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Onsager’s-principle-consistent 13-moment transport equations
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A new set of generalized transport equations is derived for higher-order moments which are generated in
evolution equation for stress tensor and heat flux vector in 13-moment equations. The closure we employ satisfies
Onsager’s symmetry principle. In the derivation, we do not employ a phase density function based on Hermite
polynomial series in terms of higher-order moments, unlike Grad’s approach. The distribution function is rather
chosen to satisfy collision invariance, and H-theorem and capture relatively strong deviations from equilibrium.
The phase density function satisfies the linearized Boltzmann equation and provides the correct value of the
Prandtl number for monatomic gas. The derived equations are compared with Grad’s 13-moments equations for
gas modeled as Maxwellian molecule. The merits of the proposed equations against Grad’s and R13 equations
are discussed. In particular, it is noted that the proposed equations contain higher-order terms compared to these
equations but require a fewer number of boundary conditions as compared to the R13 equations. The Knudsen
number envelope which can be covered to describe flows with these equations is therefore expected to be larger
as compared to the earlier equations.
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I. INTRODUCTION

Macroscopic transport equations are of significant inter-
est to researchers for the complete description of physics
of rarefied gas flows. In the transition regime, where the
Knudsen number (Kn, the ratio of the mean free path to
the characteristic length scale) is greater than 0.1, solutions
of the Navier-Stokes-Fourier equations deviate significantly
when compared against the computationally expensive direct
simulation Monte Carlo (DSMC) technique [1]. Consequently,
a number of transport equations have been derived starting
from the Boltzmann equation for the description of rarefied
gas flows and heat transfer. The transport models derived
so far can be grouped into two categories: Burnett-type and
13- (or 26-) moment models. Burnett-type models intend to
provide higher-order (in terms of Kn) corrections to the Navier-
Stokes-Fourier constitutive relationships, while 13- (or 26-)
moment models involve higher-order moments of the Boltz-
mann equation and then seek for an appropriate closure for
the unclosed terms (higher moments generated in the deriva-
tion procedure). Burnett-type models mainly include orig-
inal Burnett [2], Burnett [3,4], super-Burnett [5], BGK-
Burnett [3,6], augmented Burnett [7], thermomechanically
consistent Burnett [8], simplified Burnett [9], and reduced Bur-
nett [10]. These set of equations have several merits and issues
which have been outlined in great detail in Refs. [5–7,10–18].
Without reproducing any of the pros [10–13,19] and
cons [3,5,8,11,18,20,21] here, we note that these models have
suffered from various issues because of not complying with
the principles of nonequilibrium thermodynamics. Garcia-
Colin et al. [11] have recently reiterated the importance of
deriving transport equations consistent with the principles of
nonequilibrium thermodynamics.

The second set of equations are higher-order moment equa-
tions: 13-moment [22,23], regularized 13-moment [24,25],
and 26-moment [26] equations. Grad [23] derived the first
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set of higher-order moment equations, popularly known as
Grad’s 13-moment equations. He represented the phase density
function in terms of a series of Hermite polynomials and
closed the higher-order moments generated in the derivation
with the constructed function. Grad’s equations have, however,
not been applied to many boundary value problems [27].
Weiss [28] noted that the hyperbolic character of Grad’s
equations results in spurious subshocks in shock structure
calculation. Moreover, the choice of higher-order moments
is also arbitrary in Grad’s approach as it does not relate
to the order of Knudsen number. Despite these issues, it
is well established that appropriate closure in these higher-
order moment models can predict many important rarefied
phenomena [29,30]. The most recent and rigorously tested
13-moment equations are by Struchtrup [24], which are
third-order accurate in Knudsen number, thereby containing
terms of super Burnett order [18,31–33]. Many important
rarefied phenomena have been successfully investigated with
R13 and R26 equations [24,26,32,34–37]. It is important to
note that R13 and R26 equations have shown success in
predicting the rarefaction effect for Kn � 0.5 and Kn < 1.0,
respectively [38]. These successful predictions are sufficient
enough for one to look for even more appropriate closures
which can further extend the Knudsen number envelope and
may provide solutions up to the middle or end of the transition
regime. It important to note that the R13 equations have
a purely mathematical basis [24] and are derived based on
an order-of-magnitude analysis. Here, our aim is to take
advantage of the higher-order moment approach and construct
equations which are not just mathematically sound but also
physically consistent. We recognize that transport models
are required to capture effects which are outcome of strong
deviations from equilibrium. Hence, it becomes necessary
to employ principles of nonequilibrium thermodynamics in
arriving at better transport models. The earlier models have
ignored Onsager’s symmetry principle in their derivation
[39–41]. This motivated us to seek transport models for
rarefied gas flows whose foundations lie in these advanced
thermodynamic principles [40,42].
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Transport equations which comply with the principles of
nonequilibrium thermodynamics have also been derived by
Dadzie [8] and Bobylev and Cercignani [43]. In order to take
into account the local number of molecules and their spatial
distribution, Dadzie [8] introduced a moment of an additional
variable. Bobylev and Cercignani [43] suggested employing a
low-entropy-producing family of distribution functions.

