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We investigate the regime of fully developed homogeneous and isotropic turbulence of the Navier-Stokes (NS)
equation in the presence of a stochastic forcing, using the nonperturbative (functional) renormalization group
(NPRG). Within a simple approximation based on symmetries, we obtain the fixed-point solution of the NPRG
flow equations that corresponds to fully developed turbulence both in d = 2 and 3 dimensions. Deviations to
the dimensional scalings (Kolmogorov in d = 3 or Kraichnan-Batchelor in d = 2) are found for the two-point
functions. To further analyze these deviations, we derive exact flow equations in the large wave-number limit,
and show that the fixed point does not entail the usual scale invariance, thereby identifying the mechanism for
the emergence of intermittency within the NPRG framework. The purpose of this work is to provide a detailed
basis for NPRG studies of NS turbulence; the determination of the ensuing intermittency exponents is left for

future work.
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I. INTRODUCTION

The statistical theory of turbulence is more than 70 years
old and, despite intensive efforts, it remains unsatisfac-
tory. In d > 2, two length scales play a dominant role in
the phenomenology of fully developed homogeneous and
isotropic turbulence: the microscopic (Kolmogorov) scale n
where energy is dissipated by molecular viscosity and the
macroscopic integral scale L where energy is injected in the
system. These two scales delineate the inertial range, where
energy is conserved and transferred towards the small scales
in an energy cascade. Within the inertial range, the equal-time
velocity correlation functions exhibit universal scaling, that
is, they behave as power laws with exponents independent of
the precise mechanisms of energy injection and dissipation.
These observations lead to the celebrated K41 scaling theory,
proposed by Kolmogorov in 1941 [1,2]. The energy flux con-
stancy relation was derived, which yields the exact “four-fifth
law” for the three-velocity correlator. K41 also predicts power-
law behaviors for all the correlation functions. Although
the experimentally measured energy spectrum and low-order
structure functions are well described by K41 theory, system-
atic deviations from K41 scalings were observed for higher-
order correlation functions [3,4]. Calculating these exponents
beyond K41 theory remains a great challenge in the study of
fully developed turbulence. In d = 2, two inertial ranges were
predicted to coexist by Kraichnan [5] as a consequence of the
conservation of both energy and enstrophy (squared vorticity).
In two-dimensional turbulence, part of the energy is transferred
from the integral scale to the larger scales in an inverse energy
cascade until it is eventually dissipated at the boundaries of
the system, while enstrophy flows towards the smaller scales
in the direct cascade until it is dissipated at the molecular
scale [5,6]. In the direct cascade, the exponents of the structure
functions are also believed to deviate from dimensional
scalings [3,7] and their calculation remains a challenging
issue.
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This situation appears frustrating if compared to that of
critical phenomena occurring at equilibrium, which share
many common features with turbulence (e.g., scaling, chaos,
universality) [8] and where renormalization group (RG) hasled
in most cases to a clear understanding of the physics at play
and to accurate determinations of the critical exponents [9].
An essential difference is that, in standard equilibrium critical
phenomena, a finite set of anomalous dimensions suffices to
describe the scaling behavior of all the correlation functions,
which is no longer true for turbulence. The correlation
functions do exhibit power laws, but each with its specific
exponent, which generates multiscaling, or multifractality,
and constitutes one of the imprints of turbulence [3]. This
phenomenon, generically referred to as intermittency, is
investigated in this paper using nonperturbative (functional)
renormalization group (NPRG).

Prior to giving an overview of existing RG approaches to
describe fully developed homogeneous and isotropic turbu-
lence, let us introduce the relevant microscopic model, which
is the Navier-Stokes (NS) equation with forcing:

1
Bvy + VpdpVy = —— e p + VV04 + fu, (1)
1Y

where the Velocityqﬁeld v, the pressure field p, and the
stochastic forcing f depend on the space-time coordinates
(¢,X), and with v the kinematic viscosity and p the density of
the fluid. Since we aim at studying the turbulent steady state,
the presence of the stirring force f is essential to balance
the dissipative nature of the (unforced) NS equation which
otherwise leads to the decay of the velocity fields. We consider
in the following incompressible flows, satisfying

dave = 0. 2

We focus on the properties of the turbulent fluid within the
inertial range of wave numbers p corresponding to L~! «
p < n~'. In this regime, the steady-state correlation functions

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.93.063101

CANET, DELAMOTTE, AND WSCHEBOR

are expected to be universal in the sense that they do not depend
on the precise form of the macroscopic forcing (as long as
its Fourier transform is peaked around wave numbers of the
order L™"). This universality allows one, instead of choosing
a deterministic forcing, to take averages on various smooth
forcings with an essentially arbitrary probability distribution,
as long as the typical scale of the forcing remains the prescribed
integral scale. One can hence conveniently choose the simplest
of probability distributions: a Gaussian one with zero mean and
variance

(fu@,X) fp(t' X)) = 28(t — t)Np-1 4p(IX = X)) (3)

This correlator is local in time, which is crucial to preserve
Galilean invariance, and it is centered, in Fourier space, on
the inverse of the integral scale L. The precise profile of
Np-1 4p(x), which should not affect universal properties in
the inertial regime, will be specified in the following.

As in critical phenomena, scaling is observed in turbulence
when the microscopic scale (the Kolmogorov scale 7) is
sent to zero and the macroscopic one (the integral scale
L) to infinity. In this limit, the expansion parameter, the
Reynolds number, diverges. Field theoretic techniques such as
renormalization group (RG) are designed to handle the large
scale fluctuations developing in strongly correlated systems
and we briefly review in the following some of the former
attempts in turbulence (for reviews, see [10-12]).

