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One of the promising capabilities of magnetic microswimmers is towing a cargo, which can be used for targeted
drug delivery or performing tissue biopsy. A key question is what should be the optimal size ratio between the cargo
and the swimmer’s flexible tail. This question is addressed here for the simplest theoretical model of a magnetic
microswimmer undergoing planar undulations—a spherical load connected by a torsion spring to a rigid slender
link. The swimmer’s dynamic is formulated and leading-order expressions for its motion are obtained explicitly
under small-amplitude approximation. Optimal combinations of magnetic actuation frequency, torsion stiffness,
and tail length for maximizing displacement, average speed, or energetic efficiency are obtained. The theoretical
results are compared with reported experiments in several types of cargo-towing magnetic microswimmers.
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Recent technological progress has enabled manufacturing
and operation of microrobotic and nanorobotic swimmers,
which are commonly actuated by a time-varying external
magnetic field whose direction is either rotating or oscillating
in plane [1–3]. The design of such microswimmers is greatly
inspired by swimming microorganisms [4], whose motion is
governed by low Reynolds number hydrodynamics, where
viscous effects dominate while inertial effects are negligible.
Three different types of magnetic microswimmers currently
exist, listed as follows. The first type is made of a rigid helix,
which is possibly connected to a spherical head or cargo.
The swimmer is propelled in a corkscrewlike motion under
application of a rotating magnetic field, cf. [3]. The second type
[5–7] consists of a rigid magnetic head attached to a flexible
thin filament, under a magnetic field with a constant component
superposed with a rotating component in a perpendicular
plane. Under the combined magnetic field, the flexible wire
deforms into a constant helical shape and the microswimmer
again moves in steady corkscrew motion. The third type of
a magnetic microswimmer is actuated by a magnetic field
whose direction undergoes periodic oscillations within a plane,
which induce planar undulations of the swimmer’s shape that
result in net propulsion. A pioneering example of this type of
microswimmer has been demonstrated by Dreyfus et al. [1],
which consisted of a chain of magnetized beads connected
by DNA links and composing a flexible magnetic tail, which
was attached to a red blood cell. Other recent versions
of planar microswimmers of this type are the bio-inspired
magnetopserm swimmer of Khalil et al. [8], as well as the
microswimmers of Jang et al. [9], which are composed of
discrete chains of two or three rigid links connected by
flexible hinges, whose dynamics has been studied analytically
in Ref. [10] and numerically in Ref. [11].

These three types of microswimmers differ fundamentally
in their direction of net motion: for the first swimmer type, the
direction is determined only by the handedness of the rigid
helix, so that reversing the sense of the rotating magnetic
field results in reversing the swimming direction. On the
other hand, the second and third types of swimmers with
a flexible tail swim towards the direction of the constant
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component of the magnetic field and orient themselves with
the magnetic part at the front. Therefore, the microswimmers
in Refs. [6,8,9] move towards their magnetic head while in
Dreyfus’s microswimmer [1] the nonmagnetic red blood cell
is pulled towards the magnetic tail. Another key difference
between the three types of magnetic microswimmers is the
dependence on actuation frequency ω of the magnetic field:
for the first type of rigid helical swimmer, the forward speed
V increases linearly with ω until reaching an ultimate upper
bound at a critical value of ω called the step-out frequency. On
the other hand, the second and third type of swimmers with a
flexible tail have a resonancelike frequency dependence, where
V vanishes for ω → 0 and ω → ∞ and attains a maximum
for some intermediate frequency.

All these magnetic microswimmers mentioned above have
a promising potential in modern biomedicine, for performing
various minimally invasive tasks inside the human body in
the blood vessels, digestive system, or even inside the brain
[12]. Importantly, many of these biomedical tasks require
capabilities of towing a cargo, which may be a small capsule for
targeted drug delivery, a tiny camera for transmitting images,
or even tools for taking biopsies of small tissue samples
[13]. Basic capabilities of cargo towing have been already
demonstrated for all three types of magnetic microswimmers.
For the first type of a rigid helical swimmer, Tottori et al. [14]
have developed a microgripper that can be used for capturing
and transporting small particles. For the second type of a
corkscrew-rotating swimmer with a flexible tail, Gao et al.
[6] have demonstrated controlled drug delivery by a spherical
capsule attached to the swimmer’s magnetic head. For the
third type of a planar undulating swimmer, the red blood
cell of Dreyfus’s microswimmer [1], or the magnetic head
of magnetosperm [8] can be regarded as a cargo towed by the
flexible tail.