Transport equations can model strong deviations from
equilibrium if these equations can approximate the solution of
the full Boltzmann equation. These equations should also have
closures which satisfy the principles of thermodynamics. With
Onsager’s symmetry at the center of derivation, we provide a
phase density function which satisfies the collision invariance
property. This phase density function is then employed to close
the higher-order moments generated in the evolution equations
for heat fluxes and stresses. The single-particle distribution
function provides the correct value of Prandtl number. The
equations are presented for Maxwellian molecules for which
the production terms are known. These equations [Eqs. (35)
and (36)] have the desirable features of the moments-based
approach which does not require the small-Knudsen-number
assumption and also closes the set with distribution function
whose core lies in satisfying the required physics.

II. GENERALIZED 13-MOMENT EQUATIONS

The probability of finding a molecule in the phase-
space element dxdc is characterized by the single-particle

distribution function (f ) and can be obtained from the
Boltzmann equation:

∂f

∂t
+ ∇x · cf = J (f,f ), (1)

where c and x are molecule velocity and space vectors,
respectively, and J (f,f ) is a binary particle collision operator.
The Maxwellian distribution which corresponds to equilibrium
distribution for monatomic gas is

f0 = ρ

m

(
β

π

) 3
2

exp[−β(|c − u|)2], (2)

where β = 1/(2RT ), R is a specific gas constant, T is the
absolute temperature, u is the bulk velocity, ρ is the density,
and m is the molecular mass.

The moments of the single-particle distribution function
are assumed to describe the state of the gas completely.
Defining � (= m{1,ci,

1
2 |C2|,C〈i Cj〉, 1

2 |C|2Ci}, where C =
c − u is the peculiar velocity) and taking its inner product
with distribution function as (〈�,f 〉 ≡ ∫ �f dc) generates 13
moments (ρ,ρui,ρε,pij ,qi). (The angular brackets are defined
below.)

The moments of the Boltzmann equations result in con-
servation laws for the macroscopic quantities, i.e., density
(ρ), momentum (ρui), energy (ρε), and evolution equations
for stress tensor (pij ) and heat flux vector (qi) [22,23]. The
generalized equations for any phase density function obtained
after taking its moments with the Boltzmann equation are as
follows:

∂ρ

∂t
+ ∂ρuk

∂xk

= 0, (3)

ρ
∂ui

∂t
+ ρuk

∂ui

∂xk

+ ∂p

∂xi

+ ∂σik

∂xk

= 0, (4)

ρ
∂ε

∂t
+ ρuk

∂ε

∂xk

+ ∂qk

∂xk

+ p
∂uk

∂xk

+ σij

∂ui

∂xj

= 0, (5)

∂σij

∂t
+ uk

∂σij

∂xk

+ 4

5

∂q〈i
∂xj〉

+ 2σk〈i
∂uj〉
∂xk

+ 2p
∂u〈i
∂xj〉

+ σij

∂uk

∂xk

+ ∂

∂xk

m

∫
C〈iCjCk〉 f dc = m

∫
C〈iCj〉 J (f,f0) dc, (6)

∂qi

∂t
+ uk

∂qi

∂xk

+ 5

2

(
p

ρ

∂p

∂xi

− p2

ρ2

∂ρ

∂xi

)
+ ∂

∂xk

m

2

∫
|C|2C〈iCk〉 f dc − 5

2

p

ρ

∂σik

∂xk

− σik

ρ

∂p

∂xk

+ 1

6

∂

∂xi

m

∫
|C|4(f − f0) f dc

− σij

ρ

∂σjk

∂xk

+ 7

5
qk

∂ui

∂xk

+ 7

5
qi

∂uk

∂xk

+ 2

5
qk

∂uk

∂xi

+ ∂uj

∂xk

m

∫
C〈iCjCk〉 f dc = m

2

∫
Ci |C|2 J (f,f0) dc, (7)

where p is pressure, ε = (3/2)RT , pij = pδij + σij with δij

being the δ function, and

A〈ij〉 = 1

2
(Aij + Aji) − δij

3
Akk

A〈ijk〉 = A(ijk) − 1

5
(A(ill)δjk + A(j ll)δik + A(kll)δij ) (8)

A(ijk) = 1

6
(Aijk + Aikj + Ajik + Ajki + Akij + Akji).

Note that Eqs. (3)–(7) do not form a closed set of equations.
The challenge of the moments-based approach is in identifying

a suitable closure. The production terms on the right-hand side
of Eqs. (6) and (7) for molecules being assumed as Maxwellian
are as follows [14]:

m

∫
C〈iCj〉 J (f,f0) dc = −p

μ
σij , (9)

m

2

∫
Ci |C|2 J (f,f0) dc = −2

3

p

μ
qi, (10)

where μ is viscosity. Grad [22,23] expressed the distribution
function required in the evaluation of integrals on the left-hand
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side of Eqs. (6) and (7) in terms of orthogonal Hermite
polynomials. Hermite polynomials have several desirable
properties; however, the truncation of the infinite series results
in loss of their properties. This truncation is required because
it is possible to evaluate only a finite number of coefficients
involved in the series. The distribution function after truncation
and evaluation of the coefficients becomes

fG13 = f0

[
1 + m2

2ρk2T 2
σjkC〈jCk〉

− m2

ρk2T 2
qkCk

(
1 − 1

5

m

kT
|C|2

)]
, (11)

where k is Boltzmann constant. The equations obtained by
substituting Eq. (11) in Eqs. (6) and (7) are known as Grad’s
moments equations.

