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Clustering of particles in turbulence due to phoresis

Lukas Schmidt,1,* Itzhak Fouxon,1,2 Dominik Krug,3 Maarten van Reeuwijk,4 and Markus Holzner1

1ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
2Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, South Korea

3Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
4Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom

(Received 9 October 2015; revised manuscript received 31 January 2016; published 20 June 2016)

We demonstrate that diffusiophoretic, thermophoretic, and chemotactic phenomena in turbulence lead to
clustering of particles on multifractal sets that can be described using one single framework, valid when the
particle size is much smaller than the smallest length scale of turbulence l0. To quantify the clustering, we
derive positive pair correlations and fractal dimensions that hold for scales smaller than l0. For scales larger
than l0 the pair-correlation function is predicted to show a stretched exponential decay towards 1. In the case
of inhomogeneous turbulence we find that the fractal dimension depends on the direction of inhomogeneity.
By performing experiments with particles in a turbulent gravity current we demonstrate clustering induced by
salinity gradients in conformity to the theory. The particle size in the experiment is comparable to l0, outside the
strict validity region of the theory, suggesting that the theoretical predictions transfer to this practically relevant
regime. This clustering mechanism may provide the key to the understanding of a multitude of processes such as
formation of marine snow in the ocean and population dynamics of chemotactic bacteria.
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I. INTRODUCTION

Inhomogeneous random distributions of advected fields
like temperature, concentration of salt, or nutrients occur
ubiquitously in fluids due to turbulence [1,2]. For particles
that perform phoresis (i.e., steady drift) in the gradients
of the convected fields, the fields’ inhomogeneities imply
a finite velocity difference between the local flow and the
particles [3]. Particles that perform thermophoresis in a fluid
at rest (steady drift in constant temperature gradient) will drift
through thermal convection flow and particles that perform dif-
fusiophoresis (steady drift in constant gradient of salinity) will
drift through the turbulent ocean. Thus while the turbulence is
incompressible so that the steady-state distribution of tracers
is uniform, the distribution of particles that perform phoresis
can be inhomogeneous. This holds independent of the flow
regime. Volk et al. [4] were among the first to describe this
phenomenon in a nonlaminar flow environment by performing
simulations in the context of chaotic flows. In this work we
focus entirely on turbulent flows, we construct a quantitative
theory of clustering of phoretic particles in turbulence, and
then demonstrate diffusiophoretic clustering experimentally
in the range of parameters inaccessible by the theory. This
is followed by the conclusion that the particle distribution
occurs on a multifractal set with power-law pair correlations. If
not stated otherwise particles considered throughout the entire
study are small, light, and spherical particles whose velocity
relaxation time is much smaller than the Kolmogorov time of
turbulence [1].

Preferential concentration is well studied in the case of
inertial particles [5–33] where it plays an important role in
a wide range of phenomena including aerosols spreading in
the atmosphere [34,35], planetary physics [36], transport of
materials by air or by liquids [37], liquid fuel combustion
engines [38], rain formation in liquid clouds [7,8,20,39], and
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many more. Inertia, in the case of small particles, produces a
small but finite difference between the particle’s velocity and
the local velocity of the fluid. This difference is determined
uniquely by the local flow so the particles’ motion in space
is a smooth flow given by the local turbulent flow corrected
by drift. Despite the smallness of the drift component, it
results in a compressible particle flow causing accumulation
of particles with time in preferred regions of the flow and
an inhomogeneous steady state distribution [5]; this parallels
the ordinary centrifuge where uniform initial distributions of
inertial and tracer particles become completely different with
time. While inertial particles, however small their inertia is,
will eventually accumulate on the boundary of the centrifuge,
the tracer distribution will always stay uniformly distributed.
In the case of turbulence the “boundary” on which inertial par-
ticles concentrate becomes very complex and time dependent
but it still has zero volume being multifractal [7,9,20].

The statistics of preferential particle concentration in
turbulent flows obeying the incompressible Navier-Stokes
equations can be described theoretically in the universal
framework of weakly compressible flows [7,20,39], for not
too heavy particles much smaller than the Kolmogorov length
scale. The complete statistics of the particle concentration
where fluctuations are non-negligible (small-scale turbulence)
depend on the statistics of turbulence through a single
parameter �, which provides the scaling exponent of the
power-law correlations of the particle concentration. Outside
the viscous range of small-scale turbulence the fluctuations
of the particle concentration are small. Thus different flows
(large or smaller Reynolds number, including chaotic spatially
uniform random flows) characterized by identical values of
� will have identical statistics of the transported particle
distribution.

These universal statistics are the reason for recent obser-
vations of preferential concentration of living phytoplankton
cells [40]. Though single cell motion is very different from
the one of an inertial particle, both can be described with
smooth spatial flow in a range of parameters. The flows are
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quite different but both are weakly compressible. Theory then
implies identical statistics of inertial particles and phytoplank-
ton which is confirmed experimentally.

Several studies provide indirect evidence that prefer-
ential concentration can be induced by phoresis as well.
Diffusiophoretic drift (due to salinity gradients) has been
observed in microfluidic laminar flows [41], and has been
shown to significantly affect the particle distributions. Recent
experimental and numerical investigations have provided
additional insight into the effect of diffusiophoresis in chaotic
flows [4,42]. Furthermore, numerical simulations have shown
that chemotactic bacteria may accumulate in nutrient patches
in a turbulent flow [43]. Thermophoresis leads to increased
particle concentration in temperature minima or away from
minima depending on their inertia [44]. However, clustering
due to any kind of phoresis in fully turbulent flows has neither
been observed nor described theoretically.

In this paper we extend the universal framework for
weakly compressible flow [20] to phoretic particles, leading
to a prediction for the fractal dimension of the expected
particle concentration in an inhomogeneous turbulent flow.
Our theoretical considerations are constructed for particles
with comparatively small size and small velocity relaxation
time that parallels the regime of particles with small but
non-negligible inertia. The theory is validated experimentally
using high-frequency three-dimensional (3D) velocity and
density measurements of diffusiophoretic particles in a fully
turbulent gravity current.

The paper is structured as follows. In Sec. II, a general intro-
duction of phoretic particles and their governing equations is
provided. Sections III and IV describe microscopic and macro-
scopic frameworks for the description of phoretic phenomena
in macroscopically moving fluid. Section V introduces relevant
properties of small-scale turbulence. The theory of clustering
of small particles in homogeneous turbulence is described
in Sec. VI, and is extended to inhomogeneous turbulence in
Sec. VII. The theoretical study of pair correlations outside
the scale of smoothness is provided in Sec. VIII. The results
from laboratory experiments of a turbulent gravity current
are discussed in Sec. IX, and demonstrate phoretic clustering
in agreement with the theory, despite having particle sizes
comparable to the Batchelor scale which are formally outside
of the validity region of the theory. Concluding remarks are
made in Sec. X, including the implications these findings may
have on the formation of marine snow, the settling of organic

particle aggregates in the ocean serving as a deep-sea nutrient
supply.

II. PHORESIS IN TURBULENT FLOWS

Phoresis is a universal phenomenon of steady drift
of macroscopic particles in an inhomogeneous motionless
medium due to gradients in a scalar field φ(x). Gradients in φ

cause a difference in forcing on different sides of the particle’s
surface, resulting in particle motion. In probably the simplest
instance of this phenomenon—thermophoresis in gases—the
force is caused by a difference of the intensity of collisions with
particles of inhomogeneously heated gas. The scalar field φ is
temperature in this case. The unbalance in collisions causes
particle drift toward the colder regions of the fluid.

In the general case the direction of movement depends
on the underlying physics of the phoresis. However, when
isotropy holds, the motion is parallel to the gradient of the
field so the phoretic drift velocity vph is generally of the form

vph = cph∇φ, (1)

where cph(x(t),φ[x(t)]) is the phoretic coefficient that can
depend on the particle position x(t) through the dependence
on φ or other local fields (e.g., density). It is assumed that the
variation of φ(x) over the particle’s size is small. If it is not
then higher powers of ∇φ and higher-order derivatives of φ

contribute to vph. The phoretic velocity vph is attained after
transients that take a finite relaxation time τrel during which
the particle passes a characteristic distance vphτrel.

The phoretic coefficient cph can be both positive or negative,
and will depend on the type of phoresis; cf. Table I. In the
case of thermophoresis the particle reacts to the gradient
of temperature of the fluid T so that φ = T . In gases the
random hits of macroscopic particle from the gas molecules
are stronger at the particles’ side closer to higher temperature
fluid. The particle is driven to regions with lower temperature
so cT in Table I is negative. In liquids or in gases when small
particles are considered, the interactions are more complex and
both signs of cT can hold; see [45,46] and references therein.

Diffusiophoresis is the drift of a colloidal particle in
response to a gradient of the concentration C of a molec-
ular solute [3,47]. For electrolyte solutions (such as salt-
water), which will be studied experimentally in Sec. IX,
the drift velocity obeys vph ≈ Dp∇ ln C, where Dp is the

TABLE I. Description of clustering of phoretic particles in turbulence. The first column describes the phoretic phenomenon, the second
column describes the field causing phoresis, the third column gives the phoretic velocity vph for motion in the gradient of corresponding
field. The fourth column provides the expression for the compressibility ∇ · v, where v = u + vph. The last row is the prediction of clustering
described by the pair-correlation function of concentration n.

Phoresis type Driving gradient field φ, Phoretic velocity vph Compressibility ∇ · v, v = u + vph

Thermophoresis temperature T cT ∇T cT ∇2T + ∇cT · ∇T

Diffusiophoresis concentration of chemical ionic: Dp∇ ln C Dp∇2 ln C

species, salinity C nonionic: D′
p∇C D′

p∇2C + ∇D′
p · ∇C

Electrophoresis electric potential ϕ −cE∇ϕ −cE∇2ϕ − ∇cE · ∇ϕ

Chemotaxis chemical attractant χ (ν)∇ν χ∇2ν + χ ′[∇ν]2

concentration, ν

Phoretic particles concentrate on a multifractal described by 〈n(x)n(x + r)〉 = 〈n(x)〉〈n(x + r)〉(η/r)�, � > 0;
� = ∫ ∞

−∞〈∇ · v(0)∇ · v(t)〉dt/|λ3| is twice the ratio of logarithmic rates of growth of infinitesimal volumes and areas.
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diffusiophoretic constant that describes electrical and chemical
couplings in the interfacial region between the particle surface
and the surrounding solute inducing the drift [41,47]. The
diffusiophoretic constant depends on the particle’s ζ potential
(a measure for the electrokinetic surface potential) and the
salt properties [47] but it is independent of the particle
size. For nonionic solutes Dp = CD′

p, so that vph ≈ D′
p∇C

where D′
p is constant; see Table I. Our consideration is

independent of the details of the dependence of Dp on C.
In the case of electrophoresis, Smoluchowski’s [48] formula
cE = εζ/(4πηf ), where ε is fluid permittivity and μ is the
dynamic fluid viscosity, can be used to compute the phoretic
coefficient cph. The behavior of cph depends on the phoresis:
for diffusiophoresis in ionic solutions DP can be considered
constant but in the case of chemotaxis the chemical sensitivity
χ can strongly depend on the local concentration of the
attractant [49,50].

We consider how the velocity of the phoretic particle
changes when the carrying fluid moves macroscopically. The
simplest case is that of uniform motion with time-independent
velocity when the fluid moves as a whole at constant speed
u. The particle’s velocity vp is then found from Galilean
invariance: in the frame of the fluid the velocity is given by
Eq. (1) so that in the laboratory frame,

v(t) = u + cph[x(t)]∇φ[x(t)]. (2)

The particle’s velocity in the fluid whose macroscopic velocity
is nonconstant and time-dependent can be obtained as the
“adiabatic version” of the above equation provided the flow
changes in space and in time over scales much larger than
vphτrel, dp (particle diameter) and τrel, respectively. At a given
moment in time the fluid around the particle then has the
velocity u[t,x(t)] that changes in space only far from the
particle. Due to the locality of interactions, the particle reacts
as it is in infinite fluid moving at constant, time-independent
velocity. If the phoretic velocity’s relaxation occurs over the
time during which the flow around the particle stayed constant
then the resulting velocity will be given by Eq. (2) with u =
u[t,x(t)],

v(t) ≈ u[t,x(t)] + cph[t,x(t)]∇φ[t,x(t)]. (3)

The use of infinite fluid in our consideration is not a limitation,
since the boundaries, breaking the Galilean invariance, are far
away (the relaxation process is local so that the influence of
far-away regions of the fluid is negligible).