An important aspect of cargo towing by a microswimmer
is finding the desired ratio between sizes of the propelling tail
of the swimmer and that of the cargo. This question has been
addressed by Raz and Leshansky [15] for a theoretical model
of internally powered microswimmer with a fixed shape, such
as a treadmilling torus or rotating beads, where the optimal
size ratio for maximal energetic efficiency has been obtained.
Golestanian [16] and Felderhof [17] considered extensions
of the three-linked-spheres model [18] where one of the

2470-0045/2016/93(6)/063105(8) 063105-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.063105


EMILIYA GUTMAN AND YIZHAR OR PHYSICAL REVIEW E 93, 063105 (2016)

spheres represents a cargo, and studied the effects of structural
parameters on swimming speed and energetic efficiency. In
a more biologically relevant model, Lauga [19] studied a
spermlike microswimmer, which consists of a head connected
to an internally actuated flexible tail, and found optimal
head-tail size ratio that maximizes either swimming speed
or energetic efficiency. While the works mentioned above
considered internally actuated swimmers, structural optimiza-
tion of externally actuated magnetic microswimmers has been
studied theoretically in Ref. [20] and verified experimentally
in Ref. [21] for the first type of rigid helical microswimmers.
For the second type of a rotating flexible tail, Gao et al. [6] have
found the optimal cargo radius for a given tail, which attains
maximal distance per cycle. For the third type of magnetic
microswimmer under planar undulations, optimal actuation
frequency and optimal length of the flexible magnetic tail
for towing the red blood cell have been obtained separately
in Ref. [22]. In the work [23], the spheroidal shape of a
magnetic head is optimized for a given flexible nonmagnetic
tail. It is hard to compare between the optimization results
of these works since Ref. [6] involves a variable cargo
attached to a head with constant magnetization, Ref. [23]
assumes a head with volume-dependent magnetization, while
Ref. [22] considers a tail with length-dependent magnetization.
Additionally, Refs. [6] and [23] study maximization of distance
per cycle (scaled speed V/ω) while Ref. [22] studies maximal
speed V by separately optimizing either frequency or tail
length. None of these works study combined optimization of
all swimmer’s parameters–actuation frequency, stiffness, and
tail-to-head size ratio. Finally, none of these works studied
optimization with respect to energetic efficiency. While energy
resources from external magnetic field are commonly believed
to pose no practical limitation, an important lesson from the
experiments in Ref. [9] is that scenarios of excessive heating
of the magnetic coils can be observed for large field intensity
and/or frequency. Therefore, energy expenditure and energetic
efficiency should also be taken into consideration.

The goal of this paper is to complement the works
mentioned above by studying systematic optimization of
cargo towing of a planar undulating magnetic microswimmer.
Instead of modeling a continuous deformable tail as in
Refs. [1,8,22], we study a modification of the simple two-
link magnetic microswimmer model presented in Ref. [10],
which has been demonstrated experimentally in Ref. [9].
The microswimmer model, shown in Fig. 1, consists of a
spherical cargo and a slender link, which are connected by
a passive revolute joint with a torsion spring that represents
the tail’s elasticity. The incorporation of elasticity enables
this two-link swimmer to overcome the well-known “scallop
theorem” coined by Purcell [24] and to generate net motion
in spite of the time-reciprocal periodic input. We consider
three typical cases, which differ in the links’ magnetization:
(i) constant magnetization of a variable-length tail; (ii) length-
dependent magnetization of the tail as in Refs. [1,22]; and (iii)
constant magnetization of a variable-size cargo as in Ref. [6].
Leading-order expressions for the swimmer’s motion under
small-amplitude oscillations are formulated, in order to obtain
optimal combinations of the swimmer’s parameters: actuation
frequency, stiffness, and tail length, which maximize the
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FIG. 1. Two-link model of a magnetic microswimmer with a
spherical cargo.

average swimming speed, displacement per cycle, or energetic
efficiency. The theoretical results are then compared with
reported experimental data on performance of different types
of cargo-towing magnetic microswimmers from the literature.
Supplemental Material contains MATLAB code for symbolic
computation of all the results [25].

The planar microswimmer’s model is depicted in Fig. 1. It
consists of a spherical cargo of radius r and a slender link of
length l and cross-sectional radius a � l, which are connected
by a flexible rotary joint with torsion stiffness constant k. The
internal torque acting at the flexible joint is given by τ = −kφ,
where φ is the relative angle at the joint. A planar uniform
time-varying external magnetic field is applied, which is given
by

B(t) = B0{cos[ψ(t)], sin[ψ(t)]}T , where ψ(t) = ε sin(ωt).