The difficulty when applying RG in turbulence is not so
much that the Reynolds number diverges when the ultraviolet
(UV) scale n~! is sent to infinity. Naively, one could think
that the Reynolds number is the expansion parameter in a
perturbative treatment, and its divergence would render odd a
perturbative analysis based on it. However, it is well known [9]
that once the RG is employed, the proper expansion parameter
is not the bare Reynolds number, but a renormalized parameter
obtained from its RG evolution in the long-distance limit, such
that the perturbative analysis can work. The real difficulty is to
find a situation where the renormalized expansion parameter
is small. For standard critical systems, this is achieved around
the upper critical dimension d, and a double expansion in
the coupling constant and € = d. — d renders the perturbative
expansion well defined. As for turbulence, there is no upper
critical dimension but a formal (second) expansion parameter
€ can be defined through the forcing profile Np-145(p)
p*=472¢ where p is the wave number [13-16]. Typically, as
explained above, Ny-1 44(p) is not a power law in Fourier
space, but is instead sharply peaked around the infrared
(IR) scale L~'. One can show that the physical situation
is recovered only in a precise limit, e.g., when € — 2 (in
d = 3) or ¢ — 3 (in the direct cascade in d = 2). On the other
hand, for € = 0, the theory is exactly renormalizable and a
fixed point of order ¢ is found in any dimension [17,18] (the
d = 2 case being particular [19-25]). The challenge for the
perturbatively renormalized theory is therefore to extend the
results obtained for € — 0 to € = 2 (or 3) which is far from
trivial: The difficulties encountered are very severe and have,
up to now, hindered real progress, at least for the calculation of
multiscaling behavior in the NS problem [17,18]. This seems to
be related to the appearance of operators with negative critical
dimension at finite €.
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Let us emphasize that intermittency also occurs in the
simpler Kraichnan’s passive scalar model [26] where a scalar
field is advected by a prescribed Gaussian random field
decorrelated in time and self-similar in space. In contrast
with Navier-Stokes turbulence, the anomalous exponents for
the Kraichnan model have been determined under several
controlled approximations including an € expansion (with €
related to the power spectrum of the noise) or a 1 /d expansion,
and numerical simulations [27-36] (see [37,38] for reviews).
In this model, composite operators with negative critical
dimensions, called “dangerous” operators, were identified
and the anomalous exponents could be calculated from their
critical dimensions [35,39]. The calculations were performed
at three loops [40,41] and yielded reasonable results, under
mild assumptions on the series behavior. Unfortunately, the
same methodology does not seem to work satisfactorily for
the Navier-Stokes equation. In this case, no operator with
negative critical dimension could be identified at infinitesimal
€ and, thus, the € expansion does not seem to provide a reliable
framework to compute anomalous exponents [17].

Let us notice that another perturbative approach, almost
ignored in the subsequent literature, does not rely on an
€ expansion but on a self-consistent determination of the
quadratic part of the action around which perturbation theory
is performed [42]. This approach, after elimination of what is
named the “sweeping effect” (the sweeping of the smaller
scales by the larger) leads to the existence of an UV
attractive fixed point from which, performing an Operator
Product Expansion (OPE), the multiscaling exponents can be
computed. They turn out to be quite accurate at least for the
n < 10 first equal-time correlation functions of the velocity
differences.

A rather different field-theoretic approach, not based on RG,
has been developed by L'vov, Procaccia, and collaborators.
To get rid of the sweeping effect that leads to severe IR
singularities in renormalized perturbation theory, these authors
use ‘“quasi-Lagrangian” variables instead of the Eulerian
velocities [43]. They show that the correlation functions of
the differences of these variables are finite order by order in
perturbation theory in both limits where the UV and IR scales
are removed. As a consequence, Kolmogorov scaling holds
at all finite orders of the perturbation theory. The only way
out of this hindrance is to resum infinite classes of Feynman
diagrams. The authors indeed show that these resummations
produce new singularities in terms of the integral scale which
is therefore the proper renormalization scale [44-54]. They
are then able to compute approximately the small order
multiscaling exponents in terms of the first one [55].

An alternative RG approach that has been very successful
in the study of critical systems either at or out of equilibrium is
the nonperturbative renormalization group (NPRG), which is
a modern version of the RG in the manner of Wilson [56—
61]. In addition to avoiding many problems encountered
perturbatively, such as the need of explicit resummation of
IR singularities or the asymptotic nature of the renormalized
series [9], this approach has led not only to very accurate [61—
68] but also fully nonperturbative [69-74] results in many
systems. Of course, approximations are also unavoidable in
the NPRG context and they are not always easy to justify when
they are not controlled by a small parameter. A very inspiring
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case is the Kardar-Parisi-Zhang (KPZ) equation describing
the stochastic growth of interfaces [75], which is equivalent to
Burgers equation in the context of fluids, and which shows fully
nonperturbative behavior in the rough phase [76]. Contrary
to the standard perturbative RG which fails to all orders in
perturbation to find the relevant fixed point and the associated
scaling behavior [77], the NPRG approach captures the strong
coupling physics of the KPZ equation at and above one
dimension [78-82]. One of the aims of this article is to show
how this method can be implemented to study Navier-Stokes
turbulence.

Let us now turn to other works on turbulence using similar
functional RG methods [83-87]. During the publication
process of this paper, Kraichnan’s model has been studied
using NPRG methods in Ref. [87]. The leading corrections to
the exponents of the structure functions have been computed
within this framework and they reproduce the known results,
which provides an independent validation of the method.