III. MICROSCOPIC CONSIDERATION
OF PHORESIS IN FLOWS

This section targets the derived consequence of the local
Galilean invariance in Eq. (3) that can be obtained from mi-
croscopic considerations. These considerations provide further
insight into the domain of validity of Eq. (3). This will in the
following be illustrated on the previously introduced example
of thermophoresis. One of the microscopic approaches to this
phenomenon in a fluid which is macroscopically at rest uses
the Langevin equation [51,52]

dv

dt
= −v

τ
+

√
T [x(t)]mkB

τ
ξ , (4)

where ξ is Gaussian white noise with zero mean and pair cor-
relation 〈ξi(t)ξk(t ′)〉 = 2δikδ(t − t ′). Here m is the particle’s
mass, kB is the Boltzmann constant, T is the temperature,
and τ is the viscous (Stokes) relaxation time. We consider
spherical particles with radius dp so that τ = 2ρpd2

p/[9νρf ]
where ρp, ρf are mass densities of the particle and the fluid,
respectively, ν is the kinematic viscosity. The scale of spatial
variations of temperature has to be much larger than dp for
the description of interactions of the particle with the fluid to
be describable as white noise with space-dependent amplitude
(which presumes “adiabaticity” of interaction where roughly
uniform temperature holds locally). When the temperature
is uniform we have the usual Langevin equation describing
Brownian motion of a macroscopic particle in the gas with
uniform steady state distribution. In contrast, when T is non-
constant the steady state distribution is nonuniform because
the particle accumulates in colder regions of the gas. This
phenomenon can be described considering the overdamped
limit τ → 0 of the Kramers equation [52] obeyed by the joint
probability density P (x,v,t) of the particle’s position x and
velocity v,

∂tP + (v · ∇x)P = 1

τ
∇v ·

[
(vP ) + kBT (x)

m
∇vP

]
. (5)

The Maxwell distribution is the steady state solution of
this equation for constant T but not for space-dependent
T (x). In the overdamped limit the spatial density ρ(x,t) =∫

P (x,v,t)dv obeys [52]

∂tρ = ∇ · [∇(D(x)ρ)], D(x) = kBT (x)τ

m
. (6)

Thus the probability current is −∇(D(x)ρ) = −ρ∇D −
D∇ρ. This has the form of the sum of a current of particles
that move with average space-dependent velocity −∇D(x) and
diffuse with space-dependent diffusion coefficient D(x). Thus
temperature inhomogeneity brings particles’ drift to colder
regions of the fluid with velocity −(kBτ/m)∇T . Comparing
with Eq. (1) we can identify φ = T and cph = −(kBτ/m).

We now consider how these formulations change when the
fluid moves macroscopically with flow u(t,x). The equation
of motion Eq. (4) becomes

dv

dt
= −v − u[t,x(t)]

τ
+

√
T [x(t)]mkB

τ
ξ , (7)

describing linear friction that damps differences in the parti-
cle’s velocity v(t) and the local flow u[t,x(t)] at the position
of the particle. This equation holds provided the Reynolds
number dp|v − u|/ν based on the particle’s motion with
respect to the flow is small and other forces such as added mass
can be neglected; see the next section and [53]. This equation
describes thermophoresis in an external force mu[t,x(t)]/τ .
The study of the overdamped limit performed in [52] gives in
this case

∂tρ + u · ∇ρ = ∇ · [∇(D(x)ρ)]. (8)

This describes the motion of particles in space with velocity,

v(t) ≈ u[t,x(t)] − ∇D(x), (9)

which is Eq. (3) with the previously derived identification
φ = T and cph = −(kBτ/m). This completes the microscopic
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derivation of Eq. (3) that we obtained from “macroscopic”
considerations based on “approximate” Galilean invariance.

In the following the condition of validity of Eq. (9) will be
discussed. The validity of Eq. (7) demands that the smallest
spatial scale l0 of variations of u and T is much larger
than the particle’s size. The validity of the overdamped limit
demands that the time scale of friction τ is the smallest
time scale in the problem. Thus τ has to be much smaller than
the smallest time scale of variations of flow and temperature
in the particle’s frame, u[t,x(t)] and T [t,x(t)], respectively.
These are, respectively, the smallest time scale of turbulence
(usually the Kolmogorov time, see below) and the scale l0/vph

that describes the change of the fields in the particle’s frame.
Here vph is the typical value of the phoretic velocity cph|∇φ|
so that during time l0/vph the particle drifting through the flow
will see changes in the flow around it because it enters regions
with different spatial structure of the fields.

The linear relaxation of the particle’s velocity to Eq. (9) can
be described using the effective equation

dv

dt
= −v − u[t,x(t)] − cph∇φ

τrel
, (10)

with τrel ∼ τ , φ = T , and cph = −(kBτ/m). This effective
equation captures that relaxation is linear and occurs in a time
scale of order τ . We propose this equation as the general model
for the description of the motion of phoretic particles in flows
where cph and φ have to be taken in accord with the considered
process. The difference between various phoretic phenomena
is found in the value of τrel. Clearly τrel cannot be less than the
Stokes time τ however it can be much larger than τ , if the time
scale of interactions τi (electric, chemical, or others) causing
the phoresis is much larger than τ . In the next section we
demonstrate for spherical particles that τrel = τ when τi 
 τ .
Other situations have to be studied on a case-by-case basis and
are beyond the scope of this paper.

In the limit where τ is much smaller than the smallest time
scale of u[t,x(t)], φ[t,x(t)], Eq. (10) becomes Eq. (9). The
produced conditions in terms of l0 and vph were considered
previously. We would like to point out that Eq. (3) holds beyond
this model because it is based on the general principles of
locality and “approximate” Galilean invariance.

IV. FLUID MECHANICAL CONSIDERATION
OF PHORESIS IN FLOWS

This section demonstrates how Eq. (3) can be derived from
fluid mechanics. We consider the motion of phoretic particles
in the flow where the local neighborhood of the particle is
given by approximately a constant gradient of the phoretic
field. In the case considered below the field is salinity whose
coupling to the flow is describable in the frame of the Boussi-
nesq approximation. Then the assumption of approximately
constant gradient states that salinity unperturbed by the particle
would vary over a spatial scale much larger than the size of the
particle. Similarly the flow changes over a scale much larger
than the particle size. In this situation locality of interactions
building up the (diffusio)phoresis implies that in the leading
order the flow is a superposition of the unperturbed flow and the
perturbation which is the flow that the particle would produce
in the fluid at rest. That perturbation is a flow around the

particle in fluid at rest when the imposed gradient of the
phoretic field is the local gradient of unperturbed salinity
at the position of the particle. Thus the flow perturbation
produced by the particle is independent of the flow of the
fluid being superposed on it (in the case where the fluid is at
rest that flow perturbation is the total flow). This simple robust
structure seems inevitable in the limit where the spatiotemporal
variations of the unperturbed flow happen on scales much
larger than the characteristic scales of the phoresis implying
Eq. (3). We provide the main lines of the derivation that can
be turned into a detailed proof using the frame used in [5].

The description of phoretic phenomena in the frame of
fluid mechanics contains certain delicate points (which is the
reason why the Langevin equation approach described in the
previous section has some advantages), namely it cannot be
done in the frame of macroscopic no-slip boundary conditions
on the surface of the particle [3]. The next order corrections
in Knudsen number (the parameter of fluid mechanical
approximation) for the boundary condition are necessary for
the fluid mechanical derivation of the phoresis [3]. This causes
less universality in the treatment. However for the purpose of
finding how the velocity of phoretic particle changes in the
presence of a macroscopic flow of the fluid the details of
phoresis’ derivation are less relevant.

We start from a fluid-mechanical description of phoresis
of small rigid particles in the fluid at rest [3]. This is based
on introducing finite slip velocity vs on the surface of rigid
particles. That violates the usual no-slip boundary condition
providing effective macroscopic description of the nontrivial
flow that forms near the particle’s surface because of the
interactions of the particle’s surface with the driving gradient
field ∇φ. This flow occurs in the interfacial region whose width
is assumed to be much smaller than macroscopic scales and
the radius R of the particle (that is taken spherical for clarity).
Thus the surface S enclosing the particle and the interfacial
region can be considered in fluid mechanical calculations as
the surface of the particle. The surface flow occurs then on
the particle’s surface and is described by the condition that the
flow outside S matches that flow. It is this matching condition
that is described by the slip boundary conditions. Though
other ways of fluid mechanical approach to the description
of phoresis were proposed recently [54] we will stick to this
more conventional one.

Below we take for definiteness the case of diffusiophoresis
where φ is the salinity concentration C(t,x) but the calcula-
tions can be done for other phoretic phenomena similarly. The
interactions occurring in the interfacial region produce on S

finite slip velocity of the fluid vs given by solution of

vs = −b∇Cs, (11)

where ∇Cs is the value of ∇C on the particle’s surface. The
coefficient b is a material property of the interface depending
only on local thermodynamic conditions. It is considered as a
phenomenological scalar similarly as viscosity or other fluid
mechanical coefficients are (it can depend on C which is of no
consequence below) [3]. The distribution of C that determines
∇Cs obeys

∇2C = 0, ∇C(r = ∞) = ∇C∞, n̂ · ∇Cs = 0, (12)
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where ∇C∞ is the imposed gradient not distorted by the
particle, n̂ is normal to the surface describing no flux
boundary condition, and the Peclet number (ratio of R times
phoretic velocity and the salinity diffusivity coefficient DS) is
considered small. We observe that vs varies over the particle’s
surface.

Once the solution for the above problem is found providing
us with vs the flow of the fluid obeys the creeping flow
equations with slip boundary conditions,

−∇p + ν∇2u = 0, ∇ · u = 0, (13)

u(S) = v + ω × r + vs , (14)

where v is the translational and ω is the angular velocity of
the particle. It is assumed that the time scale τi of surface
interactions is much smaller than other time scales in the
problem (the Stokes time τ below) so that vs can be considered
instantaneously determined by C. We observe that though
the distribution of C is a nontrivial distribution with typical
scale R its impact on u through buoyancy is considered to be
negligible. The equations of motion read

m
dv

dt
=

∫
S

n̂ · σdS, I
dw

dt
=

∫
S

r × (σ · n̂)dS, (15)

where σ is the fluid stress tensor, m is the mass of the particle,
and I = 2mR2/5 is the moment of inertia. The particle for
definiteness is considered as solid sphere with uniform density.
It is found that for the special values of v = b∇C∞ and ω = 0
the total force and the torque on the particle vanish [3]. These
values set up after brief transients during which the particle
changes its velocity under the action of finite forces from the
fluid until the velocity becomes b∇C∞ and � becomes zero.
Thus the particle moves at constant velocity compensating for
the surface flow so that the total force acting on it vanishes. This
provides a fluid mechanical description of phoresis; see [3] for
details.

Transients can be described by writing the solution to
Eqs. (13) and (14) in the form of superposition of the flow with
boundary conditions b∇C∞ + vs and v − b∇C∞ + ω × r
(a similar study is performed in [55,56] for the study of
the problem of swimming in the flow—fluid mechanical
problems of motion of phoretic particles and swimmers are
quite similar). The former flow produces no contribution in the
force or torque by construction. The other flow is that caused
by a sphere that moves at the speed v − b∇C∞ rotating with
angular velocity ω. Using the corresponding Stokes force and
torque we find

dv

dt
= −v − b∇C∞

τ
,

dw

dt
= −10ω

3τ
, (16)

where τ is the Stokes time. Thus the relaxation to the steady
phoretic drift velocity occurs at the same rate as the velocity
decay in the fluid at rest.

Below we designate the flow round the particle in the fluid
at rest with u∇C∞

and C∇C∞
where the flow is considered as

function of the imposed gradient of C.
We study how this consideration changes when the fluid

is not at rest but rather moves with the flow that without
the particle would be u0(t,x). The unperturbed distribution

of salinity is designated by C0(t,x). We consider the typical
situation where the flow can be described using the Boussinesq
approximation,

∂t u + u · ∇u = −∇p + Cg + ν∇2u, ∇ · u = 0, (17)

∂tC + u · ∇C = DS∇2C, (18)

where p is pressure divided by density. We use a rescaled field
C so that the buoyancy force is Cg where g is the gravitational
acceleration. This implies the corresponding rescaling of the
diffusiophoretic coefficient below (there is no rescaling in ionic
solutions where the phoretic velocity is Dp∇ ln C though).

