipation rate (ε(t) = 〈ν|ω(x,t)|2〉x), E(t) = 〈|u(x,t)|2〉x is the fluid kinetic energy, and Reλ the

Taylor-microscale Reynolds number. In all cases 〈〉t denotes the average over time in the statistically steady state.

Gr d0/L We 〈dp〉t /L 〈λ〉t /L 〈η〉t /L 〈E〉t 〈ε〉t 〈Reλ〉t

R1 3 × 107 1.9 0.017 216
R2 3 × 107 0.332 1.38 0.324 0.08 0.007 1.17 5.4 112
R3 3 × 107 0.312 1.38 0.3 0.08 0.007 1.24 5.1 120
R4 3 × 107 0.293 1.38 0.283 0.09 0.007 1.3 4.9 127
R5 3 × 107 0.273 1.38 0.263 0.09 0.007 1.36 0.023 137.5
R6 3 × 107 0.25 1.38 0.245 0.09 0.007 1.4 4.4 146.5
R7 3 × 107 0.24 5.34 0.2 0.1 0.007 1.4 4.63 140
R8 3 × 107 0.24 2.3 0.22 0.11 0.007 1.44 4.35 151
R9 3 × 107 0.24 1.97 0.22 0.11 0.007 1.45 4.2 153.4
R10 3 × 107 0.24 1.84 0.22 0.11 0.007 1.48 4.25 154.7
R11 3 × 107 0.24 1.53 0.22 0.11 0.007 1.48 4.45 157.4
R12 3 × 107 0.24 1.38 0.22 0.12 0.007 1.47 4.21 157
R13 3 × 107 0.24 0.534 0.22 0.12 0.007 1.5 4.19 160
R14 3 × 107 0.24 0.138 0.22 0.12 0.007 1.5 4.22 162
R15 3 × 107 0.215 1.38 0.21 0.13 0.007 1.57 4.15 168
R16 3 × 107 0.2 1.38 0.177 0.13 0.007 1.62 3.96 177
R17 3 × 107 0.174 1.38 0.153 0.14 0.007 1.7 3.8 188
R18 3 × 107 0.14 5.34 0.097 0.15 0.007 1.8 3.83 200
R19 3 × 107 0.14 2.3 0.125 0.15 0.007 1.75 3.83 195
R20 3 × 107 0.14 1.38 0.126 0.15 0.007 1.75 3.7 193
R21 3 × 107 0.134 0.52 0.09 0.153 0.007 1.84 3.78 205
R22 1.5 × 108 0.12 0.005 12.5 23.8 561.7
R23 1.5 × 108 0.24 0.138 0.22 0.094 0.005 9.08 27.1 381.4
R24 1.5 × 108 0.215 0.138 0.2 0.1 0.005 9.5 25.4 411
R25 1.5 × 108 0.2 0.138 0.176 0.104 0.005 10.2 25.1 444
R26 1.5 × 108 0.174 0.138 0.1525 0.108 0.005 10.7 23.9 477.8
R27 1.5 × 108 0.14 0.138 0.125 0.112 0.005 11.67 24.3 516.8
R28 1.5 × 108 0.134 0.138 0.083 0.116 0.005 12.2 23.8 545.1

whereS(t) is the perimeter of the droplet (the φ = 0 contour) at
time t ,S0(t) is the perimeter of an undeformed droplet of equal
area at t . From the field ω(x,t) we calculate the total kinetic
energy of the fluid E(t), and the fluid-energy dissipation rate
ε(t), which are

E(t) = 〈|u(x,t)|2〉x, (8)

ε(t) = 〈ν|ω(x,t)|2〉x, (9)

where 〈〉x denotes the average over space. From E(t)
and ε(t) we calculate the root-mean-square fluid velocity,
urms = √〈E(t)〉t , where 〈〉t denotes the average over the
statistically steady, but turbulent state with small fluctuations
about the mean value; i.e., the fluid is in the statisti-
cally stationary state. From these, we calculate the Taylor-
microscale Reynolds number Reλ(t) = E(t)/