As for the NS problem, the settings developed in
Refs. [83,85] are closely related to the one presented here. The
relevant fixed point for turbulence was already foundind = 3
in Ref. [83]. However, important elements concerning the
symmetries, and multiscaling, were not identified in this early
work, and we here bring them out. In particular, the regular-
ization scheme chosen in Ref. [83] prevented from addressing
the d = 2 case. In contrast, the formalisms of Ref. [85] and
of this work cure this problem and enable one to study both
bidimensional and tridimensional turbulence within a unified
framework. The main difference between the work of Ref. [85]
and ours is that the former focuses on power-law forcing
whereas we consider a forcing localized at a definite external or
integral scale. The use of power-law forcing is essential in most
perturbative treatments because only the limit of long-range
enough forcing is well controlled perturbatively [35]. An
extrapolation (depending on the dimension) is then required
to recover the behavior corresponding to a forcing dominated
by the integral scale, which constitutes an essential difficulty
in most perturbative analyses. In contrast, we show that in
the nonperturbative framework, this strategy is unnecessary. A
fixed point that describes turbulence with integral-scale forcing
is approached without the need of power-law forcing. In fact,
in Ref. [85], both a power law and a peaked component of
the forcing are considered. Interestingly, the authors observe a
transition in the € dependence of observables at a threshold
value of €, beyond which the power-law forcing plays a
subdominant role compared to the localized forcing. A similar
transition between a long-range (LR) regime with e-dependent
exponent and a short-range (SR) regime with e-independent
exponent, occurring at a critical value €(d) of €, also exists
in the KPZ model in the presence of both a microscopic
delta-correlated noise (SR) and a power-law noise (LR). In this
model, the transition from one regime to the other is naturally
explained by the presence of two fixed points whose stability
and basin of attraction depend on € [81]. At large ¢ where
the LR noise is relevant, the long-distance behavior of the
model is governed by one fixed point [the LR fixed point],
characterized by critical exponents depending on €. As € is
decreased, LR moves and eventually crosses the usual KPZ
fixed point [the SR fixed point] at €.(d). Below €.(d), the
stability of SR and LR are interchanged and SR becomes fully
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attractive: the LR power-law part of the noise no longer plays
a role. We conjecture here that the same scenario occurs in
the NS case: In the presence of both a power-law forcing and
a forcing centered at the integral scale, two fixed points exist
which collide and exchange their stability at € = €.(d) [with
€(d=3)= %]. Under this hypothesis, the explanation of the
“saturation” of the exponent for € > €.(d) boils down to the
change of stability of the two fixed points when they collide.
An interesting outcome of our NPRG approach is to show that
the fixed-point corresponding to a “physical” forcing applied
at the integral scale only, can be described without the need to
introduce a power-law component of the forcing.

Our analysis is based on the general strategy of the NPRG
in its modern implementation [61], adapted for classical
nonequilibrium systems [88,89]. The NPRG formalism to
study the NS equation is set up and presented in Sec. II. As
common with field-theoretic methods, the symmetries play
a crucial role. The accuracy of the results obtained with the
NPRG approach depends on the order of the approximation
implemented, and to preserve all the symmetries of the initial
problem along the RG flow is of particular importance to
ensure that it takes place in the appropriate functional (in fields,
momenta, and frequencies) space. The Navier-Stokes field
theory admits, aside from the well-known Galilean invariance
and its time-gauged (also named time-dependent, or extended)
version [11,13,90-93], another gauge symmetry, presented in
Ref. [94]. Both these gauge symmetries are briefly reviewed
in Sec. IIL.

We then follow two complementary routes. The first one is
closely related to the works of Refs. [78—82] on the KPZ equa-
tion, and also to [83,85] in the NS context. An ansatz for the
scale-dependent generating functional I, of the (one-particle-
irreducible) correlation and response functions is proposed and
its evolution is followed between the Kolmogorov microscale
and the macroscopic scale. The choice of the ansatz is strongly
constrained by the gauge symmetries of the NS field theory,
which hence play a fundamental role. We begin in Sec. V
with building the appropriate ansatz [at Leading Order (LO)
approximation], which exactly encodes these symmetries, and
derive the corresponding NPRG flow equations. We show
in Sec. VI that the RG flow is generically (without fine
tuning any parameter) attracted towards a fixed point, which
corresponds to stationary fully developed turbulence generated
by integral-scale forcing, both in d = 2 and 3.