By definition u0(t,x) and C0(t,x) solve Eqs. (17) and (18)
where we do not write the boundary or other driving forces if
those are present (our considerations hold for quasistationary
turbulence as well). The flow change induced by the particle
is described through the boundary conditions on the particle’s
surface [r = x − x(t)],

u(S) = v + ω × r + vs , n̂ · ∇C = 0, (19)

where in writing the no flux boundary condition we assume
self-consistently that the difference u − v is of order of the
phoretic velocity in the fluid at rest so the convective term
in the flux proportional to (u − v)C can be neglected by
smallness of the Peclet number. Since vs is determined by local
thermodynamic calculation [3] and local thermal equilibrium
holds in fluid mechanics then vs = −b∇Cs where C obeys
Eqs. (17) and (18). We use here the assumption that τi 
 τ

(recall that τ itself is considered much smaller than the
smallest Kolmogorov time scale of turbulence; see the previous
section). The detailed discussion of the limits of applicability
of this consideration of vs is beyond our scope here; see [3].

We look for the solution of the problem set by
Eqs. (17)–(19) as the sum of the unperturbed flow u0(t,x)
and the perturbation flow u′[t,x − x(t)] centered at the
moving position of the particle x(t) and similarly for C. The
perturbation flow designated by primes obeys the linearized
fluid mechanical equations,

∂t u′+[u0−v]·∇u′+u′ ·∇u0 =−∇p′+C ′ g+ν∇2u′, (20)

∂tC
′+[u0−v]·∇C ′+u′ ·∇C0 =DS∇2C ′, ∇ ·u′ =0. (21)

The boundary conditions on the perturbation flow are

u′(S) = v − u0[t,x(t)] + vs + · · · , (22)

where the dots represents terms that are linear in x − x(t) for
x on the particle’s surface. These terms are the first order term
of the Taylor series that describes small variations of u(t,x)
over the surface of the particle (we assume that R is much
smaller than the smallest spatial scale of u) and the ω × r
term. These terms are not relevant for the translational motion
of the particle that concerns us here; cf. the study for the fluid
at rest. The boundary conditions on C ′ take the form

n̂ · ∇C0 + n̂ · ∇C ′ = 0, ∇C ′(r = ∞) = 0. (23)

Using smallness of Reynolds and Peclet numbers and the
perturbation we find

0 = −∇rp
′ +ν∇2

r u′, 0 =DS∇2
r C

′, (24)
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where we dropped the buoyancy term in the equation on u′ in
consistency with the dropping of this term in the study of fluid
at rest above. Further we used ∇C0 ∼ ∇C ′ in the vicinity of
the particle for dropping u′ ·∇C in the equation on C ′. The
solution of the equation on C ′ is

C ′(r,t) = C∇C0[t,x(t)](r,t) − r · ∇C0[t,x(t)], (25)

where we remind that C∇C0[t,x(t)](r,t) is the distribution of
salinity around the phoretic particle in the fluid at rest when
the imposed gradient has the value given by the gradient of the
unperturbed salinity field ∇C0[t,x(t)] at the position of the
particle. We find that vs is as in the fluid at rest with imposed
gradient ∇C0[t,x(t)]. This conclusion is a consequence of the
fact that in the vicinity of the particle the unperturbed profile
of C0 is approximately linear due to R much smaller than the
spatial scale of variations of C0. Considering then the Stokes
flow equation on u′ with the boundary conditions (22) we find
the problem that we had studied already considering transients
in the fluid at rest. The equation of motion is

dv

dt
= −v − u[t,x(t)] − b∇C0[t,x(t)]

τ
. (26)

where where we neglect other forces such as fluid acceleration
and added mass; see [5]. Using the condition that τ is much
smaller than the smallest time scale of turbulence we find that
after transients on time scale τ the motion of phoretic particles
in a flow whose spatial and temporal scales of variation are
much larger than R and τ � τi , respectively, is described with

v = u0[t,x(t)] + b∇C0[t,x(t)], (27)

u(t,x) = u0(t,x) + u∇C0[t,x(t)](t,x − x(t)), (28)

C(t,x) = C0(t,x) + C∇C0[t,x(t)](t,x − x(t)) (29)

−(x − x(t)) · ∇C0[t,x(t)], (30)

where the formulas for u(t,x) and C(t,x) hold at |x − x(t)|
much smaller than the scale of variations of u0(t,x) and
C0(t,x). Though the formulas look quite cumbersome they
have a simple structure described in the beginning of this
section. The flow is the sum of the unperturbed flow and the
flow that would hold around the particle in the fluid at rest
if the unperturbed gradient of salinity at the position of the
particle was imposed. This robust structure seems inevitable
when the spatial and temporal scales of the unperturbed flow
are the largest spatial and temporal scales in the problem.

Finally if we use the corresponding designations for b in
the considered case of diffusiophoresis we have

v(t) ≈ u[t,x(t)] + Dp∇ ln C[t,x(t)], (31)

which is the special case of Eq. (3).

V. RELEVANT PROPERTIES OF
SMALL-SCALE TURBULENCE

Here we briefly discuss the properties of small-scale
turbulence relevant for our study. Due to universality only quite
robust properties are needed for the description: the existence
of small but finite scale of smoothness, its order of magnitude,

typical value of velocity gradient, plus gradient’s correlation
time. Finer details are not required because derivations need
only robust chaotic properties of the flow. This description
of small-scale turbulence is incomplete both because we
confine ourselves to what is needed in the study and because
the properties of small-scale turbulence are still not known
completely in some cases.

In general the flow field u and scalar field φ evolve
according to

∇ · u = 0,

∂t u + u · ∇u = −∇p + ν∇2u + f (φ), (32)

∂tφ + u · ∇φ = Dφ∇2φ,

where Dφ is the diffusivity of the field φ. Here, f (φ) is a body
force induced by φ. If f = 0, the scalar is passive, and if f �= 0
the scalar is active. For the Navier-Stokes equations in the
Boussinesq approximation, the body force is given by f = ρ̂g
where ρ̂ is an equation of state linking φ to the normalized
density. This could be for example φ representing the salinity
C [in the case of diffusiophoresis, see Eq. (18)] or temperature
T (in the case of thermophoresis).

The structure of small-scale turbulence governed by
Eq. (32) is determined by the ratio of the kinematic viscosity ν

to the diffusivity Dφ . This is referred to as the Schmidt number
Sc = ν/Dφ in case φ is a solute and as the Prandtl number Pr
when the scalar under consideration is the temperature. In the
discussion below, Sc will be used but the arguments for Pr are
identical.

The study below demonstrates that preferential concentra-
tion can only occur below the scale of smoothness l0 of the
particles’ flow. The physical processes that form l0 and the
consequent value of that scale are not relevant in the study of
clustering. This is because clustering holds in arbitrary smooth
flow with finite (Lagrangian) correlation time of the gradients.
This guarantees that the motion of particles below l0 can be
described as motion in the smooth flow with linear spatial
profile determined by the matrix of velocity gradients ∇ivk .
The finite correlation time of that matrix is used for predicting
that the motion of small volumes of particles at large times
is determined by lots of independent random deformations by
∇v at different times, cf. the discussion of Eq. (62). Thus for
the purposes of deriving the clustering at small scales the only
relevant property of Eq. (32) is smoothness below the small
but finite scale l0.

In order to perform a comparison with the experiment we
do need the scale l0. The smallest scale of spatial variations of
u is the Kolmogorov length scale η = √

ν/λ. Here λ = √
ε/ν

is the typical value of velocity gradients of turbulence (inverse
Kolmogorov time scale) and ε is the turbulent kinetic energy
dissipation rate per unit volume [1]. This is the scale at which
the nonlinear advective acceleration u · ∇u and the viscous
terms ν∇2u in Eq. (32) balance each other when f (φ) is
negligible (viscous scale of the Navier-Stokes turbulence).
In a stably stratified turbulent flow, such as the gravity
current studied in the experimental section (Sec. IX), the
buoyancy force can be neglected below the so-called Ozmidov
scale [57]. In our experiment this scale is greater than the
Taylor microscale λT (Table II), so at the viscous scale, the
scalar field φ is passive.
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TABLE II. Properties of the flow, the fluid, the salt, and the
particles used in the experiment. Where λT is the Taylor microscale
and ReλT

is the Taylor Reynolds number, respectively. The dynamic
viscosity of the working fluid is written as μ. The diffusivity of the
salt is denoted as DS . The important particle properties presented are
the particle density ρp , the particle diameter dp , and the resulting
diffusiophoretic constant Dp , calculated according to [47]. The
particle Stokes number Stk is computed by the ratio of the particle
response time τp to the Kolmogorov time scale λ−1. The particle

response time is defined as τp = 2d2
pρp

9μ
.

Properties of flow and particles

Re 4800 (−)
ReλT

70 (−)
λT 5.1×10−3 (m)
η 3×10−4 (m)
λ 11.1 (1/s)
ld 10−5 (m)
μ 10−3 (Pa s)
DS 1.99×10−9 (m2/s)
ρp 1016 (kg/m3)
τp 10−4 (s)
dp 2×10−5 (m)
Dp 1.25×10−9 (m2/s)
Sc 500 (−)
Stk 10−3 (−)

The counterpart of η for the scalar field φ, i.e., the
scale ld at which u · ∇φ and Dφ∇2φ in Eq. (32) balance,
depends on Sc. In the case of Sc � 1 this is the Batchelor
scale, ld = √

Dφ/λ. When Sc � 1 the Batchelor scale is
much smaller than η. The flow in the range ld 
 r 
 η is
differentiable with fluctuations of velocity at scales r of order
λr . The variance of φ is cascaded by smooth flow from η to
ld where it is stopped by diffusion [58].

The considered case of large Sc is of practical relevance in
typical oceanic applications and the experiment described in
Sec. IX where Sc = ν/DS ∼ 103. Here we substitute Dφ for
the general case [Eq. (32)] by the salt diffusion coefficient DS

which is what determines the size of the Batchelor scale in
oceanic flows. The Batchelor scale ld = √

DS/λ is the scale
where diffusion balances the local shrinking of filaments of
salinity by gradients of the flow and this is the typical scale
of variations of φ in oceanic flows. In this case the correlation
scale ld of gradients of φ is much smaller than that of gradients
of u. The correlation scale of gradients of the flow of particles
in Eq. (3) is determined by the Batchelor scale ld and not the
Kolmogorov scale η so that l0 = ld .

In the case Sc 
 1 the scale at which u · ∇φ and Dφ∇2φ

in Eq. (32) balance is D
3/4
φ ε−1/4 where we use Kolmogorov-

Obukhov scaling in the inertial range. This scale is larger
than the Kolmogorov scale that can be written in the form
η = ν3/4ε−1/4. Thus in this case l0 = η.

We designate that below the smoothness scale of v, l0 can
be generally written as l0 = min[η,ld ].

VI. PHORETIC CLUSTERING IN TURBULENCE

In this section we demonstrate theoretically that particles
drifting due to phoresis cluster in turbulence. We introduce

a universal framework for different phoretic phenomena
including thermophoresis, electrophoresis, chemotaxis, and
diffusiophoresis; see Table I. Other cases where our predictions
have potential applications are barophoresis and pycnophore-
sis; see [59] and references therein. This universality is
possible because clustering of phoretic particles in turbulence
is a direct consequence of the fractality of the distribution
of particles in weakly compressible random flows and local
Galilean invariance of fluids.

As argued in the previous section, the motion of a phoretic
particle with coordinate x(t) in a turbulent flow v(t,x) is
governed by

dx
dt

= v[t,x(t)], v = u + cph∇φ; (33)

see Eq. (3). The condition of validity of this description is that
the scale of spatial variations of the field φ is much larger than
the particle size. Hence, λτrel 
 1 and vphτrel 
 l0 where vph

is the typical value of the phoretic velocity cph|∇φ|.
We consider the case where the particle flow has weak

compressibility so the flow divergence is much smaller than
the typical value of the gradients of turbulence,

|∇ · (cph∇φ)| 
 λ. (34)

Using that |∇ · (cph∇φ)| ∼ |cph∇φ|/l0 ∼ vph/ l0 we find that
the condition of weak compressibility is

vph 
 λl0. (35)

We observe that |∇ · (cph∇φ)|/λ ≈ (vphτrel/l0)(λτrel)−1; that
is, the validity of conditions (34) and (35) is determined
by which of the two small numbers λτrel, vphτrel/l0 is
smaller. This depends specifically on the considered case—
namely the constants and the gradients of the phoretic
field φ. For thermophoresis in the case of non-small Pr
we have λτrel ∼ λτ , vphτrel/l0 ∼ (kBτ/m)τ∇T/η. The ratio
(vphτrel/l0)(λτrel)−1 ∼ (kBτ/m)∇T/λη can be small or large.
Considering constants fixed depending on the strength of
the gradients of temperature we can have situations of small
or non-small compressibility. In the case of diffusiophoretic
particles in oceans whose typical parameters are provided
below the assumption of weak compressibility holds well.