III. DISTRIBUTION FUNCTION

In this work we do not follow the earlier approach of
expressing the distribution function in terms of Hermite
polynomials. We rather employ a distribution function con-
sistent with Onsager’s symmetry principle as discussed in
Sec. III A. The properties of the distribution function are
checked explicitly in Sec. III B. This distribution function is
then employed to obtain the unknown integrals on the left-hand
side of Eqs. (6) and (7) in Sec. IV.

As is well known, a thermodynamic force Xi (Xi = ∂σ
∂αi

, i =
1,2,3, . . . ) disturbs the state of equilibrium and generates
its conjugate flux Ji [40], where σ is entropy and αi is a
thermodynamic variable. The entropy produced in the process
can be expressed in terms of the thermodynamic forces and
fluxes as σ =∑n

i=1 JiXi . As per Onsager [44,45], the fluxes
are related to the thermodynamic forces and governed by
the phenomenological linear law: Ji =∑n

k=1 LikXk . Further,
the phenomenological coefficients Lik , Lki are related as
(Lik = Lki with i,k = 1,2, . . . ,n).

The entropy production and thermodynamic fluxes obtained
from the kinetic theory satisfy Onsager’s symmetry principle
only for the first approximation of the phase density function
in the Chapman and Enskog series [40]. De Groot and
Mazur [40] further showed through detailed derivation that
the expressions for entropy production and thermodynamic
fluxes obtained from Gibbs’ relation are identical with that
from the kinetic theory for this first approximation. However,
the second approximation of Chapman and Enskog expansion
which yields higher-order continuum equations formulates
entropy production and fluxes that differ from Gibbs’ relation
and do not satisfy the symmetry principle [39–41,46]. This
suggests that, whereas Chapman and Enskog expansion is
appropriate for small deviations from equilibrium, it should
not be employed for large deviations. This could be one
of the problems with the Chapman and Enskog expansion.
Since the source of the problem is an incorrect distribution
function generated via the Chapman-Enskog expansion, here
we employ an alternate distribution function.

A. Distribution function in terms of thermodynamic
force and flux

Since the first-order distribution function obtained from the
Chapman and Enskog expansion is consistent with the entropy

principle, we can write [40] (p. 184):

f (1) = f0 − (ϒτ : Xτ + ϒq · Xq) (12)

with ϒj � Xj given as [47] (p. 713):

ϒj � Xj = tr(j )

(
∂f0

∂t
+ ∇x · (cf0)

)
Xj =0 ∀j �=i

, (13)

where � denotes full tensor contraction of the tensors of same
tensorial order, ϒj is the microscopic flux, and Xj is its
conjugate force. Note that the macroscopic thermodynamic
flux Ji can be obtained microscopically as Ji = 〈ϒ̄i,f 〉.
The challenge is to now obtain the correct form of the
thermodynamic forces Xj and fluxes ϒj . De Groot and
Mazur [40] (p. 184) suggested that the thermodynamic forces
and fluxes can be cast around the equilibrium Maxwellian
distribution as

ϒj = −f0 tr(j ) ϒ̄j , (14)

ϒ̄τ = −
{

C ⊗ C − 1

2
[|C|2(γ − 1)]I

}
, (15)

ϒ̄q = −
(

5

2β
− |C|2

)
C, (16)

Xτ = β[∇ ⊗ u + (∇ ⊗ u)T ]; Xq = ∇β. (17)

In the above equations, ⊗ denotes outer product, subscripts
τ and q have been used for fluxes and forces associated
with stress and heat flux, respectively, tr(τ ) is relaxation
time for momentum transport (= μ/p), tr(q) is relaxation
time for energy transport [= κ(γ − 1)/(Rγp)], κ is thermal
conductivity, and γ is the ratio of the specific heat. The
above form of the distribution function is rather standard
and yields the correct constitutive relationships satisfying
Onsager’s symmetry principle as shown in De Groot and
Mazur [40] (p. 178).

Note that the standard BGK collision model with two
different time scales corresponding to momentum and thermal
diffusions is assumed in the above formulation. That is, the
thermodynamic forces (Xτ and Xq) relax the nonequilibrium
state to the equilibrium state at different rates, corresponding
to these characteristic time scales. The variation of the
momentum diffusion and thermal diffusion time scales with
temperature is taken into account through the following
relations: μ = μ0(T/T0)ϕ and κ = κ0(T/T0)ϕ , where μ0 and
κ0 are, respectively, the viscosity and thermal conductivity
at reference temperature T0. Further, ϕ (≈0.75) depends
on interaction between molecules. Employing two different
relaxation times for momentum transport and energy transport
resolves the issue of Prandtl number being nonunity for most
gases.

The second-order correction to the distribution function
can be further constructed to keep the functional form of
distribution function in terms of forces and fluxes. As per
Mahendra [48], the distribution function with second- (and
higher-) order correction can be expanded in terms of ϒj � Xj

063111-3



NARENDRA SINGH AND AMIT AGRAWAL PHYSICAL REVIEW E 93, 063111 (2016)

as:

f = f0 −
∑

j

ϒj � Xj +
∑
k,j

(ϒkj � Xk) � Xj + · · · .