(1)

That is, the magnetic field B(t) has a constant magnitude of B0

and its direction is oscillating in the x-y plane about the x axis
at a frequency ω and angular amplitude of ε. The generalized
coordinates that describe the swimmer’s planar motion are
chosen as q = (x,y,θ,φ)T , where (x,y) denote the position of
the joint and θ is the orientation angle of the spherical cargo,
see Fig. 1. For convenience, we first consider case (i) where the
slender link has a constant magnetization of strength h, which
is directed along its longitudinal axis t̂, while the spherical
cargo (head) is assumed to be nonmagnetic. The magnetic
field generates a time-varying external torque on the slender
link, which is given by

MB(θ,φ,t) = h(t̂ × B) = hB0 sin[ψ(t) − θ − φ]ẑ. (2)

Due to the swimmer’s small scale, it is assumed that its
motion is governed by low Reynolds number hydrodynamics
where viscous drag forces dominate while inertial effects are
negligible. The total forces and torques of viscous drag that act
on the slender link are approximated by using resistive force
theory [26,27], as follows:

fl = −ct l(vl · t̂)t̂ − cnl(vl · n̂)n̂

Ml = −cnl
3

12
ωl, (3)
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where vl is the linear velocity of the link’s center, ωl is its
angular velocity about the z axis, ct = 2πμ

γ
is the viscous

resistance in the link’s axial direction t̂, and cn = 2ct is
the viscous resistance in the normal direction n̂. The fluid’s
viscosity is μ and the nondimensional constant γ depends
logarithmically on the link’s slenderness ratio as γ = log(L/a)
where L is a characteristic length scale [27]. Neglecting
hydrodynamic interaction between the cargo and the slender
link, the viscous drag forces and torques acting on cargo are
given by:

fr = −6πμrvr

(4)
Mr = −8πμr3ωr,

where vr is the linear velocity of the cargo’s center, and ωr is
its angular velocity about the ẑ axis.

The dynamic equations of the microswimmer can be
obtained by using the assumption of quasistatic motion, which
implies that the net forces and torques acting on each link must

sum to zero. This gives the following set of equations:

fl + fr = 0

Mr + MB + Ml + rl × fl + rr × fr = 0 (5)

Mr + rr × fr − τ = 0,

where rr and rl are vectors from the joint to the center of the
cargo and center of the tail, respectively. The first equation
in (5) is the total force balance on the entire swimmer, which
gives two scalar equations in x,y components. The second
equation is the z component of torque balance about the joint
for the entire swimmer, and the last equation in (5) is the
z component of torque balance about the joint for the cargo
only, which also counts the internal joint torque τ . Substituting
Eqs. (2), (3), and (4) into (5) and expressing rr ,rl ,vr and vl in
terms of generalized coordinates and velocities q,q̇ then yields
a 4×4 linear system in q̇, which is given explicitly as:

A(q)q̇ = b(t,q), (6)

where

A(q) =

⎡
⎢⎢⎢⎢⎣

l(1+sin2(θ+φ))+3γ r −lsin(θ+φ) cos(θ+φ) −l2sin(θ+φ)+3γ r2sin θ −l2sin(θ+φ)

−l sin(θ+φ) cos(θ+φ) l(1+cos2(θ+φ))+3γ r l2cos(θ+φ)−3γ r2cos θ l2cos(θ+φ)

−l2 sin(θ+φ)+3γ r2 sin θ l2 cos(θ+φ)−3γ r2 cos θ 7γ r3+ 2
3 l3 2

3 l3

−3γ r2sin θ 3γ r2cos θ −7γ r3 0

⎤
⎥⎥⎥⎥⎦,

b(t,q) = γ

2πμ

⎡
⎢⎢⎢⎣

0

0
hB0 sin (ψ(t)−θ−φ)

−kφ

⎤
⎥⎥⎥⎦.

Equation (6) is a coupled nonlinear first-order time-dependent differential equation in q(t), which governs the microswimmer’s
motion.

Next, characteristic scales and nondimensional parameters are defined in order to obtain normalized (i.e., dimensionless)
equations of motion. Analogously to our previous work [10], we define two characteristic time scales, the viscomagnetic time
is tm = 8πμr3

3B0h
and the viscoelastic time tk = πμr3

6k
. Additionally, we define two nondimensional parameters as α = tm/tk and

δ = l/r . The equations of motion (6) are then normalized by scaling the time t and frequency ω with respect to tm and scaling
distances by the radius of the cargo r .