The weak compressibility condition shows that during the
correlation time λ−1 of small-scale eddies the particle deviates
from the trajectories of the fluid particles by a distance much
smaller than l0 (the deviation of trajectories is caused by the
drift velocity vph). Thus the gradients of the flow in the frame
of the particle change over the same Kolmogorov time scale
λ−1 as the gradients in the frame of the fluid particle. We will
use the fact that the correlation time of ∇v is the Kolmogorov
time scale in the following.

The weak compressibility of the particle flow implies that
the particle distribution in space can be described completely
using the universal description of particle distribution statistics
in weakly compressible flow, introduced in [7,20]. It was
demonstrated in [20] that in the steady state the particles
concentrate on a random time-dependent multifractal in space.
The statistics of the particle concentration field n(t,x) is
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log-normal so that the correlation functions derive from the
pair-correlation function

〈n(0)n(r)〉 = 〈n〉2

(
η

r

)�

, r 
 l0, (36)

〈n(x1)n(x2) . . . n(xk)〉 =
∏
i>k

〈n(xi)n(xk)〉, (37)

where � is the correlation codimension of the fractal that is
given by

� = 1

|λ3|
∫ ∞

−∞
〈∇ · [cph∇φ](0)∇ · [cph∇φ](t)〉dt. (38)

Here |λ3| is the Lyapunov exponent associated with the growth
exponent of infinitesimal areas; see below. The averages in
Eqs. (36)–(38) are spatial,

〈n(0)n(r)〉 =
∫

n(x)n(x + r)
dx
�

, (39)

〈∇ · [cph∇φ](0)∇ · [cph∇φ](t)〉

=
∫

∇ · [cph∇φ](0,x)∇ · [cph∇φ][t,q(t,x)]
dx
�

, (40)

where � is the total volume which is set below to 1. We
introduced the spatial Lagrangian trajectories of the fluid
particles labeled by their position at t = 0,

∂t q(t,x) = u[t,q(t,x)], q(t = 0,x0) = x0. (41)

The described predictions hold for spatially uniform statistics
of turbulence provided � 
 1. The case of inhomogeneous
statistics is considered in the next section.

Equation (38) is the main result of this section: phoretic
particles form a multifractal in turbulent flow with log-
normal statistics determined by Eqs. (36)–(38); see Table I.
Logically, this is what we will base further calculations and
our experimental validation in Sec. IX on.

In the following we clarify and discuss these results. The
correlation codimension � coincides with twice the Kaplan-
Yorke codimension DKY ,

� = 2DKY , (42)

whose definition [60] in the case of weak compressibility
reduces to the ratio of logarithmic growth rates of infinitesimal
volumes δV and areas δA of particles [39]. The simplest
definition of δA is found considering the area of a triangle
formed by three particles. Similarly, δV is defined by four
particles in close proximity that form a tetrahedron. We have

DKY =
∣∣∣∣ lim
t→∞

1

t
ln

(
δV (t)

δV (0)

)∣∣∣∣
[

lim
t→∞

1

t
ln

(
δA(t)

δA(0)

)]−1

. (43)

The weak compressibility causes DKY to be much smaller than
unity: for incompressible flow the volumes are conserved but
the areas grow with finite exponent when the flow is chaotic
(which the turbulent flow below the Kolmogorov scale is). The
limits in DKY hold deterministically involving no averaging
because the limiting rates coincide for different initial positions
of volumes and areas [61,62]. The limit for the volume is called

the sum of the Lyapunov exponents λi ,

∑
λi

= lim
t→∞

1

t
ln

(
δV (t)

δV (0)

)

= −
∫ ∞

0
〈∇ · [cph∇φ](0)∇ · [cph∇φ](t)〉dt, (44)

where we use the formula for
∑

λi derived in [63] and
i = 1 . . . 3 being the three different spatial directions. The
three Lyapunov exponents are ordered such that λ1 > λ2 > λ3,
and we note that for fluid particles (∇ · u = 0) we would
have

∑
λi = 0. The negative sign of

∑
λi indicates that

particles migrate to regions with negative flow divergence;
see the discussion in the next section. If we consider four
infinitesimally separated particles, the volume δV (t) of the
tetrahedron that they form will decrease at large times
exponentially at the rate

∑
λi identical for different initial

positions of the particles and different initial times. Since the
correlation time of ∇ · v is the Kolmogorov time scale then
we find

∑
λi

λ
∼ v2

ph

l2
0λ

2

 1, (45)

where we used Eq. (35). The logarithmic rate of growth
of infinitesimal areas δA is nonzero for fluid particles so
that considering the smallness of the phoretic component of
the flow we can use the Lagrangian trajectories of the fluid
particles in Eq. (43) (this approximation would fail for

∑
λi

because that is zero for turbulence). For fluid particles volumes
are conserved such that the growth exponent of infinitesimal
areas coincides with the third Lyapunov exponent (see the next
section),

|λ3| = lim
t→∞

1

t
ln

(
δA(t)

δA(0)

)
, (46)

where the simplest configuration that determines |λ3| is the
triangle formed by three infinitesimally close fluid particles.
The area of the triangle growth becomes at large times
deterministic with an exponent given by |λ3| identical for all
triangles. There is no simple way of writing |λ3| in terms of
correlation functions of turbulence so it has to be considered
as phenomenological positive quantity of order λ so that

DKY = | ∑ λi |
|λ3| ∼

∑
λi

λ
∼ v2

ph

l2
0λ

2

 1, (47)

where we used Eq. (45). This formula provides a simple
way of estimating the correlation dimension in practice. We
stress that the weakness of compressibility implies smallness
of the fractal codimension DKY but not of fluctuations of
concentration that can be arbitrarily large.

In the following we comment on the validity of Eq. (38).
The original formula for the average in the pair-correlation
function [Eq. (40)] in � does not involve the trajectories of
the fluid particles q(t,x) but the trajectories of the phoretic
particles x(t,x),

∂t x(t,x) = v[t,x(t,x)], x(t = 0,x0) = x0. (48)
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defined by v and not u; see [20]. However condition (35)
implies that (l0 � η)

vph

λη
� vph

λl0

 1, (49)

that is, the typical value of the phoretic velocity is much
smaller than the typical value λη of the turbulent velocity at
the scale η. Thus during the Lagrangian correlation time λ−1

of turbulent velocity gradients in the fluid particle’s frame the
phoretic particle deviates from the fluid particle by a distance
much smaller than the correlation scale of the gradients η

that is |q(t = λ−1,x) − x(t = λ−1,x)| 
 η. Thus over the
correlation time λ−1 which determines the time integral in
Eq. (38) the gradients in the fluid’s and phoretic particle’s
frames coincide so we can use q(t,x) instead of x(t,x) in
Eq. (40).

VII. PREFERENTIAL CONCENTRATION
IN INHOMOGENEOUS TURBULENCE

In this section we derive the pair-correlation function
〈n(x)n(x + r)〉 of the concentration field n(t,x) of particles in
the case where the statistics of turbulence is inhomogeneous.
We find a universal formula for pair correlations of particles
in inhomogeneous weakly compressible random flow. Though
different inhomogeneities of the flow produce different spatial
profiles n0(x) of average concentration 〈n(x)〉 = n0(x) we
demonstrate that fluctuations of normalized concentration,

ñ(t,x) = n(t,x)

n0(x)
, (50)

obey universal statistics. These coincide with those of concen-
tration for spatially uniform statistics described in the previous
section. We find that ñ(t,x) has log-normal statistics (37)
which are completely determined by the pair-correlation
function

〈ñ(x)ñ(x + r)〉 =
(

l0

r

)�(x+r/2)

, r 
 l0, (51)

where the difference from the spatially uniform case is that �

is a function of the coordinate that reflects inhomogeneity of
the velocity statistics,

�(x) = 1

|λ3(x)|
∫ ∞

−∞
dt〈∇ · [cph∇φ](0)∇ · [cph∇φ](t)〉,

(52)

where the inhomogeneous time correlation function in the
integrand is determined using trajectories that issue from
x. In this way, describing the statistics of concentration of
phoretic particles in inhomogeneous turbulence reduces to the
problem of determining the concentration profile n0(x) and
�(x) provided the weak compressibility condition (35) holds.
In this work we concentrate on deriving Eq. (51) considering
n0(x) and �(x) as phenomenological fields determined by
the details of statistics of turbulence. The study of how n0(x)
can be obtained from the statistics of turbulence is undertaken
in [64].

The pair-correlation function of concentration describes the
probability to find a particle at distance r from a particle at
x so that it enters the collision kernel determining the rate of

coagulation of colloids having direct practical applications. In
inhomogeneous cases the probability depends both on r and
x. Thus the statistics are defined by time averaging,

〈n(x)n(x + r)〉 = lim
t0→∞

1

t0

∫ t0

0
n(t,x)n(t,x + r)dt, (53)

n0(x) = 〈n(x)〉 = lim
t0→∞

1

t0

∫ t0

0
n(t,x)dt. (54)

The pair-correlation function can be obtained by multiply-
ing the probability 〈n(x)〉 of finding a particle at x by the
conditional probability P (x|r) of finding a particle at x + r
given that there is a particle at x (here the angular brackets
stand for temporal averaging at fixed spatial positions; see
definitions below). When r becomes large the location of
the particle at x does not influence the probability P (x|r)
of finding a particle at x + r so that P (x|r) ≈ 〈n(x + r)〉 and
〈n(x)n(x + r)〉 ≈ 〈n(x)〉〈n(x + r)〉. Thus at large separations
the pair-correlation function decomposes to the product of
averages describing independence of concentration fluctua-
tions at separated points. In contrast, when r → 0 there is an
increase in P (x|r) reflecting particles clustering together in
preferred regions of the flow—preferential concentration. It is
this amplification factor,

f (x,r) = 〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 = 〈ñ(x)ñ(x + r)〉, (55)

for which we derive a closed-form expression in this section.
This factor is a “proper correlation”: if n0(x) is larger in
certain regions of space then particles will tend to go to
that region independently of the behavior of other particles
so the product n(x)n(x + r) will be larger there trivially. Our
derivation holds for arbitrary weakly compressible flow so that
it can be used for all the phoretic phenomena described in the
previous section, inertial particles in turbulence at small Stokes
or Froude numbers [20,39], or other cases.

The reasons why turbulence increases the probability of
two particles to get close can be understood from the fact
that on average the divergence of velocity in the particle’s
frame is negative 〈∇ · v[t,x(t,x)]〉 < 0. Particles tend to go to
regions where the divergence is negative so in the particle’s
frame the divergence is mostly negative. Thus when two
particles transported by turbulence are randomly brought
below the “minimal correlation length” of velocity divergence
l′0 they start moving in the same divergence which is typically
negative. Motion in common divergence causes the particles
to preferentially approach each other producing f (x,r) > 1;
see Fig. 1. Here l′0 is the largest scale over which ∇v can be
considered constant which can be taken one order of magnitude
smaller than l0. We will demonstrate that there is no correlation
of concentration fluctuations at l′0.