(18)

The last term in the above equation can be evaluated in a
similar manner as in Eq. (13) [47] (p. 713), i.e.,

ϒkj � Xk = tr(j )

[
∂ϒj

∂t
+ ∇x · (cϒj )

]
Xj =0 ∀j �=i

. (19)

As already argued, the first-order correction satisfies the
Onsager’s symmetry principle due to the form in which the
distribution function is constructed. In a similar manner, the
continuum equations from the above-suggested second-order
correction to the Maxwellian distribution also satisfies the
symmetry principle, as shown in the Appendix.

The second-order corrections in Eq. (19) can be eval-
uated in the form consistent with first-order correction

as [48]:

ϒjj = −f0 t2
r(j ) ϒ̄jj . (20)

Mahendra [48] termed the distribution function suggested
above as the Onsager-BGK kinetic model because of its consis-
tency with the Onsager’s reciprocity principle. Employing the
above distribution function, he successfully derived the Euler
and Navier-Stokes equations (along with the energy equation).
Further, the numerical results obtained while employing the
above distribution function for a variety of problems were
successfully compared against DSMC data. These measures
enhance confidence in the derived distribution function. He
notes that the agreement is particularly good because the
employed distribution function ensures correct amount of
entropy generation associated with different thermodynamic
forces.

B. Second-order correction to the distribution function

The collision invariance and Onsager symmetry properties
of the distribution function have been explicitly checked for in
this section. Explicit expression for various terms in Eq. (19)
has also been evaluated by the present authors, as

ϒ̄ττ � Xτ = −

ω1︷ ︸︸ ︷
Ci

[
C ⊗ ∂u

∂xi

+
(

C ⊗ ∂u
∂xi

)T
]

+

ω2︷ ︸︸ ︷
1

2β
[C ⊗ ∇g + (C ⊗ ∇g)T ] −

⎡
⎢⎢⎣

ω3︷ ︸︸ ︷
1

2β
(γ − 1)C · ∇g −

ω4︷ ︸︸ ︷
1

2β
(γ − 1)(C ⊗ C) : Xτ

⎤
⎥⎥⎦

× I −

ω5︷ ︸︸ ︷
ϒ̄τ

⎛
⎝ 1

tr(τ )

∑
j

ϒj � Xj

⎞
⎠+

ω6︷ ︸︸ ︷
ϒ̄τ

{
[ϕ(γ − 1) − γ ]∇ · u + ϕ

β
C · ∇β + C · ∇g

}
, (21)

ϒ̄qq � Xq = −

ξ1︷ ︸︸ ︷
ϒ̄q

⎛
⎝ 1

tr(q)

∑
j

ϒj � Xj

⎞
⎠−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ2︷ ︸︸ ︷
1

β
[C · ∇g] −

ξ3︷ ︸︸ ︷
1

β
(C ⊗ C) : Xτ +

ξ4︷ ︸︸ ︷(
5

2β

)
(γ − 1)∇ · u +

ξ5︷ ︸︸ ︷(
5

2β2

)
(C · ∇β)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× C −

ξ6︷ ︸︸ ︷[
5

2β
− |C|2

][
1

2β
∇g

]
−

ξ7︷ ︸︸ ︷[
5

2β
− |C|2

]
[C ⊗ ∇u] +

ξ8︷ ︸︸ ︷
ϒ̄q

{
[ϕ(γ − 1) − γ ]∇ · u + ϕ

β
C · ∇β + C · ∇g

}
,

(22)

where g = log(ρ/β). Note that terms ϒ̄τq and ϒ̄qτ do not
appear in Eq. (19) because shear stress and heat flux are
of different tensorial orders and therefore do not interact as
per Curie’s principle [40]. The terms ω6 and ξ8 in the above
equations are obtained from the variation of time scales and
deserve special attention.

The distribution function with known contractions of forces
and fluxes can be expressed as:

f = f0 − [ϒτ : Xτ + ϒq · Xq − (ϒττ � Xτ ) : Xτ

− (ϒqq � Xq) · Xq]. (23)

The terms capturing deviations from equilibrium should also
satisfy an additional constraint of the additive invariants

property of kinetic theory:

〈�,(f − f0)〉 = 0. (24)

That is, no mass, momentum, or energy should be generated
(or destroyed) during inter-molecular collisions. The authors
have explicitly checked for these constraints and found that
the distribution function in Eq. (23) does not satisfy Eq. (24)
in the present form. The obtained second-order correction to
distribution function is therefore modified such that it satisfies
the additive invariance property without breaking Onsager’s
symmetry.

The correction procedure has been adopted from
Refs. [6,49]; the earlier authors used this approach for deriving
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the BGK Burnett equations. If we use the distribution function
[Eq. (23)] in Eq. (24), then integrals of most of the terms
in the distribution function add up to zero; however, terms
ω1, ω5, ω6, ξ1, and ξ5 in Eqs. (21) and (22) provide nonvan-
ishing contribution. So terms with similar forms with different
coefficients are added to the function. Next, the added terms are
contracted with thermodynamic forces of the same tensorial
order. We therefore obtain three equations of “nonvanishing or
diminishing moments” of mass, momentum, and energy with
the collision integral. These equations are solved for the three
unknowns coefficients. Note that one may always add more
unknowns and still satisfy the collision invariance property;
however, this may break Onsager’s symmetry.

Mathematically for f in Eq. (23),

〈m,(f − f0)〉 = 0. (25)

〈ci,(f − f0)〉 = − ρ

β2

(
ϕtr(τ )2 − t2

r(q) + 2tr(τ )tr(q)
)

×
[

∂β

∂xj

∂u〈j
∂xi〉

−
(

17

12
− 5γ

4

)
∂β

∂xi

∂uj

∂xj

]
�= 0.