We now analyze the swimmer’s dynamics assuming small-amplitude oscillations in the direction of the magnetic field,
i.e., ε � 1 in (1). The solution q(t) of the (normalized) equations of motion (6) is expanded into a power series in ε as
q(t) = εq1(t) + ε2q2(t) + · · · . Since the expressions in (6) are independent of the position x,y and depend only on the angles
θ and φ, their dynamics is uncoupled and can be analyzed first. The first-order terms in ε from (6) give the linearized dynamic
equations of θ1(t) and φ1(t) in normalized time as:

[
θ̇1

φ̇1

]
=

[
A11 A12

A21 A22

][
θ1

φ1

]
+

[
B1

B2

]
sin(ωt), (7)

where

A11 = 12γ

δ(7δ + 24γ )
A12 = αδ2 + 6γαδ + 9γα

12γ δ(7δ + 24γ )
A21 = −4γ (3δ2 + 14δ + 12γ )

δ3(7δ + 24γ )
(8)

A22 = −(αδ4 + 6γαδ3 + 18(8γ + γα)δ2 + 42(16γ + γα)δ + 36γ 2α)
12γ δ3(7δ + 24γ )

B1 = −12γ

δ(7δ + 24γ )
B2 = 4γ (3δ2 + 14δ + 12γ )

δ3(7δ + 24γ )
.

It can be proven that this system is linearly stable for any positive α, δ, and γ , since the eigenvalues of the matrix [Aij ] in (7)
always have negative real parts. This implies that transient terms in the solution of (7) decay exponentially to zero. Therefore,
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we consider only the steady-state solution of (7), which takes the form [25]:

θ1(t) = Cθ (ω,α,δ) sin(ωt) + Dθ (ω,α,δ) cos(ωt)
(9)

φ1(t) = Cφ(ω,α,δ) sin(ωt) + Dφ(ω,α,δ) cos(ωt).

The first-order dynamics of the swimmer’s translation x,y is degenerate ẋ1 = ẏ1 = 0. The second-order dynamics of x(t) is
given by [25]:

ẋ2(t) =− 28γ

δ(7δ+24γ )
θ2

1 (t)− γ (αδ2+7(16+α)δ+12(16+α)γ )
4δ(δ+3γ )(7δ + 24γ )

φ2
1(t)

− γ (2αδ2+(224+7α+6γα)δ+(528+21α)γ )
4δ(δ+3γ )(7δ+24γ )

θ1(t)φ1(t)

+ 28γ

δ(7δ+24γ )
sin(ωt)θ1(t)+ 4γ (7δ+12γ )

δ(δ+3γ )(7δ+24γ )
sin(ωt)φ1(t). (10)

Substituting the solutions of φ1(t) and θ1(t) from (9) into (10) and integrating in time then gives the steady-state second-order
solution of x(t), which takes the form [25]:

x2(t) = Cx(ω,α,δ) sin(2ωt) + Dx(ω,α,δ) cos(2ωt) + V2(ω,α,δ)t. (11)

Thus, the leading-order expression for the (normalized) mean forward speed of the swimmer is V = ε2V2(ω,α,δ). The net
forward displacement per cycle is defined as X = V T , where T = 2π/ω is the period time. Explicit leading-order expressions
for the speed V and displacement X are obtained as:

X = ε2 2πb1ω

a4ω4 + a2ω2 + a0
+ O(ε4)

V = ε2 b1ω
2

a4ω4 + a2ω2 + a0
+ O(ε4), (12)

where

b1 = 288αδγ 3(3δ2 + 14δ + 12γ )

a4 = 144δ6(7δ + 24γ )2(δ + 3γ )

a2 = [(δ4 + 6γ δ3 + 18γ δ2 + 42γ δ + 36γ 2)2α2 + 288γ 2(3δ2 + 14δ + 12γ )2α + 9216γ 2(7δ + 6γ )2](δ + 3γ )

a0 = 16(δ + 3γ )(2δ + 3γ )2α2γ 2. (13)

Notice that (12) indicates that the extreme cases of zero or infinite stiffness at the joint (α → 0 or α → ∞) result in zero net
motion due to reciprocal motion of φ and θ with zero phase difference. (In fact, the work [10] pointed out that a two-link swimmer
with α = 0 can still swim, provided that the two links both have nonzero and asymmetric magnetization strengths.)