√
νε(t), and the

mean 〈Reλ〉t , which characterizes the intensity of turbulence
and the box-size eddy-turnover time τeddy = L/urms; we
express time in units of τeddy. We calculate the energy spectra

E(k) and order-parameter (or phase-field) spectra S(k) as
follows:

E(k) ≡
∑

k− 1
2 �k′�k+ 1

2

〈|û(k′,t)|2〉t , (10)

S(k) ≡
∑

k− 1
2 �k′�k+ 1

2

〈|φ̂(k′,t)|2〉t , (11)

where û(k′,t) and φ̂(k′,t) are, respectively, the spatial Fourier
transforms of u(x,t) and φ(x,t). We have carried out several
DNSs (R1-R28) that are given in Table I.

III. RESULTS

Our investigations of droplet dynamics are divided into two
broad categories. We first elucidate the turbulence-induced
modification of the droplet in Secs. III A and III B. Then we
show how the droplet modifies various statistical properties of
turbulence, such as E(k), in Sec. III C.
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A. Droplet deformation statistics

We use Eq. (7) for �(t) and obtain S(t) by finding the
length of the φ = 0 contour and the area A(t) inside the φ = 0
contour. We then calculate dp(t) = 2

√
A(t)/π , an effective

diameter for the droplet that is not circular in general. Given
the initial profile Eq. (6), we find that 〈dp〉t < d0, and 〈dp〉t
increases roughly linearly with d0. In Fig. 1(b) we plot the
perimeter S(t) (deep-blue line), area A(t) (light-blue line), the
perimeter S0(t) of a circular droplet of area A (green line),
and the deformation parameter �(t) (red line) for the run R7
with We = 5.34. This plot shows that the instantaneous total
area A(t) of the minority phase decreases very little over the
entire duration of our simulation. A(t) is almost constant and
just fluctuates about its mean value 〈A(t)〉t ; these fluctuations
do not contribute significantly to the deformation statistics
because they are much smaller than the fluctuations in the
droplet perimeter S(t). (We expect that, in the limit of zero
mobility and constant surface tension (i.e., the sharp-interface
limit), the mass transfer is negligible, and A(t) is independent
of t .)

Our droplet diameters are comparable to lengths in the
inertial range, which lies in between the large forcing length
scale and the small scales where dissipation is significant.
Turbulence induces large fluctuations in the shape of a droplet,
so we integrate Eqs. (1) and (2) for 2000τeddy, to obtain the
time series of the dimensionless deformation �(t), which
we depict in Figs. 2(a), for different values of We. Not
only does the mean 〈�〉t increase as We increases, so do
the variance, skewness, and kurtosis of this time series. In
particular, the root-mean-square value �rms = 〈(� − 〈�〉t )2〉t
increases with We (�rms = 0.14 for We = 5.34, �rms = 0.033
for We = 2.3, and �rms = 0.016 for We = 1.38), as do the
skewness γ1 = 〈(� − 〈�〉t )3〉t /〈(� − 〈�〉t )2〉3/2

t (γ1 = 2.9 for
We = 5.34, γ1 = 1.57 for We = 2.3, and γ1 = 0.8 for We =
1.38) and the kurtosis γ2 = 〈(� − 〈�〉t )4〉t /〈(� − 〈�〉t )2〉2

t

(γ2 = 22.4 for We = 5.34, γ2 = 7.5 for We = 2.3, and γ2 =
5.8 for We = 1.38). We find that �rms, γ1, and γ2 decrease as
We decreases (i.e., the surface tension σ increases) and the
droplet becomes rigid.

From the time series of �(t) we find the PDF P�(�)
[Fig. 2(b)]. These plots quantify the intuitively appealing result

that the fluctuations of the droplet increase with an increase
in We (i.e., decrease with an increase in σ ). The right tail
of P�(�) decays exponentially with �; this decay steepens
as We decreases, and P�(�) sharpens, as it must, for there
can be no shape fluctuations if We = 0 (a perfectly rigid
droplet).