The scaling properties of the turbulent steady state are
analyzed within this approximation. Let us recall that, in
d = 3, Kolmogorov K41 theory predicts a p~>/3 decay of the
energy spectrum in the inertial range, associated with the direct
cascade of energy. In d = 2, part of the energy is transferred
towards the large scale in the inverse cascade [5], with a p’S/ 3
spectrum, whereas enstrophy flows towards the small scale in
the direct cascade, yielding a steeper p~—> energy spectrum,
according to the Kraichnan-Batchelor (KB) theory [5,6].
Within the LO approximation, we find that the energy spectrum
(and the second-order structure function) computed at the
fixed point follow K41 predictions in d =3 and KB ones
in d = 2. This was already observed by Tomassini in d = 3
[83], and by the authors of [85] in the regime dominated by
the localized forcing. This observation is compatible with
experiments and numerical simulations, insofar as they find
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very small, if any, deviations from the dimensional scaling for
these quantities [3]. One hence needs to very precisely study
the large wave-number behavior to determine whether there
exist such corrections. However, the LO approximation is not
appropriate for this. Indeed, even though this approximation
is well controlled and reliable for quantities defined at wave
numbers smaller than or comparable to the inverse integral
scale, such as the existence of the fixed point, it is not justified
at wave numbers much larger than the inverse integral scale,
and its predictions in this regime should be taken with care.
In Sec. VII, we undertake a second complementary strategy,
specifically focusing on the large wave-number regime of the
NPRG flow equations, and deeply rooted in the symmetries.
This second approach has never been undertaken in previous
works. We show that a set of exact and closed flow equations
for the two-point functions can be derived in the large
(compared to the running scale of the flow) wave-number
regime, by using the Ward identities ensuing from the gauge
symmetries of the theory. From these equations, we prove
(without approximations) that the exact fixed point does not
entail the usual scale invariance in the large wave-number
regime, and we expound the mechanism of emergence of
multiscaling within the NPRG framework. It originates in
this formalism in a violation of the property of decoupling
of the wave-number scales (the two fundamental UV and IR
scales play a role all along the flow), which is not encountered
in ordinary critical phenomena. The consequence is that the
behavior at large wave numbers of the correlation functions
(the exponent of the power law) is not fixed in terms of the
scaling dimension of the velocity field and hence may deviate
from dimensional predictions (K41 ind = 3and KB ind = 2).
The nondecoupling property is related to the absence of a
regular limit when the integral scale (the typical length scale
of energy injection) tends to infinity. It means that the salient
scale for intermittency is the integral scale and not the UV one.
The same observation underlies the OPE approaches in the
perturbative context [18]. However, the precise link between
the absence of operators of negative dimensions in the OPE
and the nondecoupling property is not straightforward and
deserves further investigations. We emphasize that these exact
equations in the large wave-number sector complement the
flow equations obtained from the LO approximation, which
is valid in the small wave-number regime. Their numerical
solution, that we leave for a future publication, should allow
us to obtain from first principles (although approximately) the
intermittency exponents for the two-point functions.

II. NPRG FORMALISM FOR NAVIER-STOKES
TURBULENCE

A. Navier-Stokes field theory

The NS equation (1) in the presence of the stochastic
forcing f formally resembles a Langevin equation. One
can resort to the standard Martin-Siggia-Rose-Janssen-de
Dominicis procedure [95-97] to derive the associated field
theory. Following Ref. [94], we introduce Martin-Siggia-Rose
response fields v, and p to enforce both the equation of
motion (1) and the incompressibility constraint (2). Note that
in this derivation, the pressure field is kept (instead of being
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eliminated as the solution, expressed in terms of the velocity
and of the forcing, of a Poisson equation), because the pressure
sector turns out to be very simple to handle since it is not
renormalized [94]. Once the response fields are introduced,
the stochastic forcing can be integrated out and one obtains
the generating functional [94]

Z1J,J.K.K] = /DﬁDpDSDp ¢~ (Sol0.TpoPHAS, 1 [8:5)

« e _-5+J;-3+K17+1513}’ ()
where J , K, J , and K are sources for the velocity, pressure,
and response fields [98], and where the NS action, splitted in a
local and a nonlocal contribution for convenience, is given by

SO[avBspvﬁ] Z/{ﬁ(X)aava(X)—Fl_)a(X)I:a;Ua(X)

X

— WV, (X) + v5(X)dp v (X) + %amx)] }

ASy -1[V,0] = — /

1,X,X

ﬁa(ta)_é)NL*I,otﬂ(p? - }/|)5ﬂ(t’}/)»

)

where x = (,%) and [, = [d‘Xdr. Let us now discuss the
choice of the forcing profile. Without loss of generality, in
order to preserve rotational invariance along the flow, it can be
written in Fourier space as

Neap(@) = 8up Ne(@) + quqp N (@), (©6)

where the inverse integral scale L~ is denoted « in anticipation
since it will be running in the following. The Fourier
convention, used throughout this work, is

f(q) — /f(X) e—iq.}-&-iwt’

fx) = / f(q)eldsion, (7
q

- dig .
where q = (w,§) and fq =/ (27{‘;, g—;’. In practice, due to the
incompressibility condition, the term proportional to g,qg
plays no role and can be omitted. We further parametrize the

function N, as

N.(@) = D(g1/6)*7(1G1/x), ®)

where D, is a scale-dependent coefficient, discussed in
Sec. VD. N,(g) vanishes at g = 0 in order not to imprint a
global motion to the fluid. The stirring force profile 71, peaked
at the inverse integral scale «, can be typically shaped as

A(x) =e™. ©)
Let us report that 10 different forcing profiles have been
studied in Ref. [83], which shows that the influence of the
precise form of the stirring is negligible, or nonexistent (as
expected from universality) in the sense that the properties of
the turbulent flow in the stationary regime do not change. We
can hence restrict our analysis to the specific profile (9). It also
corresponds to the local component of the forcing chosen in
Ref. [85].
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B. NPRG formalism

The general NPRG formalism for nonequilibrium systems
in classical physics is presented in details in Refs. [88,89].
In the spirit of Wilson’s RG ideas, it consists in building
a sequence of scale-dependent effective models such that
fluctuations are smoothly averaged as the (wave-number) scale
k is lowered from the microscopic UV scale k = n~! (inverse
Kolmogorov scale), where no fluctuations are yet included,
to the macroscopic IR scale k = 0O (infinite volume), where
they are all summed over [61,99]. The procedure is formally
the same as in equilibrium [61], but with the presence of
response fields, and additional requirements stemming from
Ito’s discretization and causality issues [89,100].

In this work, we identify the RG wave-number scale k with
the inverse of the integral scale k, i.e., k = «. The integral
scale is therefore running and eventually sent to infinity when
k — 0 (similarly to Refs. [83,85]). For other purposes, the
integral (injection) scale and the inverse volume scale can be
kept independent, and the RG scale chosen as one of them
while keeping the other fixed. For instance, the study of the
RG flow at a fixed integral scale L in the infinite volume
limit (RG scale tends to zero) would be relevant to access the
properties of the inverse cascade in bidimensional turbulence.
This important issue will be investigated in a future work.