Next, we consider energy expenditure of the microswimmer. The total mechanical work W expended in one period of the
swimmer is given by

W =
∫ T

0
P (t)dt =

∫ 2π
ω

0
MB(t) · (θ̇ (t) + φ̇(t))dt, (14)

where P (t) is the instantaneous power expended by the magnetic torque MB(t). (The same value of W can also be obtained
by integrating the power dissipation due to viscous drag forces over one period.) The average power is defined as P̄ = W/T .
Expanding MB(t) in (2) and substituting the leading-order solution (9) the leading-order expression for P̄ can be obtained as
[25]:

P̄ = ε2
16
3 πγ ((288δ3(7δ + 6γ )(7δ + 24γ )ω4 + α2(2δ + 3γ )(δ4 + 6γ δ3 + 18γ δ2 + 42γ δ + 36γ 2)ω2)

144δ6(7δ + 24γ )2ω4 + ((δ4 + 6γ δ3 + 18γ δ2 + 42γ δ + 36γ 2)2α2 + 288γ 2(3δ2 + 14δ + 12γ )2α + 9216γ 2(7δ + 6γ )2)ω2 + 16γ 2(2δ + 3γ )2α2
+ O(ε4).

(15)

Lighthill’s energetic efficiency is defined as η = V 2/P̄ , which compares the power required to rigidly dragging the undeformed
swimmer by an external force to the actual power required for swimming at the same mean speed. Using (12) and (15), the
leading-order expression for Lighthill’s efficiency is obtained as

η = ε2 n2ω
2

d6ω6 + d4ω4 + d2ω2 + d0
+ O(ε4), (16)
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where

n2 = 15 552α2δ2γ 5(3δ2 + 14δ + 12γ )2

d6 = 41 472δ9π (δ + 3γ )2(7δ + 6γ )(7δ + 24γ )3

d4 = 144πδ3(7δ + 24γ )(δ + 3γ )2[(δ4 + 6δ3γ + 18δ2γ + 42δγ + 36γ 2)

× (28δ5 + 165δ4γ + (144γ + 252)δ3γ + (216γ + 588)δ2γ + 1008δγ 2 + 432γ 3)α2

+ 576γ 2(7δ + 6γ )(3δ2 + 14δ + 12γ )2α + 18 432γ 2(7δ + 6γ )3]

d2 = πα2(2δ + 3γ )(δ + 3γ )2[(δ4 + 6δ3γ + 18δ2γ + 42δγ + 36γ 2)3α2

+ 288γ 2(δ4 + 6δ3γ + 18δ2γ + 42δγ + 36γ 2)(3δ2 + 14δ + 12γ )2α

+ 4608γ 2(7δ + 6γ )(28δ5 + 165δ4γ + (144γ + 252)δ3γ + (216γ + 588)δ2γ + 1008δγ 2 + 432γ 3)]

d0 = 16α4γ 2π (δ + 3γ )2(2δ + 3γ )3(δ4 + 6γ δ3 + 18γ δ2 + 42γ δ + 36γ 2) (17)

The fact that η scales as ε2 indicates that increasing the actuation amplitude results in larger energetic efficiency. Importantly,
the dependence of X, V , and η on the actuation frequency ω in (12) and (16) indicates that all these quantities vanish at the
extreme cases of ω → 0 and ω → ∞. Moreover, in the intermediate range there exist different values of optimal frequencies
that maximize each of these quantities. As an example, Fig. 2(a) plots X, V , and η as a function of the actuation frequency ω

for ε = 0.4, γ = 3, α = 10, and δ = 2. The dashed curves are leading-order expressions while solid curves are obtained from
numerical integration. It can be seen that the leading-order expressions give a very good approximation of the exact quantities for
amplitude of ε = 0.4rad. When the amplitude ε is decreased, deviations between exact values and approximate solutions vanish.
It can also be seen that X, V , and η are maximized at different actuation frequencies denoted by ωx, ωv and ωη, respectively.
Analytic expressions for these frequencies can be obtained as follows. From (12), the optimal frequency that maximizes the
forward speed V is given by

ωv =
(

a0

a4

)1
4

=
√

(2δ+3γ )αγ

3(7δ+24γ )δ3
. (18)

The optimal frequency that maximizes the net displacement X is given by

ωx =
⎛
⎝−a2 +

√
a2

2 + 12a0a4

6a4

⎞
⎠

1
2

. (19)

Note that X is similar to the scaled speed V/ω, which is considered as a performance measure in several other works, cf. [6].
Using (16), the optimal frequency that maximizes Lighthill’s energetic efficiency η is obtained as the positive real solution ωη of
the bicubic equation:

2d6ω
6 + d4ω

4 − d0 = 0. (20)

It can be verified numerically that the optimal frequency are typically ordered as ωx < ωη < ωv , as demonstrated in Fig. 2(a).
Next, we consider optimization of other physical parameters of the swimmer, namely the nondimensional stiffness α and

tail-cargo size ratio δ, for maximizing either V , X, or η. Since the dependence on the slenderness parameter γ is less significant,
we choose a typical value of γ = 3, which is adopted from the microswimmers in Ref. [9] and corresponds to slenderness ratio
of L ≈ 20a. Substituting the optimal frequency ω = ωv in (18) into the expression for V in (12) gives:

V (ω = ωv,α,δ) = 288γ 3δ(3δ2+14δ+12γ )α

(δ+3γ )[(δ4+6γ δ3+18γ δ2+42γ δ+36γ 2)α+672γ δ+576γ 2]2
. (21)

Figure 2(a) shows a contour plot of V (ωv) as a function of α and δ for γ = 3. It can be seen that for a given value of α there
exists an optimal value of δ, and vice versa. Moreover, there exist optimal combination of both parameters for which the speed
V (ωv) attains a global maximum. This can also be shown analytically, as follows. From (12) and (18), the optimal value of α

that maximizes V (ωv) for given δ is obtained as

αv = 96γ (7γ δ+6γ 2)

δ4+6γ δ3+18γ δ2+42γ δ+36γ 2
. (22)

Substituting α = αv into (21) then gives V as a function of δ:

V (ω = ωv,α = αv,δ) = ε2 0.75γ 2δ(3δ2+14δ+12γ )

(δ+3γ )(7δ+6γ )(δ4+6γ δ3+18γ δ2+42γ δ+36γ 2)
.
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FIG. 2. (a) X, V and η as a function of ω for ε = 0.4, γ = 3, α = 10, and δ = 2. The dashed curves are leading-order expressions while
solid curves are obtained form numerical integration. (b) Contour lines of mean speed V (ωv) for γ = 3 as a function of α and δ.

For a given value of γ , the optimal value of the size ratio δ

is obtained by finding the positive real root of an eighth-order
polynomial in δ. Choosing γ = 3, a global maximum for the
speed Vmax is attained for ωv ≈ 0.5713, αv ≈ 10.88, and δv ≈
1.7016, such that Vmax = 3.1×10−3ε2 r

tm
. Remarkably, it can be

seen that the optimal tail length is shorter than the diameter of
the cargo. This is in qualitative agreement with the observation
made in Ref. [21] that the optimal helical tail for towing a cargo
is very short—just a bit longer than a single pitch of the helix.

Substituting the optimal frequency ω = ωx into the expres-
sion for the forward displacement X in (12), it can be shown
that for given values of δ and γ , maximization of X(ωx)
is attained at the nonphysical limit of α,ωx → 0. The same
phenomenon also occurred for the two-link microswimmer
model analyzed in Ref. [9]. For given values of α and γ , the
dependence of X(ωx) on δ is complicated. Nevertheless, there

is also an optimal value of δ, which maximizes X(ωx). For
example, choosing α = αv = 10.88 and γ = 3, one obtains
an optimal frequency of ωx = 0.068 26 and optimal size ratio
of δx = 3.018, which gives X = 125.5×10−3ε2r . That is, the
optimal tail for maximizing X is longer than the one required
for maximizing V . For these parameter values the mean speed
is indeed suboptimal, V = 1.36×10−3ε2 r

tm
< Vmax.

The expression for Lighthill’s efficiency (16) is also
maximized at a unique optimal combination of the parameters
α,δ, and frequency ω. Finding the optimal value requires
solving a complicated set of high-degree polynomial equa-
tions. For example, choosing γ = 3, the optimal (normalized)
parameter values are obtained numerically as ωη = 5×10−5,
αη = 0.0019, and δη = 2.15. The optimization results are sum-
marized in Table I (left column). It can be seen that the optimal
values of α and ω for maximizing speed, displacement, or

TABLE I. Summary table.