We consider an increase in the probability of two particles
carried along by turbulence to approach each other at distance
r 
 l′0 at the time of observation t = 0 which is described by
the pair-correlation function. We can separate the history of
the particles’ motion in space at t < 0 to times t < t∗ when
the particles’ separation r(t) was larger than l′0 and times
t∗ < t < 0 where r(t) < l′0; see Fig. 1. The particles moved in
uncorrelated divergences of the flow at t < t∗ so there was no
preference to getting closer or further (the residual power-law
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FIG. 1. Illustration of positive correlations of phoretic particles in
turbulence. When random turbulent transport brings two particles to
a distance l0 at time −t∗, their common motion in the predominantly
negative divergence of the flow creates effective attraction between
the particles. The pair correlation 〈n(x)n(x + r)〉 is the probability
〈n(x)〉〈n(x + r)〉 to randomly get close by distance l0 times the
increase factor [see Eq. (65)] due to common motion in the
predominantly negative divergence.

correlations in the inertial range have small but finite value
which we study below; these are not relevant for finding the
leading order term here). The increase in probability is built in
the last period of motion in the common velocity divergence.
This can be described by using the continuity equation

∂tn + ∇ · (nv) = 0, (56)

which has the solution [n(x) = n[t = 0,x]]

n(x) = n[t,x(t,x)] exp

[
−

∫ 0

t

∇ · v[t ′,x(t ′,x)]dt ′
]
, (57)

where x(t,x) is the particle trajectory that passes at t = 0
through the point x; see Eq. (48). Taking the average of the
product of n(x) and n(x + r), we find that

〈n(x)n(x + r)〉 =
〈
n[t,x(t,x)]n[t,x(t,x + r)]

× exp

[
−
∫ 0

t

dt ′(∇ · v[t ′,x(t ′,x)]

+ ∇ · v[t ′,x(t ′,x+r)])

]〉
. (58)

We demonstrated that pair correlations form when the distance
between the particles is much less than l′0. We consider r 
 l′0
and track the trajectories x(t,x) and x(t,x + r) back in time
in order to determine the positive correlation accumulated
during the times when the distance r(t) = x(t,x + r) − x(t,x)
between the trajectories was less than l′0.

We briefly sketch the properties of evolution of distances be-
low the Kolmogorov scale in the following; see [61,62,65,66]
for details. The separation velocity is linear in r at r < l′0
because the particles’ velocity difference can be approximated
by separation r , times the local flow gradient. Thus the
separation below l′0 behaves exponentially and is characterized
by a positive exponent describing chaoticity of motion of
particles below l′0,

lim
t→−∞

1

|t | ln

(
r(t)

r(0)

)
≈ |λ3|, (59)

where λ3 is the third Lyapunov exponent of the fluid particles in
turbulence. Thus at large times the growth of distances between

trajectories back in time is a deterministic exponential growth
with exponent |λ3|. This exponent can be seen in the forward
in time evolution of an infinitesimal ball of fluid particles
with size r0 much less than η. Turbulence deforms the ball to
an ellipsoid whose axes behave exponentially [61,62,65,66].
The major axis increases as r0 exp[λ1t] where λ1 > 0 is the
principal Lyapunov exponent. The minor axis decreases as
r0 exp[λ3t] where λ3 < 0 is the third Lyapunov exponent. The
exponential evolution of the intermediate axis r0 exp[λ2t] is
determined by the volume conservation condition λ1 + λ2 +
λ3 = 0. Then the growth of the distance between two fluid
particles is given by λ1,

lim
t→∞

1

t
ln

(
r(t)

r(0)

)
≈ λ1, (60)

which is the forward in time counterpart of Eq. (59). This holds
at times much larger than the correlation time λ−1 of flow
gradients which determine the velocity difference of close
particles constituting a form of ergodic theorem or the law
of large numbers [61,62,65,66]. When the evolution is time-
reversed the major axis of the ellipsoid starts to grow at the
exponent |λ3|. Thus it is |λ3| that gives the logarithmic rate
of separation of fluid particles back in time; see Eq. (59). The
rate of separation of phoretic particles approximately coincides
with |λ3| because the phoretic component of velocity is small.
Thus Eq. (59) holds for both fluid and phoretic particles.

We conclude that when r → 0 the time

t∗ = 1

|λ3| ln

(
l′0
r

)
(61)

that exponentially diverging trajectories x(t,x) and x(t,x +
r) spend below l′0 grows logarithmically getting infinite at
r = 0. This is because turbulence is smooth below η. The
pair correlations form at r = 0 for infinite time causing the
divergence of 〈n2(x)〉; see below.

Inclusion of small but finite Brownian motion of the
particles would cause the trajectories with r = 0 to diverge
in finite time. The separation occurs diffusively (with linearly
growing in time dispersion) until the diffusive scale

√
κ/|λ3|

is reached. Starting from this scale trajectories separate
because of difference of local velocities and diffusion can be
neglected [7,61,62]. Correspondingly the correlation function
is cut off by diffusion at the diffusive scale below which
the correlation is roughly constant; see [7,61]. We assume
throughout the paper that this diffusive scale

√
κ/|λ3| is much

smaller than l0 so that there is a range of separations where
the considered purely fluid mechanical trajectories hold. We
consider scales higher than

√
κ/|λ3| and neglect diffusion.

If turbulence is inhomogeneous then it is necessary to
refine the considerations because the rate of separation λ3

in this case depends on the position of the particles at t = 0.
We consider the case which is typical in practice where the
center of mass of the separating pair of particles stays in the
region where the turbulent statistics is approximately uniform
during the time interval −t∗ < t < 0. In other words the scale
L of inhomogeneity of turbulent statistics is assumed to be
much larger than the typical distance |x(−t∗,x) − x|. Since t∗
diverges when l → 0, see Eq. (61), then this implies that we
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consider not too small l. Then we can define

1

t∗
ln

( |x(−t∗,x + r) − x(−t∗,x)|
r

)
≈ |λ3(x)|, (62)

that holds provided ln(l′0/r) � 1 or |λ|t∗ � 1; see Eq. (61).
The inequality guarantees that the left-hand side (LHS) is
the sum of N ∼ |λ|t∗ � 1 independent random variables
divided by N so the law of large numbers holds defining
a unique realization-independent function λ3(x). In practice
the logarithm is never too large so our consideration is an
asymptotic study which then is continued to the physical
range of parameters—the formulas derived under condition
ln(l′0/r) � 1 hold when l′0/r � 1 as can be proved applying
the cumulant expansion theorem to Eq. (58) in the steady state
limit t → −∞. Here we sketch the proof; see details in [20].
We set with no loss the initial condition at time t to a constant,
n(t,x) = 〈n〉. Then the cumulant expansion theorem gives

ln〈n(x)n(x + r)〉

=
∞∑

k=1

1

k!
lim

t→−∞

〈[
−

∫ 0

t

dt ′{∇ · v[t ′,x(t ′,x)]

+∇ · v[t ′,x(t ′,x+r)]}
]k〉

c

,

where c stands for cumulant. Opening the brackets one
finds correlation functions that have finite steady state limit
t → −∞ have the at scales r much smaller than the correlation
scale l′0 of the gradients. Using the corresponding asymp-
totic form of these functions at l′0/r � 1 one recovers the
result obtained previously under the more stringent condition
ln(l′0/r) � 1.

When we consider a decrease of r the time t∗ increases
indefinitely (it grows infinite logarithmically in r). When
t∗ gets large the displacement |x(−t∗,x) − x| will reach
L causing fluctuations in the LHS of Eq. (62) caused by
trajectories’ explorations of spatial regions with different
statistics of turbulence. Further increase in t∗ will produce the
trajectory that explores the whole volume of the flow so that
the LHS will become constant independent of the coordinate.
This constant is the rigorous mathematical definition of the
Lyapunov exponent that is however of little practical use when
a large volume is studied.

Thus the fluctuations of concentration at not too small r

are determined by λ3(x) characterizing the local statistics of
turbulence. When smaller r are studied the inhomogeneity
of the turbulent statistics would cause changes in the LHS
of Eq. (62) as the center of mass of the particles explores
regions of the flow larger than L over which the statistics is
inhomogeneous. These scales are not relevant in the common
situation when L is much larger than l0 and will not be studied
in this work.

We observe that we consider the time t∗ to separate
from initial (or rather final) distance r to l′0 as deterministic
quantity. This neglects the fluctuations of finite-time Lyapunov
exponents (large deviations [8,62]). Consistent inclusion of
the fluctuations demonstrates that those can be neglected
because weakness of compressibility causes the averages to
be determined by the most probable λ3 and not the large
deviations [20].

We consider Eq. (58) at t = −t∗. The average in the
right-hand side (RHS) contains both averaging over times
smaller than −t∗ and the times of formation of pair correlations
−t∗ < t < 0. For separating these contributions we observe
that the condition of weak compressibility (34) implies that
time integral of ∇ · v[t,x(t,x)] over times of order of the
correlation time λ−1 of ∇ · v is much less than 1 (thus
over these time scales the concentration is conserved in the
particle’s frame,

n(x) ≈ n[t,x(t,x)], λ|t | � 1, (63)

which is another way of describing weak compressibility of
the flow). Neglecting the contribution of times in λ−1-vicinity
of −t∗, we find that the concentration factors in the first line
of Eq. (58) are independent of the exponential in the last line
dependent on the “future flow”:

〈n(x)n(x + r)〉 ≈ 〈n[−t∗,x(−t∗,x)]n[−t∗,x(−t∗,x+r)]〉

×
〈
exp

[
−2

∫ 0

−t∗
dt∇ · v

[
t,x

(
t,x + r

2

)]]〉
,

where we used that ∇ · v[t,x(t,x)] ≈ ∇ · v[t,x(t,x + r)] for
−t∗ < t < 0 because the distance between the trajectories is
much smaller than l0. We set the values of divergences at the
trajectory issuing at the midpoint of x and x + r so as to have a
symmetric form of the pair correlation (the distinction between
the points is beyond the accuracy of this calculation). Using
that concentrations at distance l′0 are not correlated (see below)
we find

〈n(x)n(x+r)〉
≈〈n[−t∗,x(−t∗,x)]〉〈n[−t∗,x(−t∗,x+r)]〉

×
〈
exp

[
−2

∫ 0

−t∗
dt∇ · v

[
t,x

(
t,x + r

2

)]]〉
; (64)

see Fig. 1. Finally dividing the equation by its counterpart for
〈n(x)〉,

〈n(x)〉=〈n[−t∗,x(−t∗,x)]〉
〈
exp

[
−

∫ 0

−t∗
dt∇ · v[t,x(t,x)]

]〉
,

where we can use x(t,x + r/2) instead of x(t,x), we find

f (x,r) =
〈
exp

[−2
∫ 0
−t∗dt∇ · v

[
t,x

(
t,x+ r

2

)]]〉
〈
exp

[−∫ 0
−t∗dt∇ · v

[
t,x

(
t,x+ r

2

)]]〉2 . (65)

This describes a positive correlation as accumulation of density
increases due to motion in the same velocity divergence
normalized by the accumulation that would occur due to
motion in uncorrelated divergences. The latter determines
n0(x) but does not describe the “proper correlation” f (x,r).

Since compressibility is small then we can find the averages
in the RHS of Eq. (65) using the Gaussian averaging formula
ln〈exp[x]〉 = 〈x〉 + 〈x2〉c/2 where 〈x2〉c = 〈x2〉 − 〈x〉2 is the
dispersion (this neglects higher order cumulants of third order
and higher in compressibility [20,67]). We find

f (x,r) = exp

[
t∗

∫ ∞

−∞
〈∇ · v(0)∇ · v(t)〉(x)dt

]
, (66)
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where we used that t∗ is much larger than the correlation time
λ−1 of ∇ · v, see Eq. (61), and defined

〈∇ · v(0)∇ · v(t)〉(x) = lim
t0→∞

1

t0

∫ t0

0
dt ′∇ · v(t ′,x)

×∇ · v[t ′ + t,q(t ′ + t |t ′,x)]. (67)

In the leading order in weak compressibility the definition uses
the trajectories of the fluid (and not phoretic) particles that pass
through x at time t ′,

∂t q(t |t ′,x) = u[t ′,q(t |t ′,x)], q(t = t ′|t ′,x) = x; (68)

cf. Eq. (41). Using the definition (61) of t∗ in Eq. (66) we find

f (x,r) =
(

l′0
r

)�(x+r/2)

≈
(

l0

r

)�(x+r/2)

, (69)

with �(x) defined in Eq. (52). Finally using that � 
 1,
we obtain (l′0/l0)� ≈ 1 where l0/l′0 ∼ 10 and thus finding
Eq. (51). This formula holds when r 
 l0, cf. the discussion
around Eq. (62) and [58]. In the case where the Batchelor scale
is much smaller than the Kolmogorov one, the fluctuations of
the concentration occur in much smaller regions of space than
in the case of inertial particles.