To achieve the separation of fluctuation modes within
the NPRG procedure, a wave-number and scale-dependent
quadratic (regulator) term AS, is added to the original
action Sp + ASp ,-1. On the one hand, we let the inverse
integral scale run in the nonlocal quadratic term ASy -1 —
ASp, (as in Refs. [83,85]). On the other hand, we include
an additional scale-dependent quadratic term to obtain the
following regulator:

ASIEE == [ 01 ENeap(F ~ F05(0.7)

£,X,X
+ / 31, 7) Resap (1T — ¥/ op(t.7). (10)
t.X,x

The additional R, term, proportional to the velocity, can
be interpreted as an Eckman friction term. Its presence is
fundamental in d = 2 to damp energy transfer towards larger
and larger scales. It introduces an effective energy dissipation
at the boundary of the effective volume x ~¢. Its effect is hence
to suppress fluctuations with wave numbers smaller than «.
Varying the scale « of R, is conceptually equivalent to varying
the volume of the system, it is hence analogous in a way
to studying finite-size scaling. As previously, by using the
incompressibility of the flow, the function R, can be chosen
diagonal. We write it in Fourier space as

Reop(@) = 8up R(§) = Sup v G2 7(q* /P (11)

with ¢ = |G| and where v, is the scale-dependent viscosity,
discussed in Sec. V D. The cutoff function #(x) ensures the
selection of fluctuation modes: 7(x) is required to almost
vanish for x 2 1 such that the fluctuation modes v,(g = k)
and 7,4(g 2 ) are unaffected by the R, term in AS,, and to
be large when x < 1 such that the other modes [v,(¢ < k)
and U,(¢ < «)] are essentially frozen. One can show that the
form (10) of regulator term preserves all the symmetries and
causality properties of the problem as done in a very similar

PHYSICAL REVIEW E 93, 063101 (2016)

case in Ref. [79]. We work here with the following cutoff
function:

a

P =

12)

where a is a free parameter, which can be varied to assess the
accuracy of the approximation scheme [101]. Let us emphasize
that the addition of the regulator term R, is essential to properly
implement the RG procedure and to correctly regularize the
flow, both in the UV and in the IR, as already realized in
Ref. [85]. This constitutes a fundamental difference with the
work of Ref. [83], where the term R, is missing, and only the
forcing term N, acts to select the fluctuation modes. Although
the procedure of [83] qualitatively leads to the correct behavior
in d = 3, it clearly prevents from studying the d = 2 case
because the flow equations are IR divergent in this dimension
without the R, term. Conversely, the NPRG flow equations
derived in Ref. [85] and in this work are properly regulated in
any dimensions.

In the presence of the regulator term AS,, the generating
functional (4) becomes scale dependent:

Z.J.J.K.K] = /pr DD ¢ (SMBTPPHAS)

X e.fx{]-ﬁ#»./:-i#»l(p#»[zﬁ}. (13)

Field expectation values in the presence of the external sources

J s J , K, and K are obtained as functional derivatives of W, =
In Z, as

W,

iy (X) = (Ug(X)) = AT

Wi
alX) = (VX)) = —,
Ua(X) = (Vo (X)) 57.0x)
and similarly for the pressure fields, for which for simplicity
the same notation can be kept for the fields and their average
values

Wi Wi

8 n — 2] [
P = (p(x) = PO = (P00} = S

T SK®x)’
The effective average action ', [ﬁ,ﬁ,p, p] is defined as the

Legendre transform of W, (up to terms proportional to Ry 4
or N, qp) [61,89]:

FK[ﬁvi-ivpsﬁ] +WK[‘;9‘71K7K]

:'/:.]l@l _‘/.ﬁﬁ{ﬁa RK,ot,B ug _ﬁa NK,otﬂ IZﬁ}, (14)
X 1,X,x

where ¢;, i = 1,...,4, stand for the fields uq,ily, p, and
p, respectively, and j; for the sources J,, J,, K, and K,
respectively. From I, one can derive two-point correlation
and response functions, which can be gathered in a 4 x 4
matrix as

82T [{ei 1]
2) )= ———
(7], 00 %2 (o)) = 81, (X181, (X2) (4

and more generally n-point correlation functions that are also
written in a 4 x 4 matrix form as

Sn_zrl((Z)(Xl 7X29{§0i})

. (16)
3¢i,(X3) ... 8¢, (X,)

F(n) ,..,in(xl’ cee ,Xny{gol'}) =

K,13,
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The exact flow for I, [1, i, p, P1is given by Wetterich equation,
which reads, in Fourier space, as [61,102]

8T = %Tr / 8 Re(@) - Go(Q). (17)
q

where R, (q) is the Fourier transform of the 4 x 4 matrix
AS?. One can infer from definition (10) that its sole
nonvanishing elements are [R]n = —2N, g and [R, ]2 =
[Ril21 = Ry . The matrix

G, =[r?+R]" (18)

is the full, that is, field-dependent, renormalized at scale «
propagator of the theory. When the RG scale « is lowered
from the UV scale r/’l to zero, ', interpolates between the
microscopic model I',_,-+ = &y and the full effective action
I',—o that encompasses all the macroscopic properties of the
system (for a detailed discussion in nonequilibrium processes,
see Ref. [89]). Differentiating Eq. (17) twice with respect to
the fields and evaluating the resulting identity in a uniform
and stationary field configuration ¢;(x) = ¢; (since the model
is analyzed in its long time and large distance regime where it
is translationally invariant in space and time), one obtains the
flow equation for the two-point functions:

(2) _
3T (p) = Trf :

1
A Re(Q) - Ge(q) - [—— . (p.—p.q)
q

+I0pP.) - Gep+q

T (—pp+ q)} -G (q), (19)

where the background field ¢; dependencies are implicit, as
well as the last arguments of the ' which are determined by
frequency and wave-vector conservation [89].