The time series of �(t) and the large kurtosis of P�(�)
suggest intermittency; we characterize this intermittency by
obtaining the multifractal spectrum (see Refs. [43–45]) f�(α)
[Fig. 2(c)], which is the Legendre transform of the Renyi
exponents τ (q) that follow from 〈|�(0) − �(t)|〉q ∼ t τ (q). This
remarkable multifractality of �(t) has not been noted so far.
As We decreases (σ increases), the droplet-shape fluctuations
decrease and the value of α, at which f�(α) attains a maximum,
shifts toward 0. If σ is low, the droplet can break up at certain
times, but the broken fragments coalesce to form a single
drop again. The breakup events can be identified from the
largest spikes in �(t), because the formation of small droplets
increases the total perimeter. Such droplet breakups occur only
with the smallest value of σ that we consider, and then only for
about 4% of the total time. We give an outline of the method
we use to obtain multifractal spectra in the Appendix, where
we follow Refs. [43–45].

B. Droplet center-of-mass acceleration statistics

We now investigate the advection of the droplet inside the
background fluid. To quantify droplet advection, we obtain
PDFs of the components of the acceleration of the center
of mass of the droplet along its trajectory [46]. We obtain
the center of mass velocity vCM of the droplet and ay , the y

component of the acceleration of the droplet center of mass,
where

vCM(t) =
∑

x	φ(x,t)<0

u(x,t) (12)

and ay(t) =
∑

x	φ(x,t)<0

(Duy(x,t)/Dt). (13)

Note that φ(x,t) < 0 if x lies inside the droplet at time t , and
D/Dt = ∂t + u · ∇. We present results for ay (the results for
the x component ax are similar), and the root-mean-square
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FIG. 2. (a) Plots versus t/τeddy of �(t) for the runs R7 (We = 5.34, blue line), R8 (We = 2.3, green line) and R12 (We = 1.38, red line);
(b) plots of the PDFs P (�), for the runs R7 (We = 5.34, blue line with circles), R8 (We = 2.3, green line with circles), and R12 (We = 1.38,
red line with circles); (c) the multifractal spectra f�(α) for the timeseries of � for the runs R7 (We = 5.34, blue circles), R8 (We = 2.3, green
squares), and R12 (We = 1.38, red diamonds). The insets in (b) show pseudocolor plots of the vorticity field with φ-field contours superimposed
on them; the time evolution of such plots are given in the videos We=5.34-R7 and We=1.38-R12; see Ref. [42].
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acceleration arms =
√

a2
y + a2

x . We restrict ourselves to values

of σ for which there is a single droplet in the flow; and we
use 10 different values of d0 in the range 0.134L to 0.334L.
In Fig. 3(a) we plot the PDF P (ay) for four different values
of We at d0/L = 0.24. These PDFs collapse on top of each
other [Fig. 3(a)], so, in a statistical sense, the center of mass
of a deformable droplet moves in the same way as a rigid
droplet. Indeed, P (ay) is very close to a Gaussian (black
dashed line), for droplets with d0/L = 0.24. From Eq. (13) we
see that the acceleration of the center of mass of the droplet
follows from an integral over the area of the droplet. For a
rigid droplet, whose diameter is comparable to inertial-range
scales, we expect the small-scale fluctuations to be averaged
out and P (ay) to be close to a Gaussian. We do, indeed, find
this, for several values of We, in Fig. 3(a), where 〈dp〉t /L =
0.22. By contrast, when we reduce 〈dp〉t /L, this PDF shows
significant deviations from a Gaussian form as we show in
Fig. 3(b).