Similar considerations for higher-order correlation func-
tions based on [20] demonstrate that the log-normal statistics
hold for rescaled concentration,

〈ñ(x1)ñ(x2) . . . ñ(xk)〉 =
∏
i>k

〈ñ(xi)ñ(xk)〉. (70)

Furthermore the use of considerations of [20] gives a determin-
istic solution and log-normal statistics for the coarse-grained
concentration nl(0,x) (cf. the next section),

nl(0,x)

〈n(x)〉 = exp

(
−

∫ 0

−t∗
∇ · v[t,x(t,x)]dt

)
, (71)

〈
nk

l (x)
〉

〈n(x)〉k =
(

l0

l

)�(x)k(k−1)/2

, (72)

where nl(t,x) is defined with the help of the number of particles
Nl(t,x) = ∫

|x−x′|<l
n(t,x′)dx′ inside the ball of radius l 
 l0

centered at x,

nl(t,x) = Nl(t,x)

(4πl3)/3
, (73)

so that for continuous distributions l → 0 defines the con-
centration field (for the considered fractal distributions there
is no well-defined limit). For k = 2 Eq. (72) reproduces the
scaling of the pair-correlation function because 〈N2

l (x)〉 =∫
|x−x1|<l, |x−x2|<l

〈n(t,x1)n(t,x2)dx1dx2〉.
The derived pair correlation implies that 〈n(x)n(x + r)〉

has very different scales of variation with x and r . The scale
of variation with x is that of the average density profile
which is determined by the scale L of inhomogeneity of
the statistics of turbulence. For spatially uniform statistics
this dependence disappears. In contrast the dependence on
r is a fast dependence that happens in the narrow range of
r where the correlation function decays from infinite value
at zero separation 〈n2(x)〉 = ∞ to its large separation value

〈n(x)〉〈n(x + r)〉 at scales smaller than l0 
 L (there are no
fluctuations at scale l0 because of � 
 1).

Regularization of the divergence of 〈n2(x)〉 is determined
by the breakdown of the continuity equation [Eq. (56)] at
the smallest scales. The breakdown can be determined by
Brownian motion of the particles that introduces a diffusion
term D∇2n in the RHS of Eq. (56), by the finite size of the
particles, by the finite difference of the phoretic constants
of the particles (due to size and properties difference), or
other small scale phenomena. Thus the divergent single-point
dispersion 〈n2〉 predicted by the power-law dependence is
regularized at small scales at possibly large but finite value.
The corresponding fluctuations of single-point concentration
can be large with 〈n2(x)〉 larger than 〈n(x)〉2 by orders of
magnitude.

VIII. PAIR CORRELATIONS OUTSIDE
THE SCALE OF SMOOTHNESS

In this section we consider the pair-correlation function of
concentration at all separations including those outside l0. We
use the consideration of Ref. [20] that represents the steady
state of concentration as the outcome of infinite time evolution
starting with arbitrary initial condition where the concentration
evolves according to the continuity equation. One starts with
uniform initial condition n(t = −T ) = n0 in the remote past,
finds n(t = 0), and takes the steady state limit of infinite
evolution time T → ∞. Solving the continuity equation along
the particles’ trajectories x(t,x) defined in Eq. (48),

w(t,x) = ∇ · v(t,x),

d

dt
n[t,x(t,x)] = [∂t + v · ∇]n(t,x)|x=x(t,x)

= −n[t,x(t,x)]w[t,x(t,x)], (74)

we find

n(0,x) = n0 exp

(
−

∫ 0

−T

w[t,x(t,x)]dt

)
. (75)

We find for the pair-correlation function taking the product of
n(0,x) and n(0,x + r)

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 = 1〈

exp
(−∫ 0

−T
w[t,x(t,x)]dt

)〉

×
〈
exp

[− ∫ 0
−T

{w[t,x(t,x)] + w[t,x(t,x + r)]}dt
]〉

〈
exp

(− ∫ 0
−T

w[t,x(t,x + r)]dt
)〉 . (76)

Using the cumulant expansion theorem for writing the averages
we find that in the leading order in weak compressibility
we can use the Gaussian approximation 〈exp[x]〉 = exp[〈x〉 +
〈x2〉c/2] in the averages [20,67] which gives

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉

= exp

[∫ 0

−∞
dt1dt2〈w[t1,q(t1,x)]w[t2,q(t2,x + r)]〉

]
, (77)

where we took the steady state limit T → ∞ and used the fluid
particles trajectories q(t,x) instead of x(t,x) in the leading
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order in weak compressibility; see Eqs. (41)–(48). This is a
rigorous representation of the pair-correlation function in the
limit of weak compressibility that was derived for spatially
uniform statistics in [20]. The pair-correlation function at
r 
 l0 is obtained by observing that at these scales the flow
divergence w is identical at both trajectories up to times where
the distance between the trajectories becomes comparable with
the scale l0 of spatial variations of w(t,x). If r → 0 then
the trajectories coincide at all times so we find divergence
in 〈n2(x)〉. When r is small but finite the leading order term
is obtained considering how the time that the trajectories stay
below l0 diverges at small r . This is the time t∗ that we studied
in the previous section,

∫ 0

−∞
dt1dt2〈w[t1,q(t1,x)]w[t2,q(t2,x + r)]〉

≈ t∗
∫ ∞

−∞
dt2〈w[t1,q(t1,x)]w[t2,q(t2,x)]〉, r 
 l0, (78)

which reproduces formula (66) for the pair-correlation func-
tion obtained in the previous section (the pair-correlation
function in the integral on the RHS depends on time difference
t2−t1 only because of incompressibility of flow of fluid
particles). Beyond the scale l′0 ∼ l0/10 the spatial correla-
tions of concentration are weak so that 〈n(x)n(x + r)〉 ≈
〈n(x)〉〈n(x + r)〉. This is reproduced by observing that at
these scales the exponent in Eq. (77) is small because nothing
compensates the smallness of compressibility (at smaller
scales it is time of separation t∗ that does the compensation).
The leading order correction is obtained using that x − 1 ≈
ln x for x ≈ 1 so

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ≈ ln

[ 〈n(x)n(x+r)〉
〈n(x)〉〈n(x+r)〉

]

=
∫ 0

−∞
〈w[t1,q(t1,x)]w[t2,q(t2,x + r)]〉dt1dt2, (79)

for r � l′0. This formula holds for the Navier-Stokes turbulence
involving no approximations so far. We provide estimates for
the integral in the RHS. We observe that at scales r � l0
the pair-correlation function 〈w(x)w(x + r)〉 decays with r

in contrast with r 
 l0. Thus if we introduce the characteristic
time tr during which the separation of trajectories q(t1,x),
q(t2,x + r) grows by a factor of order 1 then we have

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∼ t2

r 〈w(x)w(x + r)〉 r � l′0. (80)

We disregarded the difference of time scales of l′0 and l0 since
it consists of logarithmic factor ∼ ln 10 which is of order 1.
The scaling produced depends on r/η. If we consider r � η

then in time of order λ−1 the trajectories separate by factor of
order 1 so that we find

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∼ 〈w(x)w(x + r)〉

λ2
l′0 � r � η.

When scales r � η are studied the characteristic separation
time tr of the trajectories separated initially (or rather finally)
by r roughly obeys the Richardson scaling tr ∼ r2/3ε−1/3 so

that

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∼ r4/3ε−2/3〈w(x)w(x + r)〉, (81)

where we disregard the corrections to Kolmogorov scaling
that would become relevant at large Reynolds numbers. The
self-consistency of the assumption of fast decay demands that
〈w(x)w(x + r)〉 decays with r faster than r−4/3—otherwise
the pair-correlation function would not be a decaying function
of the distance.

Formula (81) holds in all cases where the description with
weakly compressible flow holds. If we use it in the case of
inertial particles whose flow at small Stokes relaxation time
τ (properly nondimensionalized as small Stokes number) has
w = −τ (∇kui)(∇iuk) then the use of Kolmogorov scaling
(dimensional analysis telling that the only time scale of
turbulence relevant at scale r is tr ) gives (τ/tr )2 for the RHS
of Eq. (81), that is 〈w(x)w(x + r)〉 ∝ r−8/3 and

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∼ τ 2ε2/3r−4/3〈n(x)n(x + r)〉

= 〈n(x)〉〈n(x + r)〉 exp[Cτ 2ε2/3r−4/3], (82)

where C is a constant of order 1; cf. Eqs. (77) and (79). This
scaling of the correlation function agrees with the prediction of
the white noise model [6] however here the result is obtained
without modeling the flow so it holds for Navier-Stokes
turbulence.

In the case of diffusiophoretic particles at large Sc the
range ld 
 r 
 η has no counterpart in the study of inertial
particles. We have using Eq. (79) with w = Dp∇2 ln C,

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ≈ D2

p

∫ 0

−∞
〈∇2 ln C[t1,q(t1,x)]

×∇2 ln C[t2,q(t2,x+r)]〉dt1dt2, ld 
 r 
 η. (83)

We did not find a way for determining the r dependence of the
RHS. We can determine the order of magnitude using that at
r ∼ l0 the correlation function has to agree with that at smaller
scales given by Eq. (78),

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∼ �

(
x + r

2

)
, r ∼ l0, (84)

where the logarithmic factor in t∗ = |λ3|−1 ln(l0/r) is of order
1. The r dependence of Eq. (83) could be determined using
that the range of ld 
 r 
 η is characterized by one time scale
λ−1 so that the integration times in the integral are of order
λ−1 giving

〈n(x)n(x+r)〉
〈n(x)〉〈n(x+r)〉 − 1 ∼ D2

p

λ2
〈∇2ln C(x)∇2ln C(x+r)〉, (85)

that holds at ld 
 r 
 η. Still, though the study of simultane-
ous correlation functions is simpler, we could not determine
the r dependence of the correlation function in the last line.
This includes trying to perform the study in the simplest
context solving the equations on the correlation functions of
C obtained in the model where C is considered as a passive
field with no reaction on the flow and the statistics of the flow
is modeled as decorrelated in time but correlated in space. It
is this model of statistics that helped in finding solutions for
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other correlation functions but in this case significant obstacles
obstruct the solution [8]. However, we can use the obtained
formula for experimental testing which will be done in
Sec. IX.

IX. EXPERIMENTAL CONFIRMATION
OF PHORETIC CLUSTERING

According to the theory outlined above, phoresis leads to
clustering of particles independent of the phoretic mechanism.
These predictions generally relate to scales smaller than the
turbulent smoothness scale l0. Nevertheless effects are also
expected above this scale which is the range investigated
experimentally. For the experimental analysis of phoretic
clustering, we chose a turbulent flow with an inhomogeneous
distribution of salinity in order to generate diffusiophoretic
particle drift. This may also serve as a possible model for the
formation of marine snow in the ocean. In the experiment,
we examine the existence and the degree of particle clus-
tering by measuring the pair-correlation function of particle
concentration. Subsequently, we check the agreement of these
experimental findings with the theoretical predictions provided
in the previous sections.

A. Experimental technique

An inclined gravity current setup is used to analyze the
diffusiophoretic effect on particles in turbulent flow. The
experimental setup is described in detail by Krug et al. [68].
The facility, shown schematically in Fig. 2, allows for creation
of a turbulent flow that features strong local gradients of
salinity. The current is realized as a turbulent flow of water,
mixed with 1.8 vol % ethanol, rising along an inclined wall
in a tank filled with dyed saltwater that is initially at rest.
The small amount of ethanol in the light fluid serves to match
the refractive indices of both fluids—a crucial prerequisite for
optical flow measurements. For simplicity we will nevertheless
refer to the mixture of water and ethanol as “clear fluid”

in the following. An inhomogeneous salt distribution inside
the turbulent fluid is created by entrainment of the saltwater
into the lighter turbulent fluid from below. A representative
snapshot of the resulting salt concentration field is presented
in Fig. 3(a).

Employing a recently developed measurement tech-
nique [69] that combines scanning 3D particle tracking
velocimetry (PTV) and scanning laser induced fluorescent
measurements (LIF) allows us to obtain both the velocity
and the concentration along Lagrangian particle trajectories
in three dimensions. The volume of investigation measures
4 × 2 × 4 cm3 in the streamwise (x), the spanwise (y), and the
wall normal (z) direction, respectively. The PTV measurement
is performed by recording particle images from four different
viewing directions. Subsequently a stereoscopic matching of
the recorded particles is done, which is then followed by
temporally connecting the obtained 3D particle positions. This
provides the particle trajectories. The computation of the spa-
tial and temporal velocity derivatives is based on a local linear
interpolation of the velocity field and a weighted polynomial
fit to the derivatives along particle trajectories [70]. The linear
interpolation relies on information from particles in close
proximity of the investigated point. Therefore a sufficiently
high particle seeding density is crucial to properly access the
full Lagrangian velocity gradient tensor. A detailed description
of the system was published by Lüthi et al. [70]. Additionally,
we measure the Laplacian of the salt concentration indirectly
by using the total derivative along particle trajectories, i.e.,
using dC/dt = Ds∇2C. The spatial resolution of the velocity
measurement is approximately 4 η and the LIF resolution is
4ld in the plane of the light sheet (x-z) and about 90ld in
the scanning (y) direction. These combined PTV and LIF
measurements in three-dimensional space are used to analyze
the evolution of C along particle trajectories.