Of course, Eq. (17) cannot be solved exactly and one has
to resort to an appropriate approximation scheme, adapted to
the physics of the model under study, and in particular to its
symmetries, that are reviewed in the next section.

III. SYMMETRIES AND RELATED WARD IDENTITIES

In this section, we briefly review the three gauge symmetries
of the NS action expounded in Ref. [94] and the ensuing
nonrenormalization theorems and general Ward identities
derived in this reference.

A. Symmetries

The NS action § = Sy + AS, given by (5) admits three
gauge symmetries:

(i) invariance under gauged shifts of the pressure fields,

(ii) time-gauged Galilean symmetry,

(iii) invariance under a time-gauged shift of the response
fields.

The symmetry (i) is the invariance of S under the local
shifts p(¢,X) — p(t,X) + e(t,¥)or p(t,X) — p(t,X) + &®,X),
which implies that the equations of motion for p and p are
exactly given by the minimization of the bare action Sp.
The infinitesimal time-gauged Galilean symmetry (ii), also
referred to as time-dependent [11,91,92], or extended [93,103],
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Galilean symmetry, consists in the following field transforma-
tion:

dva(X) = —€4(1) + €5(1)dpv4(X),
804 (X) = €(1)0p00(X),

8p(x) = €g(1)dp p(X),

§p(x) = €p(1)dp p(x), (20)

where €, = 9;¢,. When €(t) =€ is an arbitrary constant
vector, the transformation corresponds to a translation in space,
and when €(¢) = € ¢ it corresponds to the usual (nongauged)
Galilean transformation. Lastly, the infinitesimal time-gauged
shift symmetry (iii) consists in the field transformation

Sﬁa(x) = éa(t)’
Sp(x) = vp(X)ép(t). (21)

For each of these transformations, the different terms of the
NS action § are either invariant or have a linear variation
in the fields. The corresponding noninvariant terms play
the role of gauge-fixing controllable terms. By explicitly
performing these transformations as changes of variables in
the functional integral (13), and exploiting that they must
leave it unaltered, one deduces general Ward identities. These
identities are derived in Ref. [94] for the original (microscopic)
NS field theory. The procedure can be directly transposed to
the scale-dependent effective average action I'y, by simply
replacing the original quantities (e.g., Z, I') by the running
ones (e.g., 2., I',). Note also that since AS, is substracted
in the (modified) definition of the Legendre transform (14) in
contrast to Ref. [94], the corresponding terms (proportional to
Neap OF R op) are removed from the Ward identities. These
identities are recapitulated below.

B. Ward identities

The Ward identities ensuing from the gauged-shift symme-
tries (i) simply read as

ol 880 and 8T 880

sp(x)  dp(x) $p(x)  Sp(x)’
which means that the dependence in p(x) and p(x) of both
the effective action I', and the bare one S, are identical.
One thus concludes that the whole pressure sector is not
renormalized. Of course, connected correlation functions of
the pressure do have corrections coming from fluctuations.
This is a simplifying feature of the one-particle-irreducible
(1PI) effective action, which keeps exactly the same pressure
dependence as the bare action.

The NS action is invariant under the time-gauged Galilean
transformation (20), but for the term proportional to the La-
grangian time derivative D;v4(X) = 0;v4(X) 4+ v4(X)9v4(X),
which variation is

(22)

5 / B () Dy 4 (X) = 85 = — / LB, (23)

Hence, requiring that the change of variables (20) leaves the
functional integral (13) unaltered, one obtains the following

063101-6



FULLY DEVELOPED ISOTROPIC TURBULENCE: ...

Ward identity:

[ {[saﬂa, 4 dputa()]

T i (05
o) (x)
PO 4 ) } /32 x), (24

p(x p iig(x

P sp0 T sp0 !
which implies that the variations of both the effective action
and the bare one under time-gauged Galilean transforma-
tions are identical. This entails that, apart from the term
fx ilg(X)D,uy(x) which is not renormalized and remains
equal to its bare expression, I', is invariant under these
transformations.

As for the time-gauged shift symmetry (iii), the variation
of the NS action under (21) is

8S = —/éﬁ(t)v,g(x), 25)

and the related Ward identity reads as

ol (s y
/;{Sﬁaoo Vshix )}—fi o), (26)

meaning that, apart from the term fx iy 0;u, Which is not
renormalized, the effective action I', is invariant under time-
gauged shift transformations.

Furthermore, as shown in Ref. [94], a functional Ward
identity associated with a fully gauged (both in time and
space) version of the shift symmetry (21) can be obtained
in the presence of a local source term bilinear in the velocity
field. This functional identity entails an infinite set of exact and
local relations between correlation functions, which includes
in particular the Karman-Howarth relation [104]. From this
fundamental relation, the exact Kolmogorov law for the third-
order structure function in d = 3 can be derived, assuming the
existence of a dissipative anomaly (finite mean dissipation rate
in the inviscid limit). The gauged shift symmetry hence plays
a crucial role since it directly roots in symmetries the four-fifth
law. From the functional Ward idendity can also be deduced
another exact identity for a fourth-order pressure-velocity
correlation function recently derived in Ref. [105], and further
generalized in Ref. [94].