Our results for P (ay) are in qualitative accord with those
for the advection of a rigid particle by a 3D, homogeneous,
and isotropic turbulent flow [27], for particle diameters in
the inertial range. References [27,28] suggest that plots

of the velocity variance | |vCM|2−u2
rms

u2
rms

|, 〈a2
y〉, and 〈arms〉t versus

the scaled particle diameter (〈dp〉t /L) should exhibit power
laws with exponents that can be related to the inertial-range,
power-law exponent in the pressure spectrum. We adapt
these arguments to our study of a droplet, with mean scaled
diameter 〈dp〉t /L. The plot in Fig. 3(c) is consistent with a
power-law dependence of 〈arms〉t on 〈dp〉t /L, albeit over a
small range [47], with exponents that can be related to the
inertial-range scaling of the pressure spectrum. If the pressure
spectrum of the turbulent fluid with a droplet is |P̃(k)|2 ∼
k−αP , for k in the scaling range, then 〈arms〉t ∼ (〈dp〉t /L)

αP−3
2 .

We give details of the relation between the pressure-spectrum
scaling and the plot of the acceleration variance versus the
nondimensionalized droplet diameter scaling below.
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FIG. 3. (a) Semilog (base 10) plots at Gr = 3 × 107 of P (ay), the PDF of ay of the center of mass of the droplets, for runs R8 (We = 2.3,
deep-blue diamonds), R12 (We = 1.38, green squares), R13 (We = 0.534, red inverted triangles), and R14 (We = 0.138, light-blue triangles),
at 〈dp〉t /L = 0.22; (b) R20 (〈dp〉t /L = 0.126, deep-blue circles), R17 (〈dp〉t /L = 0.153, green diamonds), R12 (〈dp〉t /L = 0.22, red squares),
R5 (〈dp〉t /L = 0.263, light-blue inverted triangles), R4 (〈dp〉t /L = 0.283, magenta plus signs), and R2 (〈dp〉t /L = 0.324, yellow asterisk) at
We = 1.38; (c) plot of 〈arms〉t versus 〈dp〉t /L; (d) Log-log plots (base 10) versus the scaled wavenumber k/kmax of the pressure spectrum
|P(k)|2 for runs R12 (〈dp〉t /L = 0.22, deep-blue line with circles), R17 (〈dp〉t /L = 0.177, green line with circles), R1 (single-phase fluid, red
line with circles), power-law scaling k−1.2 (light-blue and magenta dash-dot line), and k−9 (yellow dash-dot line). In (a) and (b) the black dashed
line shows a Gaussian fit.
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Our simulations suggest that 〈arms〉 ∼ (〈dp〉t /L)−1.06. Here
we provide arguments that suggest such a power-law depen-
dence; we follow the treatment of Refs. [27,28] for rigid
particles. We first define the structure function for increments
of the pressure P as

SP
2 (r) = 〈[P(x) − P(x + r)]2〉 ∼ rζP

2 , (14)

for separations r in the inertial range. If we introduce P̃(k) =
(1/4π2)

∫
dxeix.kP(x), the spatial Fourier transform of P(r),

we have

SP
2 (r) = 〈P(x + r)〉2 + 〈P(x)〉2 − 2〈P(x + r)P(x)〉,

= 2
∫ ∞

0
dk|P̃(k)|2 −

∫ ∞

0
dk|P̃(k)|2

∫ 2π

0
e−ikrcosθdθ,

= 2
∫ ∞

0
dk|P̃(k)|2[1 − πI0(r)], (15)

where I0(r) = ∑∞
m=0

1
m!�(m+1) (

r
2 )2m is the modified Bessel

function of the first kind. If we have the inertial-range scaling
form |P̃(k)|2 ∼ k−αp

, then the exponent

αP = ζP
2 + 1. (16)

In the velocity formulation of the NS equation,

(∂t + u · ∇)u = −∇P/ρ + ν∇2u − αu − (φ∇μ) + Fu,

(17)
we can assume that, in the inertial range, the main contribution
to the righthand side of Eq. (1) comes from (we take ρ = 1)
−∇P − (φ∇μ) ≡ −∇P ′. We have introduced P ′, so we now
work with primed exponents αP ′

and ζP ′
2 , which can be defined

like their counterparts without the primes. From Refs. [28,29]
we know that

〈a2
rms〉 ∼ 〈((∂t + u · ∇)u)2〉

∼ 〈∇P ′(x + r)∇P ′(x)〉
∼ SP ′

2 (r)/r, (18)

so we have the scaling results

〈arms〉 ∼
√

SP ′
2 (r)/r ∼ rζP ′

2 /2/r ∼ r
αP ′ −3

2 . (19)

From our simulations we find αP ′ � 1.2 [Fig. 3(d)],
which implies 〈arms〉 ∼ r−0.9, which is consistent, given
our error bars, with our measured value of −1.06
[Fig. 3(b)]; here, 〈dp〉t /L plays the role of r in our scaling
arguments.