In order to characterize the flow field outside the limited
spatial domain of the 3D measurements, simultaneous planar
particle image velocimetry (PIV) [68] and LIF measurements
where performed on a domain located in the x-z plane and

x 

z 

g 

FIG. 2. Experimental setup showing the clear turbulent fluid (dark) rising along an inclined wall with angle (α = 10◦). Entrained salt water
(white) is gently resupplied through two perforated pipes on the bottom of the tank.
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FIG. 3. Instantaneous snapshots in the central plane of the observation volume of salt concentration field with C = 1 being the maximum
salt concentration (a), the corresponding norm of the gradient of the concentration field (b), and |∇ ln C|, which is the quantity that drives
diffusiophoresis (c).

the spanwise center of the tank. The domain extents 6 cm
in the wall-normal and streamwise direction respectively.
This results in a pixel resolution of approximately 0.2η.
The particle seeding results on average in an interparticle
distance of 4η. One major advantage that these 2D techniques
bring is the significantly longer recording time compared to
the 3D measurements, where the scanning procedure limits
the duration of the recording. This provides generally more
statistics which is crucial for accurate measurements of
the pair-correlation function of the particle concentration n.
Therefore we used the planar PIV/LIF measurements for the
analysis of the particle concentration n.

The particles (VESTOSINT R© 2159 natural color, supplied
by Evonik Industries AG) are uniformly seeded into the flow
long before entering the gravity current test section. This
guarantees a well mixed particle distribution. The size of
the particles used in the experiment is of O(ld ) and their
ζ potential is approximately −35 mV (measured using a
Zetasizer Nano Z), which implies a diffusiophoretic constant
of Dp ≈ 1.24×10−9 m2/s in NaCl according to [47]. Thus in
the presence of salinity gradients, theory predicts that particles
will acquire a drift velocity (see Table I), which—according
to our theoretical prediction—is expected to eventually induce
clustering of particles. Relevant flow and particle properties
of the experiment are summarized in Table II. Furthermore
the particle concentration n is a property of major importance
to the following analysis. It is obtained experimentally by
counting the number of particles in a circle with radius 2η,
according to the definition of Eq. (73). This size of the circle
is chosen in order to find a sufficient number of particles (>1)
inside the circle.

An instantaneous snapshot of the normalized salt concentra-
tion C is plotted in Fig. 3(a) where a value of 1 corresponds to
unmixed salty water and thus the maximum salt concentration.
Snapshots of the norm of the corresponding instantaneous
gradient of C and ln C are shown in Figs. 3(b) and 3(c),
respectively. Since diffusiophoresis is driven by |∇ ln C|, the

ubiquitous filaments of large values of |∇ ln C| [in Fig. 3(c)]
qualitatively indicate the regions where large diffusiophoretic
velocities are expected. Note that the LIF measurements do
not fully resolve the Batchelor scale and thus gradients are not
sufficiently accurately resolved in this study.

B. Profiles of average salt and particle concentration

The gravity current has one inhomogeneous direction,
namely the wall-normal (z) direction, while y is the homoge-
neous and x the quasihomogeneous coordinate. In particular,
gradients of mean quantities are absent in the y direction and
those in the x direction along the current have a characteristic
length scale that is much larger than in the z direction.
Profiles of particle and salt concentration averaged over
the homogeneous directions are shown in Fig. 4(a). Both
the average particle and the average salt concentration vary
approximately linearly in depth over the so-called mixing
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FIG. 4. Particle, salt concentration, and salt concentration gradi-
ent averaged over time and homogeneous directions. (a) Averaged
particle concentration n(z) (dashed line) and salt concentration
C(z) (continuous line); (b) averaged norm of the salinity gradient
|∇C(z)| (dashed line) and root-mean-square of the salinity gradient
[∇C(z)]rms (continuous line). The filled areas indicate four wall-
parallel layers used for conditional averaging in Sec. IX B.
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layer (≈40 � z/η � 100). The average as well as the root-
mean-square (rms) fluctuations of the salinity gradient shown
in Fig. 4(b) are also strongly dependent on z, where the
former is significantly smaller than the latter. Due to the
significant variations of the salinity gradient in the wall-normal
direction we expect the diffusiophoretic velocity and thus the
degree of clustering to depend strongly on the z direction.
For a detailed analysis we divided our measurement domain
into four regions according to the wall-normal distance. The
regions are indicated by the colored areas in Fig. 4, where
dark colors generally represent lower salinity gradients and
light colors represent high salinity gradients. We chose the
regions such that |∇C| is gradually increasing, as shown in
Fig. 4. Bin I (dark) corresponds to almost clear fluid, whereas
bin IV (bright) contains the highest salt concentration and salt
concentration gradients.

C. Experimental results

In this section we present the results of the experimental
study on the pair-correlation function of the particle concentra-
tion. We obtain the pair correlation of n (particle concentration)
from planar PIV-LIF measurements according to Eq. (73),
where we substitute (4πl3)/3 by πl2. The pair correlation is
evaluated in four regions that differ in wall-normal distance
(to the upper wall of the facility) and correspondingly the
magnitude of ∇C. The results of this analysis are presented
in Fig. 5. The pair correlation is plotted on a linear scale
against the norm of the particle separation r in Fig. 5(a) and
on a semilogarithmic scale in Fig. 5(b). The shaded areas
in the upper plot indicate the experimental uncertainty of
these measurements. This uncertainty is quantified by the
standard deviation of the pair-correlation function along the
quasihomogeneous streamwise direction. The pair correlation
in region I (circles) stays almost constant at approximately 1
throughout all particle separations, indicating a lack of positive
correlation caused by increase of the number of particles in
regions with higher average concentration. That correlation is
factored out considering correlations of normalized concen-
tration n(x)/〈n(x)〉. However, the pair correlation of region II
(diamonds), where significant concentration fluctuations are
present, starts to deviate from 1 at scales r � 8η, showing
minor inhomogeneities in the particle distribution at small
separation scales. Further away from the top wall, the data in
regions III (triangular markers) and IV (filled squared markers)
display a higher level of salinity gradients (Fig. 4), which is
accompanied by a stronger increase of the pair-correlation
function at small particle separations in comparison to region
II. The data points of regions III and IV deviate from 1 at scales
up to about 10–15η (Fig. 5). These results are a clear indicator
for particle clustering with the clustering degree increasing as
one moves to regions with larger distances to the upper wall
of the experimental facility.

Since initially the particles are only seeded into the top
part of the flow (without salt), it is important to check if
the observed clustering might be caused by the mixing of
the two fluids, that is to say, an inhomogeneous distribution
of particles caused solely by turbulent transport of particles
behaving as passive tracers. This would have nothing to do
with diffusiophoresis in salinity gradients. To this end we
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FIG. 5. Correlation of the particle concentration [Eq. (72)],
binned along z direction in linear (a) and logarithmic (b) scale. The
filled markers represent the pair correlation in different regions in
the gravity current flow, whereas the open, squared symbols are a
spatially averaged pair correlation of the particle concentration in a
flow without any salt. The shaded area in plot (a) indicates the standard
deviation of this pair correlation in streamwise direction. The colored,
continuous lines in (b) indicate possible fits using c0( η

r
)c1(z) for the

different bins. The magnitude of the salinity gradient is generally
low in bins marked with darker color and gradually increasing while
going to lighter colors.

conducted an experiment without adding salt, while keeping
all other experimental conditions the same. Note that due to
the active role of the salt this leads to a slightly different flow
evolution. However the basic flow features, most notably the
existence of a mixing shear layer, remain unchanged allowing
us to gauge the potential impact of “apparent clustering” due to
mixing and the initial particle distribution. The corresponding
data to these no-salt measurements are also included in
Fig. 5(a) (open squares). The continuous black lines in the
same plot indicate the relevant measurement uncertainty of
these data. The lack of clustering for the case of the spatially
averaged curve of the flow without salt conclusively shows
that mixing effects between the top turbulent fluid layer and
the bottom nonturbulent fluid layer can be excluded as a cause
of clustering in this experiment.

The pair correlations of the gravity current flow in regions
II–IV are well approximated by a power law of the form
c0(η/r)c1(z). The fit parameters c0 and c1 for each bin are
included in the legend of Fig. 5(b). This power law corresponds
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to the stretched exponential decay of the pair correlation; cf.
Eq. (82). The exponent c1 of the fit increases from 0 in region
1 to 0.04 in region 2 further to 0.072 in region 3 up to 0.08
in region 4. The prefactor c0 increases similarly for higher
bin numbers. At first glance, these numbers appear rather
small compared to what has been observed in various studies
of inertial particle clustering (e.g., [12,71,72]). However,
comparing the diffusiophoretic velocity to the Kolmogorov
velocity vη helps to classify these results properly. Considering
that the maximum variation of C from 0 to 1 physically
occurs over Batchelor scale (ld = 10−5 m), which results in
values of order 105 m−1 for |∇C|/C (which is equivalent
to |∇ ln C|) and thus a maximum diffusiophoretic velocity
of 10−4 m/s. The Kolmogorov velocity vη is computed as
η × λ = 3.33×10−3 m/s. Defining a Stokes number Stk for
inertial particles as Stk = τp/λ−1, we similarly divide the
maximum diffusiophoretic velocity by vη, which results in
a nondimensional number that is 3×10−2. According to Saw
et al. [71], inertial particles with Stk similar to 3×10−2 have
clustering exponents of order 10−2. This agrees well with the
clustering exponents found in our study. The results presented
in Fig. 5 show that the degree of particle clustering strongly
depends on the inhomogeneous coordinate as predicted by the
theory. The observed increase of clustering with larger wall
distance seems plausible in view of the fact that the salty
water mixes into the less dense and nonsalty fluid from below,
leading to high concentration gradients at some distance from
the top wall.

In order to support our conclusion that clustering arises
solely due to diffusiophoresis it is useful to analyze the
difference between inhomogeneities produced by turbulent
transport of tracers and clustering because of preferential
concentration. Turbulence can produce sharp contrasts and
fronts in the tracers’ concentration [8]. However inside the
contrasted regions there is no clustering. The pair-correlation
function of tracers at decreasing distance between the points
increases as a power law but with an exponent whose sign is
different from that observed in our experiment. For instance
for the pair correlation of tracer particle concentration θ

(passive scalar) with spatially uniform statistics using the
identity 2〈θ2〉 − 2〈θ (0)θ (r)〉 = 〈[θ (r) − θ (0)]2〉 we find in the
inertial range 〈θ (0)θ (r)〉 = 〈θ2〉 − c〈θ2〉(r/L)2/3 where c is
a constant of order 1 and L is the scale at which scalar is
injected. Thus the pair-correlation function grows as power
but with positive exponent, not the negative exponent that
we observe in our experiments (Fig. 5). It seems highly
implausible that spatial nonuniformity of passive scalar would
produce a power-law growth with negative exponent. This
provides further confirmation that turbulent mixing and the
initial seeding of particles are not responsible for the clustering
we observe in our experiments.

In order to isolate diffusiophoresis as the only possible
mechanism inducing clustering we have further analyzed the
effect of the weak particles inertia (Stk = 10−3) using our
PTV measurements. These three-dimensional measurements
data allow us to compute the second invariant of the velocity
gradient tensor Q, which is used to quantify the compressibil-
ity of the particle velocity that arises solely due to inertia. From
the second invariant of the velocity gradient tensor we obtain
the Laplacian of pressure ∇2p along particle trajectories. The

integral of the temporal correlation of ∇2p along a particle
trajectory is a measure for inertia-induced clustering [20].
In our experiment this results in a scaling exponent � for
inertial clustering on the order of 10−5. Hence, � due to
inertial clustering is several orders lower compared to the
scaling exponents we observe for the pair-correlation function
[c1 = O(10−2)] in Fig. 5.

We are therefore able to exclude inertia, mixing effects,
as well as the initial particle seeding as reasons for the
experimentally observed clustering. We clearly note that the
clustering degree increases significantly in regions with higher
salinity gradients and did not appear at all in an experiment
where the existence of diffusiophoresis is physically elimi-
nated. Since diffusiophoresis is driven directly by gradients
of the logarithm of the concentration gradient, we conclude
that diffusiophoresis is the main driving force for the observed
clustering.