(26)

Similarly, we find that moment of 1
2 |C2|,(f − f0) is nonzero

(but has a complicated form and therefore is not presented
here), i.e, 〈

1
2

∣∣C2|,(f − f0)〉 �= 0. (27)

We then identify terms which are contributing to the moment,
say, to momentum (we refer to this moment as a nondiminish-
ing moment above). For instance,

〈ci,ω5〉 = ρ

β2
(tr(τ )tr(q))

[
∂β

∂xj

∂u〈j
∂xi〉

−
(

17

12
− 5γ

4

)
∂β

∂xi

∂uj

∂xj

]

+ 5ρui

4β3
t2
r(q)

(
∂β

∂xi

∂β

∂xi

)
. (28)

This shows that if we augment our distribution function such
that we add terms similar to ω5 with an unknown coefficient,
then we can, in principle, get a vanishing moment by choosing
the value of coefficient appropriately. Therefore, we add ω7

and ξ9. This is the general framework in which we identify
terms and then augment our distribution function. Care needs
to be taken as the added terms may generate non-vanishing
moment for mass (〈m,(f − f0)〉 = 0), which was, however,
satisfied earlier. We can add at most three terms to ensure
that three constraints imposed by collision invariant property
are satisfied. Second, we must not add any terms which

may break Onsager’s symmetry principle. We have checked
this point explicitly, and the proof is included at the end in
the Appendix. The modified second-order correction to the
distribution function therefore becomes (where prime denotes
corrected terms):

ϒ̄ ′
ττ � Xτ = ϒ̄ττ � Xτ +

ω7︷ ︸︸ ︷
�

tr(τ )
(ϒq · Xq)ϒ̄τ

+
(

5

2β
− |C|2

)( ω8︷ ︸︸ ︷
�(ω6 + ω1)

)
(29)

ϒ̄ ′
qq � Xq = ϒ̄qq � Xq +

ξ9︷ ︸︸ ︷
�

tr(q)
(ϒτ : Xτ )ϒ̄q

+
(

5

2β
− |C|2

)( ξ10︷ ︸︸ ︷
�C · ∇βC

)
.

Note that the choice of the added terms is not arbitrary. As
mentioned in the modification above, terms associated with
�, �, and � are identified based on their contribution to
nondiminishing moments in the invariance property. These
coefficients are obtained by following the constraints of
Eq. (24) as

� = ϕ + 2 ; � = −2

5
; � = 1

2

[
−ϕ

tr(τ )

tr(q)
− tr(q)

tr(τ )
+ 2

]
.

(30)

These modifications do not change the functional form of
fluxes and forces and hence preserve Onsager’s symmetry.
With these modifications, the distribution function changes to:

f ′ = f0 − (ϒτ : Xτ + ϒq · Xq − (ϒ ′
ττ � Xτ ) : Xτ

− (ϒ ′
qq � Xq) · Xq), (31)

where ϒ ′
jj = −f0 t2

r(j ) ϒ̄
′
jj . The distribution function which

satisfies the Boltzmann equation and additive invariance
property also maximizes entropy production [50].

IV. PROPOSED MOMENT EQUATIONS

The aforementioned distribution function being consistent
with the principles of nonequilibrium thermodynamics has the
promise of yielding more accurate higher-order continuum
transport equations. These higher-order continuum equations
are now derived as part of this work. We have closed the
13-moment equations [Eqs. (6) and (7)] using the distribution
function given by Eq. (31) which yields:

m

∫
C〈iCjCk〉 f dc = 3

2

ρ

β3

{[
ϕ

(
κ(γ − 1)

Rγp

)2

−
(

μ

p

)2
] [

∂β

∂x〈i

∂uj

∂xk〉

]
+ β

(
μ

p

)2[
∂g

∂x〈i

∂uj

∂xk〉

]}
, (32)

m

2

∫
|C|2C〈iCk〉 f dc = 7μ

p

ρ

∂u〈i
∂xk〉

+ 1

20

ρ

β2

(
μ

p

)2[
[342 + 35ϕ − 7γ (31 + 5ϕ)]

∂u〈i
∂xk〉

∂ul

∂xl

+ 27
∂u〈i
∂xl

∂ul

∂xk〉

+ 45
∂u〈i
∂xl

∂uk〉
∂xl

− 18
∂ul

∂x〈i

∂ul

∂xk〉

]
+ 7

8

ρ

β5

(
κ(γ − 1)

Rγp

)2[
2

∂β

∂x〈i

∂β

∂xk〉
+ β

∂β

∂x〈i

∂g

∂xk〉

]
, (33)
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m

∫
|C|4(f − f0) f dc = (50 − 30γ )μ

p

ρ

∂ui

∂xi

+ 5

2

ρ

β5

(
κ(γ − 1)

Rγp

)2[7

2

∂β

∂xi

∂β

∂xi

+ β2 ∂g

∂xi

∂g

∂xi

]

+ ρ

β2

(
μ

p

)2 7

16
(−5 + 3γ )(−63 − 10ϕ + 5γ (7 + 2ϕ))

[(
∂ui

∂xi

)2
]
. (34)

Substituting the above higher-order moments [Eqs. (32)–(34)] results in the following final evolution equations for heat flux
vector and stress, respectively:

∂σij

∂t
+ uk

∂σij

∂xk

+ 4

5

∂q〈i
∂xj〉

+ 2σk〈i
∂uj〉
∂xk

+ 2p
∂u〈i
∂xj〉

+ σij

∂uk

∂xk

+ 3

2

∂

∂xk

{
β

(
μ

p

)2[
∂g

∂x〈i

∂uj

∂xk〉

]

+ ρ

β3

[
ϕ

(
κ(γ − 1)

Rγp

)2

−
(

μ

p

)2
][

∂β

∂x〈i

∂uj

∂xk〉

]}
= −p

μ
σij , (35)

∂qi

∂t
+ uk

∂qi

∂xk

+ 5

2

(
p

ρ

∂p

∂xi

− p2

ρ2

∂ρ

∂xi

)
− 5

2

p

ρ

∂σik

∂xk

− σik

ρ

∂p

∂xk

+ 7
∂

∂xk

(
μ

p

ρ

∂u〈i
∂xk〉

)
+ 7

5
qk

∂ui

∂xk

+ ∂

∂xk

{
1

20

ρ

β2

(
μ

p

)2[
[342 + 35ϕ − 7γ (31 + 5ϕ)]

∂u〈i
∂xk〉

∂ul

∂xl

+ 27
∂u〈i
∂xl

∂ul

∂xk〉
+ 45

∂u〈i
∂xl

∂uk〉
∂xl

−18
∂ul

∂x〈i

∂ul

∂xk〉

]
+ 7

8

ρ

β5

(
κ(γ − 1)

Rγp

)2[
2

∂β

∂x〈i

∂β

∂xk〉
+ β

∂β

∂x〈i

∂g

∂xk〉

]}
+ 7

5
qi

∂uk

∂xk

+ 2

5
qk

∂uk

∂xi

+ 1

6

∂

∂xi

{
(50 − 30γ )μ

p

ρ

∂uj

∂xj

+ ρ

β2

(
μ

p

)2 7

16
(−5 + 3γ )(−63 − 10ϕ + 5γ (7 + 2ϕ))

[(
∂uj

∂xj

)2
]

+ 5

2

ρ

β5

(
κ(γ − 1)

Rγp

)2[7

2

∂β

∂xj

∂β

∂xj

+ β2 ∂g

∂xj

∂g

∂xj

]}
− σij

ρ

∂σjk

∂xk

+ 3

2

ρ

β3

∂uj

∂xk

{
β

(
μ

p

)2[
∂g

∂x〈i

∂uj

∂xk〉

]

+
[
ϕ

(
κ(γ − 1)

Rγp

)2

−
(

μ

p

)2
][

∂β

∂x〈i

∂uj

∂xk〉

]}
= −2

3

p

μ
qi. (36)

Equations (3)–(5), (35), and (36) form a closed set of equations
for the 13 moments (ρ,ρui,ρε,pij ,qi). Derivation of Eqs. (35)
and (36) is the primary contribution of this work.

V. DISCUSSION

A rigorous testing of the equations proposed above for
several problems is required to fully establish the validity of the
derived equations, which is, however, beyond the scope of the
present work. Some comments about the derived equations
vis-à-vis the existing equations is nonetheless made in the
following subsections.

A. Comparison with derivation procedures
of existing transport models

The conventional Burnett equations (derived in late 1930s)
do not satisfy the H-theorem. Violation of the H-theorem
has been reported as the cause of numerical instabilities in
these equations. The augmented Burnett equations derived
half-a-century later by Zhong [51], involved terms added on
an ad hoc basis to get rid of the numerical instability. Again,
the H-theorem is not proven for these equations. Nonetheless,
the augmented equations remained in extensive use in the
study of hypersonic flows, despite the fact that the equations
do not capture the flow physics accurately in the transition

regime. Recent and probably most used Burnett equations
are by Agarwal et al. [6], where the distribution function
is constructed to satisfy the H-theorem. Therefore, it is not
surprising that these equations capture the flow better than
any other equations proposed so far. This is because the
equations are physically consistent as far as the second law
of thermodynamics is concerned.

In the moment approach, the Grad’s 13-moment equations,
which are the most used and cited, satisfy the H-theorem
for small deviations from nonequilibrium. The modified R13
equations, the most popular in the higher-order moments
approach, also satisfy the H-theorem but only for weak
deviations. This is perhaps not surprising as the deriva-
tion of the latter equations builds on the approach of
Grad.

In all of the works mentioned above (and numerous variants
of these works, not mentioned here), we hardly see any
remark related to Onsager’s symmetry. It is proven that the
Burnett equations do not satisfy the reciprocal relations [41].
The H-theorem and Onsager’s symmetry are rigid constraints
which have largely been ignored while deriving the transport
models. In view of the above, it is clear that satisfying
Onsager’s symmetry is not trivial. However, here we have
been successful in overcoming this issue.

Notice that the present derivation procedure does not
make any assumption or reference to Knudsen number in its

063111-6



13-MOMENT TRANSPORT EQUATIONS . . . PHYSICAL REVIEW E 93, 063111 (2016)

entire derivation. The Chapman-Enskog expansion inherently
involves expansion in terms of Knudsen number and therefore
yields accurate results for small Knudsen numbers only.
Therefore, most of the equations derived through this approach
break down much before Kn equals unity even for very simple
flows. However, as our approach does not assume Kn to
be small, we expect our equations to work in the slip and
transition flow regimes. The basis of making such a claim is
the derivation of R13 equations [24] where higher-order terms
as a consequence of order of magnitude of analysis make
equations more accurate than Grad’s equations in terms of
Knudsen number.