C. Energy-dissipation time series and energy and
order-parameter spectra

The inertial-range size of our droplet ensures that the
background fluid is perturbed by it. To explore how the droplet
affects the turbulence, we first present log-log plots of the
energy spectra E(k) (with and without the droplet) versus
the scaled wave number k/kmax, where kmax = N/4 is the
maximum wave number in our dealiased DNS. We find that
E(k) is modified in two important ways by the droplet: (1) E(k)
shows oscillations whose period is related inversely to 〈dp〉t ;
(2) the large-k tail of E(k) is enhanced by the droplet [48].
This enhancement is similar to that in fluid turbulence with

polymer additives [32]; and it can be understood by introducing
the scale-dependent effective viscosity νeff(k) = ν + �ν(k) (in
Fourier space), with

�ν(k) ≡
∑

k−1/2<k′�k+1/2

uk′ .(φ � μ)−k′

k2E(k)
(20)

and (φ � μ)k the Fourier transform of (φ � μ) (Eqs. (1)
and (2)). In the inset of Fig. 4(a) we plot �ν(k) versus k/kmax

for the illustrative case 〈dp〉t /L = 0.324 (deep-blue line with
asterisks); when �ν(k) > 0, E(k) is less than its single-phase-
fluid value (magenta curve); and when �ν(k) < 0, E(k) is
greater than its single-phase-fluid value. The change in the sign
of �ν occurs at a value of k/kmax that depends on 〈dp〉t /L;
the smaller the value of 〈dp〉t /L, the larger is the value of
k/kmax at which �ν(k) goes from being positive to negative.
As 〈dp〉t /L increases, E(k) falls less steeply with k in the
power-law range; e.g., E(k) ∼ k−5.2 if there is no droplet and
E(k) ∼ k−3.6 if 〈dp〉t /L = 0.324. Because we use a friction
term, in the inertial range E(k) scales as �k−5.2, which is
considerably different from −3, the exponent in the limit of no
friction [20,49]. At low k, E(k) decreases as 〈dp〉t /L increases.
For intermediate values of k, E(k) decreases as 〈dp〉t /L
decreases.

The large-k enhancement of E(k) leads to dissipation
reduction, as in fluid turbulence with polymer additives [32].
To check that νeff(k) can capture the effects that the droplet
has on the fluid turbulence, we have carried out some test
simulations of the 2D Navier-Stokes (NS) equation, with 10242

collocation points and the viscosity ν replaced by νeff(k), which
we obtain from the above equation and our DNS of the 2D
CHNS equations. Clearly, our 2D NS simulation does not have
a droplet; however, it yields an energy spectrum that matches
the one we obtain from our DNS of the 2D CHNS equations
with a droplet, in a statistical sense. We give representative
plots of energy spectra, in the steady state in Fig. 4(b); these
spectra agree with each other, at any given time, for both
our 2D NS and 2D CHNS runs. We conclude, therefore,
that νeff(k) can capture the droplet-induced modifications of
turbulent energy spectra. Such dissipation reduction can be
characterized by obtaining the time-series of the enstrophy
or the palinstrophy (=〈 1

2 (� × ω)2〉) as in Ref. [32]. Here we
provide evidence of energy-dissipation reduction as follows:
when we reduce We (i.e., increase σ ) with Gr held fixed, the
steady-state 〈Reλ〉t increases, as shown in Fig. 4(c). 〈Reλ〉t also
increases as 〈dp〉t /L decreases [Fig. 4(c), inset], because the
energy required to maintain the interface decreases as 〈dp〉t /L
is reduced. In Fig. 4(d) we show, the plot of the multifractal
spectrum fε(α) of the energy dissipation ε(t)/〈ε〉t , obtained
from its time series (see inset of Fig. 4). These plots show
clearly that, because of the two-way coupling between the two
fluids, fε(α) is modified by the motion of the droplet through
the turbulent, background fluid.