Case (i) Link constant magnetization (ii) Link length-dependent magnetization (iii) Head constant magnetization

h = const h = m · l h = const
scaling r = const r = const l = const

tk = πμr3

6k
tk = πμr3

6k
tk = πμl3

6k

tm = 8μπr3

3B0h
tm = 8μπr2

3B0m
tm = 8μπl3

3B0h

δv = 1.7 δv = 4.015 δv = 4.92
Vopt

ε2r/tm
αv = 10.88 αv = 17.06 αv = 8.774
ωv = 0.57 ωv = 0.4243 ωv = 13.61
V = 3.1×10−3 V = 8.156×10−3 V = −28.7×10−3

δx = 3.018 δx = 7.223 δx = 2.622
Xopt

ε2r
ωx = 0.068 26 ωx = 0.1039 ωx = 1.61

α = αv X = 125.5×10−3 X = 253.3×10−3 X = −45.84×10−3

δη = 2.15 δη = 2.15 δη = 3.25
ηopt

με2r3/t2
m

αη = 0.0019 αη = 0.0019 αη = 3×10−5

ωη = 5×10−5 ωη = 5×10−5 ωη = 2.2×10−5

η = 1.1454×10−4 η = 1.1454×10−4 η = 3.3774×10−4
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TABLE II. Swimmer comparison.

B0 ε r δ a h or m μ f V X = V/f Vα Xα δopt Vαδ Xαδ

[mT] [μm] [μm] [Am2] or [Am] [Pa s] [Hz] [μm/sec] [μm] [μm/sec] [μm] [μm/sec] [μm]

1. Walker 4 − 0.24 δv = 5.5 0.11 h = 1.4 · 10−16 10−3 fv = 80 10.6 0.133 1.4 0.017 2.73 2.77 0.035
2. Tottori 1 − 3 19 1 h = 2.2 · 10−11 10−3 10 25+ 2.5 24.5 2.45 18.18 24.53 2.45
3. Dreyfus 8.9 1.16 3.1 7.7 0.5 m = 4 · 10−6 10−3 fx = 10 22 2.2 24.84 2.48 29.8 42.13 4.21
4. Gao 1 0.811 0.625 δv = 9.28 0.2 h = 9 · 10−14 10−3 10 11 1.1 1.055 0.1055 2.24 3.45 0.345
5. Khalil 5 π/4 21.3 15.1 2.6 h = 1.6 · 10−7 10−3 fv = 45 158 3.5 139.89 3.1 0.93 2324.57 51.6572

efficiency differ significantly in several orders of magnitudes.
On the other hand, optimal values of the size ratio δ always
remain within O(1).

Next, we consider case (ii) where the tail’s magnetization
depends linearly on the link’s length. This is highly relevant in
case where the tail is made of a magnetic material or composed
of a chain of magnetic beads as in Refs. [1,22]. Let m denote
the link’s magnetization per unit length, such that h = ml. In
this case, we choose a different time scale for normalization
as t ′m = 8μr2

3B0m
, which is independent of l. The new and old time

scales are related as t ′m = δtm. This affects the definition of
normalized frequency and stiffness, which now satisfy ω′ =
δω and α′ = δα. The expressions for the net displacement per
period X and Lighthill’s efficiency η can be directly obtained
by substituting ω = ω′/δ and α = α′/δ into (12) and (16),
respectively. The mean speed V ′ is now normalized by the
new time scale t ′m, and thus one has to use the relation V ′ =
δV in (12) and (23), in addition to the above substitutions.
Importantly, despite the fact that the magnetic moment MB

grows linearly in the length l, there still exists an optimal size
ratio δ, which maximizes either V ′, X, or η. Optimal values
can be obtained similarly to the previous case of constant
tail’s magnetization, but naturally result in different numerical
values due to the different dependence on δ. The optimization
results for this case are summarized in Table I (middle column).
Notably, the optimal size ratio δ for maximizing V or X is
now significantly larger due to the dependence of the magnetic
moment on δ, which changes the tradeoff with increased drag.

We now consider case (iii) of a nonmagnetic tail with a
constant length, and a variable-size cargo attached to a small
particle with constant magnetization h, as in Ref. [6]. This
case dictates slight changes in the equations of motion, as
follows. First, since the magnetic moment MB in (2) now
acts on the head, it is given as MB(θ,t) = hB0 sin[ψ(t) − θ ].
additionally, the third equation in (5) is changed to Mr +
rr×fr − τ + MB = 0. Finally, the right-hand side of (6) is
changed to b(t,q) = γ

2πμ
[0 0 MB τ −MB]T . Since the head

size is variable, it is more reasonable to scale distances by
the tail’s length l, and redefine the two characteristic times as
tm = 8πμl3

3B0h
and tk = πμl3

6k
, while the definitions of α = tm/tk

and δ = l/r are unchanged. Derivation of the leading-order
solution of (6) follows the same process as described above,
see Supplemental Material for computational code [25]. The
optimization process for maximizing X, V , or η is the
same as above (see Ref. [25]), and optimal parameter values
are summarized in Table I (right column). Note that in this
case the motion is towards the magnetic head, hence X and V

are negative.