B. Comparison of proposed equations with Grad’s
moment and R13 equations

In this section, we compare the proposed set of equations
with Grad’s 13-moment, R13, and 26-moment equations.
The higher-order moments in Eqs. (6) and (7) obtained after
substitution of Grad’s distribution function [Eq. (11)] are as
follows:

m

∫
C〈iCjCk〉 f dc|G13 = 0, (37)

m

2

∫
|C|2C〈iCj〉 f dc|G13 = 7

p

ρ
σij , (38)

m

∫
|C|4(f − f0) f dc|G13 = 0. (39)

Equations (37)–(39) from Grad’s approach can be com-
pared against Eqs. (32)–(34) from the present approach. Note
that most of the terms in Eqs. (32)–(34) have (μ/p)2 as
their coefficient, indicating that these are higher-order terms.
{The term [κ(γ − 1)/(Rγp)]2 can be written as 1/Pr2(μ/p)2

where Pr is Prandtl number.} This suggests that there are no
first-order terms in Eqs. (32) and (34), thereby agreeing with
Eqs. (37) and (39), respectively. To first order, Eq. (33) has
7μ(p/ρ)(∂u〈i/∂xk〉), which is similar to 7(p/ρ)σij in Grad’s
Eq. (38). This agreement enhances confidence in the derived
equations.

Clearly, the proposed equations have additional terms as
compared to Grad’s 13-moment equations. The additional
higher-order terms in our equation involve products of deriva-
tives of velocities, derivatives of temperature, and derivatives
of density. Various combinations of these quantities are
involved in the equations. Due to the additional terms in the
proposed equations, the applicability of the proposed equations
is expected to be higher in terms of Knudsen number as
compared to the Grad’s equations. It is easy to see that these
additional terms vanish on linearization of the equations (see
the Appendix for linearized equations) and therefore do not
contribute to the stability of the equations for simple linear
waves. That is, the stability of the proposed equations is the
same as that for the Grad’s equations. The reason for this
similarity (in terms of stability) is the absence of second
(or higher) derivatives of velocity and temperature in the
proposed equations. Such terms arise in the process of the
regularization of the Grad’s equations and in the conventional
Burnett equations. The presence of these terms in the equations

is known to be the cause of instability; this issue is clearly not
applicable to the present equations.

As already recognized earlier, solving 13-moment equa-
tions requires the appropriate boundary conditions for the
higher-order variables introduced [i.e., σij and qi in Eqs. (6)
and (7) respectively]. See, for example, Struchtrup [52],
on how boundary conditions can be prescribed for these
quantities. This requirement is common between the present
and Grad’s equations. However, the requirement of number
of boundary conditions is less than the R13 equations. This
is because second-order derivatives of σij and qi are involved
in the R13 equations; these higher-order derivative terms get
added in the equations in the process of the regularization of
the equations. Clearly, it would be more feasible to solve the
present equations as compared to the R13 equations, making
the present equations attractive.

The proposed equations can also be compared against the
26-moment equations of Gu et al. [26,53]. In their approach,
the unclosed terms in equations for stress and heat flux
in Eqs. (6) and (7) are not evaluated using a distribution
function (as done by Grad and followed here); instead,
evolution equations for the unknown integrals in Eqs. (6)
and (7) (which are still higher-order moments) are written
down. Their approach therefore yields a total of 26 moments
(or unknowns). The unknown integrals generated are finally
closed using a distribution function similar to that suggested
by Grad. Gu and Emerson further regularized their equations
in a manner suggested by Struchtrup. Clearly, while their
approach is interesting, it leads to additional variables and the
requirement of more boundary conditions. This limitation is
linked to Grad’s approach where improvement in the accuracy
is inherently coupled with the number of unknowns that needs
to be solved. In contrast, in our approach we can improve
the performance of the equations either by adding more
moments or more terms to the distribution function. That
is, the evolution equations of the still-higher moments can
be introduced by taking further moments of the Boltzmann
equations and evaluating the unknown terms using the same
distribution function as employed here. Similarly, the present
equations can be improved by accounting for more terms in
the series given in Eq. (18).

We recognize that, whereas the regularized 26-moment
equations are potentially more accurate than the derived equa-
tions, our derived equations have the simplicity of having to
deal with fewer number of variables and having to pose fewer
boundary conditions (requirement of number of boundary
conditions increases with both increase in number of variables
and the regularization process) than the R26 equations.

VI. CONCLUSIONS

A new set of transport equations using a higher-order
moments approach and nonequilibrium thermodynamics prin-
ciples is derived. The higher-order moments equations are
closed by Onsager’s-reciprocity-principle-consistent phase
density function. The proposed phase density function sat-
isfies linearized Boltzmann equation and collision invariance
property.

The distribution function is then utilized to close the higher-
order terms generated in the evolution equation for stress tensor
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and heat flux vector. This approach differs substantially from
the previous approaches of deriving 13-moment equations
which rely on Grad’s formulation of phase density function
in terms of orthogonal Hermite polynomials.