Figure 4(a) shows oscillations in E(k). Similar, but clearer,
oscillations appear in the order-parameter spectra S(k), which
we show in Fig. 4(e) for We = 0.534 and We = 5.34
for 〈dp〉t /L = 0.22, and in Fig. 4(f), for 〈dp〉t /L = 0.12
and 〈dp〉t /L = 0.22 with We = 1.38. The period of these
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FIG. 4. Log-log plots (base 10) versus the scaled wavenumber k/kmax of (a) E(k) for runs R2 (〈dp〉t /L = 0.324, deep-blue line with
asterisks), R12 (〈dp〉t /L = 0.22, green line with crosses), R16 (〈dp〉t /L = 0.177, red line with circles), R20 (〈dp〉t /L = 0.126, light-blue line
with plus signs), and R1 (single-phase fluid, magenta line); the power-laws k−3.6 and k−5.2 are depicted by yellow-dash-dot and black-dashed
lines, respectively; (b) E(k) for runs R7 (〈dp〉t /L = 0.22, We = 5.34, green line with circles) and a 2D Navier-Stokes run with a single-phase
fluid, but with a viscosity of νeff(k) = ν + �ν(k) (blue line with circles); (c) plots of 〈Reλ〉t versus σ for the runs R7–R14 (〈dp〉t /L = 0.22)
(the inset shows 〈Reλ〉t versus 〈dp〉t /L for the runs R2–R6, R12, and R16–R20 (σ = 3.31 or We = 1.38)); (d) the multifractal spectrum fε(α)
versus α of the normalized energy-dissipation rate ε(t) versus t for 〈dp〉t /L = 0.324 (R2, blue circles), 〈dp〉t /L = 0.12 (R20, green squares),
and single-phase fluid turbulence (R1, red diamonds); the inset shows the corresponding normalized energy-dissipation rate ε(t) versus t for
the same runs; the order-parameter spectrum S(k) = |φ̂(k)|2 for the runs (e) R7 (We = 5.34, deep-blue line with circles) and R13 (We = 0.534,
green line with circles) at 〈dp〉t /L = 0.22; the insets show pseudocolor plots of φ with dotted arrows indicating the corresponding We, and
(f) R12 (〈dp〉t /L = 0.22, deep-blue line with circles) and R20 (〈dp〉t /L = 0.126, green line with circles); the insets show pseudocolor plots
of φ.

oscillations (�k)osc � 2π/〈dp〉t , as we expect for such
droplets. If the fluctuations of these droplets, relative to a
perfectly circular one, are small (when σ is large or 〈dp〉t /L
is small), then the oscillations are very well defined. We have
checked that our results do not change qualitatively if we use
a higher value of Gr, e.g., Gr = 1.5 × 108.

IV. CONCLUSIONS

Our extensive DNS of the 2D CHNS Eqs. (1) and (2)
shows that the two-way coupling between the droplet and
the background phase yields very interesting results: The
fluid turbulence leads to rich, multifractal fluctuations in the
droplet shape. Furthermore, the droplet motion modifies E(k)
in two important ways: (a) oscillations with period �2π/〈dp〉t
appear; (b) and the large-k tail of E(k) is enhanced relative to
that in single-fluid NS turbulence. This enhancement can be
rationalized in terms of the scale-dependent viscosity νeff(k),
which results in dissipation reduction. By using soap-film
experiments, Ref. [50] has investigated droplet breakup in
two-dimensional chaotic flows. Similar experiments in the
turbulent regime should be able to verify our predictions of

multifractal droplet dynamics, droplet-induced modifications
of E(k), and the dissipation reduction that follows from the
enhancement of the large-k tail of E(k).