We compare the observed pair-correlation function with the
theory. The considered experimental situation is not exactly
described by the theory since in the present experiment there
is no scale separation between the size of the particles and the
smallest (Batchelor) scale of turbulence. However the scales
are of the same order of magnitude, thus the theory predicts
that Eq. (83) holds by order of magnitude. We will further
examine this in the following.

Substituting φ in the last formula of Eq. (32) with ln C leads
to

∂t ln C + u · ∇ ln C = DS∇2 ln C + DS(∇ ln C)2. (86)

We make the assumption that both terms on the RHS of Eq. (86)
have identical scaling in the correlation function so that the
r dependence of the pair-correlation function in Eq. (83) at
ld 
 r 
 η can be obtained using

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∝ D2

p

∫ 0

−∞
〈[∇2 ln C + (∇ ln C)2]

×[t1,q(t1,x)][∇2 ln C + (∇ ln C)2][t2,q(t2,x+r)]〉dt1dt2,

where proportionality designates that both sides have similar r
dependence. This assumption is highly plausible because the
ratio of ∇2 ln C and (∇ ln C)2 involves the slowly varying field
ln C(x) that changes over the scale η. Then using the material
derivative along the fluid particle trajectory yields

d

dt
ln C[t,q(t,x)] = [∂tC + u · ∇] ln C; (87)

with Eq. (86) we find

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∼ D2

p

D2
S

lim
�t→∞

∫ 0

−�t

dt1dt2

×
〈

d

dt1
ln C[t1,q(t1,x)]

d

dt2
ln C[t2,q(t2,x+r)]

〉

= D2
p

D2
S

lim
�t→∞

〈
ln

(
C(0)

C(−�t)

)
1

ln

(
C(0)

C(−�t)

)
2

〉
, (88)

where the indices 1 and 2 denote the two particles’ trajectories
that pass through the points x and x + r at t = 0. The
correlation function in Eq. (88) is symmetric with respect to the
change �t → −�t due to the incompressibility of turbulence.
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We remark that the integral of the correlation function of
time derivatives d ln C/dt vanishes when r = 0 because it
becomes the integral of a complete time derivative. However
this degeneracy disappears in the range r � η (as confirmed
by experimental observations) so that the order of magnitude
estimates above hold.

It is this theoretical prediction (88) that we use for
comparison with the experiment. This form uses solely the
actual concentration field and does not involve the spatial
differentiation of the salinity field. This differentiated field
would increase the error significantly since |∇C| varies over
the smallest (Batchelor) scale ld , which is not fully resolved
in our measurements. The effect of this under-resolution
on the salt concentration field itself which we use for our
computation, results in a deviation of the variance of C,
σ 2(C), of less than 0.5% compared to the fully resolved field.
Compared to other sources of error in our measurement such as
pixel noise, particle attenuation, and stripes (discussed in detail
in [68]), the filtering effect of the salinity field is significantly
lower. These measurements therefore allow us to perform
qualitative estimations of the clustering and compare those
with the pair-correlation results shown in Fig. 5.

To evaluate Eq. (88) experimentally, we considered the salt
concentration along pairs of trajectories separated by a distance
r at a specific time t . Therefore, we find all particle pairs
separated by a certain distance r ± 0.1r at any time t and track
this trajectory pair for a time interval �t from this time step t

on. This analysis requires the evaluation of 3D data. Therefore
the results of the combined scanning PTV-LIF are used for the
following computation. We determined the salt concentration
along the trajectories at times t and t ± �t , subsequently
taking the average over all pairs of trajectories. To compensate
for the fact that particle movement is determined by the
diffusiophoretic particle constant Dp and not the measured
salt diffusion DS , we multiply the correlation by the factor
D2

p/D2
S , which is 0.395.

The correlation of Eq. (88) as a function of the particle
separation r is shown in Fig. 6. We did not study the
dependence of 〈n(x)n(x + r)〉 on the direction of r because of
the strong anisotropy of the flow (difference between vertical
and horizontal directions). This would demand a significantly
larger pool of data and is beyond the scope of the present
work. The different markers in Fig. 6 represent different
�t over which the salinity concentration has been tracked
along pairs of trajectories. The curves shift upwards with
increasing �t . The magnitude of all curves decreases slowly at
larger particle separation r . The robustness of this calculation
strongly depends on the number of pairs that are tracked. This
is caused by the strong fluctuations of C, which are captured
in the PDF of C that is presented as an inset in Fig. 6. We
find that sufficient robustness of the curves is guaranteed
only by tracking a minimum of 2000 pairs of trajectories
for each step in time and space. All the data presented in
Fig. 6 fulfill this criterion. The number of trajectory pairs
analyzed increases significantly with lower �t . For most of the
particle separations of the curves within 1 τη � �t � 2.5 τη

we find more than 104 pairs of trajectories. We obtained good
convergence for the limit of infinite �t over few Kolmogorov
time scales λ−1; cf. Eq. (85) and Fig. 6 discussed below. The
full convergence of �t independent of the limit is expected to
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FIG. 6. Spatial correlation of ln C along pairs of trajectories plot-
ted against the particle separation distance. Increasing �t increases
also the absolute value of the correlation. The power-law behavior
of the data at �t = 3.5τη is approximated by the dashed line, with
the coefficients c0 = 1.085 and c1 = 0.011. Inset: PDF of C showing
fluctuations over two orders of magnitude.

occur at about 5τη [20] which is out of reach for the present
experiment due to the limited length of trajectories. This
explains why the curves at different �t do still show a slight
increase as one goes to longer tracking times. This vertical
shift is expected to vanish as the tracking time approaches
�t = 5η. The statistical difficulties are also the reason why we
did not take into account any dependence on the wall-normal
direction here. However, our analysis showed that also here the
trajectories in regions of high salinity gradients are generally
shifted upwards compared to trajectories in lower salinity
regions. Due to poor statistical convergence we do not present
these results here.

The dashed line in Fig. 6 is a power law fit of the form
c0(η/r)c1 to the curve at �t = 3.5τη with c1 = 0.011 and
a prefactor c0 of 1.085. In order to confirm the order of
magnitude of the results obtained from the pair-correlation
function we compare the prefactor c0 obtained for the
measurements of Fig. 6 with the prefactors that were found
for the different bins of the pair-correlation function (where
we obtained values between 1 and 1.26 for c0 depending on
the z position). Since the results in Fig. 6 represent an average
over the wall-normal distance we conclude that the order of
magnitude estimates hold and the experiment qualitatively
(and by the order of magnitude quantitatively) confirms the
theoretical prediction (88).

Finally we compare the order of magnitude of the pair-
correlation function with � which is predicted to give the
order of magnitude of the pair correlation at the scale ld ; see
Eq. (84). We have

�(x) = D2
p

|λ3|
∫ ∞

−∞
〈∇2 ln C(0)∇2 ln C(t)〉dt ∼ D2

p

λ2
〈|∇2 ln C|〉2
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and we use this to approximate � by

�(x) ∼ D2
p

λ2D2
S

〈∣∣∣∣d ln C

dt

∣∣∣∣
〉2

. (89)

Using the averaged material derivative along all trajectories,
we find (D2

p/λ2D2
S)〈|d(ln C)/dt |〉2 in our experiment. Similar

to our previous observations these results depend strongly on
the inhomogeneous coordinate and we observe significantly
larger values for � in regions with strong salinity gradients
compared to the low-gradient regions. For further comparison
with the previous results we average � over the inhomoge-
neous flow direction and obtain that � is approximately 0.15.
Comparing this value with the spatially averaged value of the
prefactor c0 − 1 of the measurements of the pair-correlation
function we conclude that

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 − 1 ∼ � r ∼ η. (90)

This is true because c0 − 1 from Fig. 5(b) averaged over all bins
and weighted by their size results in 〈c0 − 1〉 = 0.11. Note that
these numbers are not definite numbers. Our approach should
rather be seen as a way of observing the effect qualitatively and
connecting theory and experiments throughout the whole range
of scales. Comparison with Eq. (84) leads to the conclusion
that the pair-correlation function does not decrease by order
of magnitude in the Batchelor range ld < r < η. This is quite
reasonable since η/ld ∼ 10 is not too large.

X. DISCUSSION AND CONCLUSIONS

In this paper we studied the behavior of diffusiophoretic
particles in turbulent flow. The regime of fast reaction where
the particles follow the local flow up to the diffusiophoretic
drift has been investigated intensively. We demonstrated that
the theory of clustering in weakly compressible flows applies.
This implies fractality of the particles’ distribution in space
(clustering). The provided theory does not include the practi-
cally relevant case where the particles’ size is comparable with
the smallest spatial scale of turbulence (the Batchelor scale in
the case that we studied). Thus we performed experiments in
that range, confirming that the clustering continues holding
though the theory works only by order of magnitude.

We demonstrated that phoretic particles that perform steady
motion at a constant velocity vph = cph∇φ in the presence of
gradients of the field φ in a fluid at rest will move in the flow
u(t,x) with the speed

v(t) = u[t,x(t)] + c∇φ[t,x(t)], (91)

provided that the characteristic temporal and spatial scales of
the flow are above the characteristic scales of the phoretic
phenomenon. The particles’ motion in space fits the frame of
weakly compressible flow,

dx
dt

= v[t,x(t)], |∇ · v| 
 |∇v|. (92)

Thus we could use the theory of the distribution of particles in
weakly compressible random flows [7,20] for predicting that
phoretic particles distribute in space over a multifractal set
with the pair-correlation function of the particle concentration

n obeying

〈n(x)n(x + r)〉
〈n(x)〉〈n(x + r)〉 =

(
l0

r

)�[x+(1/2)r]

, r 
 l0, (93)

where l0 is the smallest of the Kolmogorov and Batchelor
scales. The function �(x), given by Eq. (52), varies in
space over the scales of inhomogeneity of the statistics
of turbulence. The positivity of �(x) signifies divergence
of the rms fluctuation of the concentration [〈n2(x)〉 = ∞]
which manifests the distribution of particles over a singular
multifractal set in space.

In the range r � l0 the correlations are weak, 〈n(x)n(x +
r)〉 ≈ 〈n(x)〉〈n(x + r)〉. We determined the correction that
corresponds to (where it can be proved) stretched exponential
decay of 〈n(x)n(x + r)〉/〈n(x)〉〈n(x + r)〉 to 1.

Equation (93) goes beyond the previous theory developed
for spatially uniform statistics of turbulence [20]. It holds in the
case of inhomogeneous turbulence provided the characteristic
scale of inhomogeneity is not too small. Thus it can be used in
a wide range of situations, including the experiment performed
in this work.

Our theoretical predictions apply to a wide range of
phoretic phenomena. These include thermophoresis, diffusio-
phoresis, chemotaxis, and electrophoresis. The prediction is
based on the framework of weakly compressible flow that
already proved itself in the study of inertial particles and
phytoplankton [40,73]. However, the study of inhomogeneous
turbulence and extension outside the scale of smoothness,
crucially extending the validity of the theory to many practical
applications, is the content of this work only.

Using simultaneous 3D particle tracking and concentration
measurements in a turbulent gravity current, we confirmed the
theoretical prediction of phoretic clustering in turbulent flow.
We measured positive pair correlations of diffusiophoretic
particles that increase in regions of higher salinity gradients.
Further, we confirmed these measurements using correlations
of concentration over pairs of trajectories as well as order
of magnitude estimates for gradients of concentration. Given
that the particle size used in the experiment is of the same
order as the Batchelor scale ld , the experiments demonstrate
clustering beyond the theoretical limits which increases the
practical relevance and range of applications.

The observed diffusiophoretic clustering could have an
effect on the formation of marine snow. In the ocean ld
can well be of the order of the size of colloidal particles or
smaller. The typical value for the energy dissipation ε per
unit volume per unit time in oceanic flows is 10−6 m2/s3.
Therefore the Kolmogorov time scale is τη = √

ν/ε ∼ 1 s.
Correspondingly η = ν3/4ε−1/4 = τ

3/2
η

√
ε ∼ 10−3 m, which

gives ld ∼ 10−5 m. This length scale is comparable to typical
sizes of colloidal particles in the ocean [74]. We therefore
suggest that diffusiophoresis may accelerate the agglomeration
of organic matter and formation of marine snow.
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