The difference in the derived 13-moment equations from
Grad’s moment equations are outlined. In particular, our
equations contain almost the same terms as Grad’s equations
to the first order, but products of derivatives of velocity,
temperature, and density get added to the second order. The
number of boundary conditions required for the solution of
these equations is same as the Grad’s equations but less than
the R13 and R26 equations.

The employed distribution function ensures a correct value
of the Prandtl number (=2/3 for monatomic gas) as it involves
two different relaxation times for momentum and energy
transport. The proposed equations have additional terms as
compared to Grad; therefore, the applicability of the proposed
equations is expected to be higher in terms of Knudsen number
as compared to the Grad’s equations. However, solving the
proposed equations is expected to be easier as compared to
R13 and R26 equations.

Since no arbitrary assumption is employed in our approach
and the equations have a sound physical basis, we expect the
proposed equations to describe the high-Knudsen-number flow
phenomenon better than the existing set of equations. These
equations need to be tested rigorously in various cases which
we aim to provide in the future.

APPENDIX: ONSAGER’S SYMMETRY PROOF

Here we follow the procedure suggested in Romero and
Velasco [41] to show that the derived equations satisfy the
Onsager’s symmetry.

First, we linearize O13 moment equations around equilib-
rium state in following manner:

ρ = ρ0 + ρ̂ T = T0 + T̂ p = p0 + p̂
(A1)

ui = ûi σij = σ̂ij qi = q̂i ,

where quantities with subscript 0, X0 = 0 correspond to
equilibrium state and X̂ are small perturbations away from
equilibrium. Putting above equations into Eqs. (3)–(7) leads to
following equations linearized equations:

∂ρ̂

∂t
= −ρ0

∂ûk

∂xk

, (A2)

∂ρ0ûi

∂t
= − ∂p̂

∂xi

− ∂σ̂ik

∂xk

, (A3)

∂ρ0ε̂

∂t
= −∂q̂k

∂xk

− p0
∂ûk

∂xk

, (A4)

∂σ̂ij

∂t
= −4

5

∂q̂〈i
∂xj〉

− 2p0
∂û〈i
∂xj〉

− p

μ
σ̂ij , (A5)

∂q̂i

∂t
= 5

8

p0

Rβ2
0

∂(2Rδβ)

∂xi

− 5

2

p0

ρ0

∂σ̂ik

∂xk

− 2

3

p0

μ
q̂i. (A6)

The appropriate thermodynamic forces are as follows:

Xρ = 2β0R

ρ0
p̂ − p0

ρ0
Xε Xu,i = 2Rβ0ui Xε = −2Rδβ

Xσij
= σ̂ijRβ0

p0
Xq,i = 8qiβ

2
0R

5p0
. (A7)

Now expressing Eqs. (A2)–(A6) in terms of thermodynamic
forces [Eq. (A7)] yields:

∂ρ̂

∂t
= − ρ0

2Rβ0

∂Xu,k

∂xk

, (A8)

∂ρ0ûi

∂t
= − ρ0

2β0R

∂Xρ

∂xi

− p0

2β0R

∂Xε

∂xi

− p0

Rβ0

∂Xσik

∂xk

, (A9)

∂ρ0ε̂

∂t
= − 5p0

8β2
0R

∂Xq,k

∂xk

− p0

2Rβ0

∂Xu,k

∂xk

, (A10)

∂σ̂ij

∂t
= −5

2

p0

β2
0R

∂Xq,〈i
∂xj〉

− p0

Rβ0

∂Xu,〈i
∂xj〉

− p2
0

Rβ0μ
Xσij

, (A11)

∂q̂i

∂t
= −5

8

p0

Rβ2
0

∂Xε

∂xi

− 5

2

p0

Rβ2
0

∂Xσik

∂xk

− 5

12

p2
0

μRβ2
0

Xq,i

(A12)

Phenomenological (Lik mentioned in Sec. III) coefficients
in thermodynamic fluxes [left-hand side of Eqs. (A8)–(A12)]
are as follows:

La = − ρ0

2Rβ0

∂

∂xi

Lb = − p0

2β0R

∂

∂xi

Lc = − p0

Rβ0

∂

∂xi

Ld = − 5p0

8β2
0R

∂

∂xi

Le = −5

2

p0

β2
0R

∂

∂xi

Lf = − p2
0

Rβ0μ

Lg = − 5

12

p2
0

μRβ2
0

. (A13)

In order to satisfy Onsager’s reciprocal relations, we
must satisfy L† = T LT , where the dagger denotes Hermitian
conjugate. Note that T is a diagonal matrix such that a diagonal
element is +1 or −1 for a thermodynamic flux being even or
odd under time reversal, respectively. The L† matrix can be
constructed from Eqs. (A13) in following manner (see also
Ref. [41]):

L =

⎡
⎢⎢⎢⎣

0 La 0 0 0
La 0 Lb Lc 0
0 Lb 0 0 Ld

0 Lc 0 Lf Le

0 0 Ld Le Lg

⎤
⎥⎥⎥⎦. (A14)

Further,⎡
⎢⎢⎢⎣

1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎦× L ×

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 −La 0 0 0
−La 0 −Lb −Lc 0

0 −Lb 0 0 −Ld

0 −Lc 0 Lf −Le

0 0 −Ld −Le Lg

⎤
⎥⎥⎥⎦ = L†. (A15)

This completes the required proof.
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