C. General structure of the effective action I',,

One can infer from the previous Ward identities the general
form of the effective action I',:

I 0o
FK[M,M,P»P] = / {ﬁa (8tua +)\uﬂaﬂua + p)
X P

+ﬁ3aua} + Tl ul, 27)

where the explicit terms are not renormalized and thus keep
their bare forms, and the functional I, is invariant under time-
gauged Galilean and shift transformations. The coefficient A
is introduced in front of the nonlinear term for later power
counting purposes. Of course, A can always be set equal to
one in appropriate units. Note that including this coefficient in
the original NS action (5) induces some slight modifications
of the related Ward identities by trivial factors A. Yet, it still
leads to the general form (27) of the effective action where A
is not renormalized.
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IV. CONSERVATION LAWS AND ENERGY SPECTRUM

In this section, we study the different contributions to the
energy and to the enstrophy and we show that the conservation
of energy in d = 3, and of both energy and enstrophy in
d = 2, yields constraints which fix the values of the anomalous
dimensions. We also derive the general expressions for the
energy spectrum and the second-order structure function.
These observables are explicitly computed in Sec. VI at LO
approximation.

All these quantities can be expressed in terms of connected
two-point correlation and response functions: Ggg = (Vo Vg)c
and Gﬁftz = (UqUg)c. These functions are elements of the
propagator matrix G,, which is defined as the inverse of the
matrix I‘f(z). The general structure of the propagator matrix G
is determined in Appendix A, its components in the velocity
sector are reported below Eq. (30).

Let us clarify notation. Because of rotational and parity
invariance, any generic two-(space) index function (in Fourier
space) Fyp(w, p) can be decomposed into a longitudinal and a
transverse part

Fap(@.5) = P(B)FL(@,5) + Ply(P)Fy(@.5%).  (28)

where the transverse and longitudinal projectors are defined
by

Po:Pﬁ PaPB

PR

PE(P) = 8up — and  Py(p) = (29)
As shown in Appendix A, the incompressibility condition
entails that the components of the propagator in the velocity
sector are purely transverse (that is, all the longitudinal parts

vanish) and are given by

Gf(,4) =
1

~,§) + Re(@)’
F?(,4) = 2Ne(§)
IPY (@.9) + R(@)P?

For the following discussion, we also need to introduce
renormalized and dimensionless quantities, denoted with a hat
symbol. The wave vectors and frequencies are respectively
measured in units of x and «?v,, where v, is the running
viscosity. We thus define, e.g., p = p/k and & = w/(k>v,).

Let us consider the expression (10) of the term AS,. The
dimension of the cutoff term R, g is given by

[ f Ruap(F — 56/)] — [Pv,] 31)

and the dimension of the forcing term N .4 can be inferred
from definition (8):

Guu (a) q)

J_ -
aﬁ(q) 1_‘11’1)(

Gip(@,9) = —Pyp(q) (30)

[/ Niap(X — 55/)} = [D]. (32)

We associate two running anomalous dimensions n” and n?
with these running coefficients as

v

n' =—d1Inv, and n? = -9 InD,, (33)
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where d; = «9,. According to Egs. (31) and (32), and since
I', and AS, have the same dimension, one deduces from
Eq. (27) the dimensions of the fields: [u] = [k?~2D, v,(‘l]l/2
and [i1] = [« %y, D; 1]1/2. We also introduce the dimension-
less coupling A as

V25 (34)

—d+4 3 -1

A= (k2D
Since A is not renormalized, the flow equation for A, is purely
dimensional and reads as

R ~ (d 3, 1,
8Skk_kk<2 2+2nK 2”">' (35)
Of course, this is a direct consequence of Galilean symmetry
and this equation (or similar forms) has already been ob-
tained in other RG approaches [18,83]. It follows from this
equation that any non-Gaussian fixed point, with 4, # 0, is
characterized by a single independent anomalous dimension,
for instance n2, with

n=4/3+ 0 —d)/3. (36)

We now show that the value of n” is actually fixed by
conservation laws.

A. Energy conservation

Asrecalled in the Introduction, energy must be permanently
injected at the integral scale x~! to maintain a turbulent
flow since the NS equation is dissipative. Hence, reaching
the stationary regime of fully developed turbulence requires
that the mean rate of injected power by unit mass (€j,;) of
the fluid compensates the mean rate of dissipated power by
unit mass. Of course, if the full dynamics was studied starting
from well-defined initial conditions, the conservation of energy
would be automatically satisfied at all times and in particular
in the long-time limit where the system reaches stationarity.
Here, we directly study the steady state (assuming translational
invariance in time). The inclusion of the transient regime is
challenging and would be interesting to address in the future.
Hence, we need to impose stationarity as an external constraint,
in the form of a balance between the injected and dissipated
energy. This was already realized in Ref. [83]. In fact, this
is reminiscent of the additional assumption (existence of a
dissipative anomaly) needed to derive the four-fifth law from
the Karman-Howarth relation.

There are two sources of energy dissipation in the NPRG
setting: the dissipation by molecular viscosity at the micro-
scopic Kolmogorov scale 1 and the effective dissipation at
the boundaries induced by the cutoff term proportional to R,
in Eq. (10). Denoting (e(ii/s") and (ef;,) their respective rate per
unit mass, the energy balance equation in the steady state reads
as

(€in) = (eqls) + (€lis)- (37)

Let us express these different contributions. As explained in
Appendix C, the average injected power per unit mass can be
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expressed as

(€inj) = (falt,X)vo(t,X))

T =z uit Yot ¥
= lim /x Neap(1% — F') G5 (1 + 61,5 1,%)

:(d—l)DKden% / N@e G4 (@.9). (38)
t— é),a

The average effective dissipated power at the scale « can be
written as

i) = { [ 00 Res (7 = #00pcr)