We now compare the theoretical results of our model
to reported experimental results of several cargo-towing
magnetic microswimmers, as summarized in Table II. The
corkscrewlike microswimmers of Walker et al. [21] and Tottori
et al. [14] are compared to case (i) with constant magnetization
and variable tail length. The planar undulating microswimmer
of Dreyfus [1] is compared to case (ii) with length-dependent
tail magnetization. The flexible helical swimmer of Gao [6]
and the planar undulating magnetosperm of Khalil et al. [8] are
compared to case (iii) of constant head magnetization. The first
ten columns in Table II give physical values of the swimmers’
parameters and performance. While most of the values are
extracted from the cited papers, some of them were estimated
due to missing information. Specifically, magnetization values
of microbeads in the flexible tail of Ref. [1] were estimated
using values for Myone Dynabeads from Ref. [28], and
represented as magnetization per unit length m. The viscosity
of water has been assumed for the microswimmers of Gao [6]
and Khalil [8]. Values of the actuation frequency f are given in
Hz. Values that have been optimized for X and V are denoted
in the table as fx , δv , etc. Finally, the amplitude parameter ε is
irrelevant for the helical swimmer, and hence omitted.

The last five columns in Table II show predicted optimal
performance of our theoretical model for the same values of
the microswimmers’ physical parameters. The columns of
Vα and Xα denote the maximal speed and displacement in
our theoretical model, which are obtained by choosing the
optimal value of the stiffness parameter α while using the same
frequency f and tail-head size ratio δ as given in the first ten
columns. The next column denotes the optimal size ratio δopt

for maximizing both X and V , for the same physical values and
actuation frequency [according to (12), for a fixed frequency
ω both X and V are maximized for the same combination
of α and δ]. Finally, the columns of Vαδ and Xαδ denote the
maximal speed and displacement in our theoretical model,
which are obtained by optimizing both δ and α.

It can be seen that the results of our theoretical model
roughly fall within the same order of magnitude as the
experimental microswimmers with planar undulations (third
and fifth lines of Table II). There is a much larger discrepancy
for some microswimmers with spatial corkscrewlike motion
(lines 1 and 5), and it seems that the microswimmer of Gao
[6] with helical rotating flexible tail outperforms the planar
undulations considered by our model. It is a bit harder to
compare the performance of rigid helices (Walker and Tottori)
to our model due to the different dependence on frequency, and
to the irrelevance of the small amplitude parameter ε in their
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actuation (we arbitrarily chose ε = 1rad for the comparison).
As for Dreyfus’s undulating microswimmer, our model shows
good agreement in Vα and Xα . Moreover, it predicts that X and
V can be slightly improved by increasing the tail’s length δ for
the same values of frequency and magnetization per unit length
(as estimated from Ref. [28]). On the other hand, performance
of Khalil’s magnetosperm [8] seems to be suboptimal since its
tail’s length appears to be significantly too large. Nevertheless,
one cannot expect a perfect quantitative matching between
a flexible tail and a rigid link whose flexibility is lumped
entirely into a single joint, as in our theoretical model. Finally,
it should be noted that our model does not account for
hydrodynamic interaction between the cargo and the tail, hence
the quantitative accuracy of the result is limited, particularly
in cases of a short tail, i.e., δ ≈ 1.

In conclusion, we have presented a simple theoretical
two-link model of a magnetic microswimmer with a spherical
cargo and a slender tail. We have analyzed the swimmer’s
dynamics and obtained explicit leading-order expressions for
its mean speed V , displacement X, and Lighthill’s energetic

efficiency η, under small-amplitude expansion. We found
optimal combinations of frequency, stiffness and tail-cargo
size ratio for maximizing either X, V , or η. Each of these
performance measures is maximized at a different range of op-
timal parameters. We have also demonstrated the importance
of the choice of scaling, which must be adapted to the particular
type of the microswimmer, depending on its constant and
variable physical parameters. We have conducted qualitative
order-of-magnitude comparison of our model with several
experimental cargo-towing microswimmers. Our work demon-
strates the importance of simple low-dimensional models of
microswimmers for understanding the qualitative dependence
of swimming performance on physical properties of the
swimmer and its actuation. Nevertheless, these theoretical
models must be augmented with numerical analysis of more
detailed and accurate models, as well as quantitative analysis
of experimental measurements.
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