Drag reduction by bubbles occurs in wall-bounded turbulent
flows [51]; it has also been studied in the limit of minute
bubbles [52]. We show that, even at the level of a single
droplet with a diameter in inertial-range scales, we obtain the
bulk analog of drag reduction, namely, dissipation reduction in
homogeneous, isotropic turbulence. Furthermore, the analog
of the large-k enhancement in E(k), which we find here,
has been seen in three-dimensional experiments in turbulent
bubbly flows [53–55].

Although the CHNS approach has been used to study
droplet dynamics in a laminar [56–58] flow, wall-drag of a
droplet in a turbulent channel flow [59], droplet breakup or co-
alescence [60], steady-state droplet-size distributions [41,61],
and the turbulence-induced arrest of phase separation [17], it
has neither been used to study droplet fluctuations and droplet-
acceleration statistics, in a turbulent flow, nor the modification
of fluid turbulence by droplet fluctuations because of the
two-way coupling, which we investigate. These issues have
also not been considered by other DNSs of drag reduction
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FIG. 5. (a) Semilog (base 10) plots of the PDFs P (ay), the PDF of ay of the center of mass of the droplets for runs R28 (〈dp〉t /L = 0.08,
deep-blue circles), R27 (〈dp〉t /L = 0.125, green diamonds), R26 (〈dp〉t /L = 0.15, red squares), R25 (〈dp〉t /L = 0.17, light-blue downward-
pointing triangles), R24 (〈dp〉t /L = 0.19, magenta plus signs), and R23 (〈dp〉t /L = 0.22, yellow asterix) at We = 0.138 (these PDFs are not
scaled by their rms values); (b) log-log (base 10) plot 〈arms〉t , the root-mean-square acceleration of the droplet center of mass, versus 〈dp〉t /L.

in channel flows [62], boundary layers [63,64], and in some
experiments [65,66] with droplets.
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APPENDIX

In the main part of this paper we have presented results for
Gr = 3 × 107. We show now that these results are qualitatively
unchanged when we increase Gr to, say, Gr = 1.5 × 108.
Consider, e.g., the illustrative plot of P (ay) versus ay for
Gr = 1.5 × 108 that we show in Fig. 5(a). This is qualitatively
similar to Fig. 3(b) for Gr = 3 × 107. In Fig. 5(b) we show
the plots of 〈arms〉t versus 〈dp〉t /L for Gr = 3 × 107 and
Gr = 1.5 × 108; although the curve for Gr = 1.5 × 108 lies
well above that for Gr = 3 × 107.

In the multifractal spectrum calculation, we use a wavelet
transform modulus maxima method. The wavelet transform of
a function f decomposes it into several elementary wavelets,

which are all constructed from a single the analyzing wavelet
ψ . This transform is defined as follows:

Tψ [f ](x,a) = 1

a

∫ +∞

−∞
ψ

(
x − b

a

)
f (x)dx, (A1)

where a ∈ R is a scale parameter and b ∈ R is a space
parameter; structures smaller than a are smoothed out; and
the wavelet ψ is invariant under spatial shifts of length b. At
each scale a, we pick the local maxima of |Tψf (x,a)| and
define the following partition function:

Z(a,q) =
∑

l∈L(a)

(
sup

(x,a′)∈l

|Tψf (x,a′)|
)q

, (A2)

where q ∈ R. In the limit a → 0, the Renyi exponents τ (q)
follow from

Z(a,q) ∼ aτ (q); (A3)

the following Legendre transform of τ (q) yields the multifrac-
tal spectrum,

f (α) = min
α

[qα − τ (q)], (A4)

where α = dτ (q)/dq. In our calculations we follow Ref. [43];
in particular, we use a slightly modified version of the
computer program given in Refs. [44,45]. In our calculations,
the analyzing wavelet is a Gaussian function. We obtain
partition functions Z(a,q) between moments qmax and qmin,
with resolution dq, qmax = 2.0, qmin = −2.0, and dq = 0.2.
The value of a is Ls/8, where Ls is the signal length.
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