X

= [ Rea@Gthd
w,q

—@-npat [ Pi@6red. (9
®.q
Let us emphasize that, in the present analysis, once the scale
k of R, and the scale k of N, have been equated, the
effective energy dissipation (at the volume scale) and the
energy injection (at the integral one) scale in the same way, as
D,.k?. The average dissipated power at the Kolmogorov scale
per unit mass is expressed as

(ed/™) = (vd;v:(1,%)d;v:(2,%))
=v(d - 1)/ qu G'"(w,q). (40)
®.q

The behavior of this integral can be analyzed using the canon-
ical behavior of G/ (intermittency corrections, if any, can be
neglected in this argument, see Sec. VI). This canonical behav-
ior can be deduced assuming (standard) scale invariance [see
Eq. (94) and Sec. VII B] and is given in the inertial regime by

G (@) =q 7" glw/q”), (41)
where g is a scaling function. One then obtains
v(d — 1) 1/n

© dx
dq q%(""’n”%/ — (),
0 g

(42)

(i) = sam s
s 17 2d-1gdi21(4/2) J,

where Eq. (36) is used. If nP < d 4+ 2, the integral on q is
UV divergent when n — 0, which means that it is dominated
by the UV scale n~". It follows that if n” < d +2, (e}/")
is independent of x, and remains finite in the RG (infinite
volume) limit k — 0. Hence, one deduces that to satisfy
the energy budget equation (37), the average injected power
(€inj) given by Eq. (38) minus the average effective dissipated
power (ej;) given by Eq. (39) should also remain finite in the
limit « — 0. Accordingly, either the two terms are both finite,
or if one of them diverges in this limit, the other term must
also diverge to compensate it. This implies «? D, > O(1) [as
the integrals in Eqs. (38) and (39) are finite], that is, n” > d.

B. Cased =3

Ind = 3, the energy is expected to be dominantly dissipated
at the microscopic Kolmogorov scale 5. This corresponds to
the case n? < d + 2, with an average rate of dissipated power
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(eéi/s") independent of «. In the limit x — 0, the effective

dissipation at the volume scale (fixed by R, ) and the injected
energy are of the same order (oxk? D, ). However, as explained
before, the integral scale and the volume scale could be kept
independent. In d = 3, the volume scale could be safely
removed by sending R, — O while keeping N, # 0 (as in
Ref. [83]) and the flow equations would remain well behaved.
Otherwise stated, by taking the volume scale much larger
than the integral scale, the dissipated energy at the volume
scale can be rendered negligible compared to the injected
energy in d = 3. Accordingly, the injected energy cannot be
compensated by the energy dissipated at the volume scale
alone. This implies that it must behave as the energy dissipated
at the Kolmogorov scale. As a consequence, the three terms in
Eq. (37) must scale identically when x — 0 (that is, they must
be independent of ¥ when x — 0).

We choose to impose this condition all along the RG flow
(as should be done without the regulator R, ) [106]. To keep a
constant injected power while taking the RG (infinite volume)
limit x — O thus requires to fix n,? = d for all k, which means
that N,(g) must scale as x~4. This yields in d = 3 that at the
fixed point, 1} = % according to Eq. (36). Hence, the values
of the two running anomalous dimensions at the fixed point
are determined. For simplicity, since we are merely interested
in the fixed-point properties, we fix

n?=3 and n’=4/3 in d=3 (43)

for all x, which has no influence on the fixed-point properties.

C. Cased =2

Ind = 2, the situation is different. The energy is transferred
both towards the small scales (direct cascade) and the large
scales (inverse cascade) and is thus dissipated both at the
microscopic Kolmogorov scale and at the boundaries of the
system. This is manifest on the NPRG equations (67) and (68)
that are no longer regular when sending R, — 0 while keeping
N, # 0. Accordingly, the argument used in d = 3 (exploiting
that the dissipation at the volume scale can be rendered
negligible) is no longer valid in d = 2 and only the previously
shown inequality n? > d holds (one cannot conclude that
nP = d in this dimension). In order to fix n” ford = 2, another
conservation law is necessary.

One can exploit the enstrophy conservation to fix n” in a
similar way that the conservation of energy was used in the
d = 3 case. The enstrophy flux is towards the small scale, in
the direct cascade, and the dissipation of vorticity is dominated
by the microscopic scale, and is_thus independent of «. The
vorticity is defined as @(¢,X) = V x 9(¢,X) which reduces in
d = 2 to the (pseudo)scalar w(t,x) = €j0iv; (t,X). The mean
dissipation rate of vorticity can be expressed as [107]

(wais) = W[V, ¥)?) = v / q' G (w,9). (44

©.q

Using the canonical behavior (41) of G'“, one can indeed
check that for np < 7 in d = 2 the integral on g is UV diver-
gent without a cutoff, and is hence dominated by the UV scale,
and thus independent of «. The conservation of enstrophy then
requires that the mean injection rate of vorticity should also
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be independent of «. This rate can be expressed as [107]
(@inj) = (V x f)(t.5) - &(.5))

= lim
§t—0F o,

4’ N@) G (@3
q
= Dx* lim / 3> N(§) G (&,q)e ™. (45)
§t—0F "l‘?
One hence concludes that to keep a constant rate of injection
of vorticity in the RG limit k — 0 requires to fix n” = 4 for
all «. This identity satisfies the constraint n? > d stemming
from the energy conservation. Thus, both enstrophy and
energy are conserved in d = 2 [108].

This choice yields at the fixed point 1} = 2, according to
Eq. (36). The values of the two running anomalous dimensions
at the fixed point are also determined ind = 2. Asind = 3,
and since we only consider the stationary regime, we simply
fix these values all along the flow

;7,?=4 and 77]'2:2 in d=2. 46)

D. Energy spectrum

The energy spectrum in dimension d is usually defined
as [3]
72

- 2
EC(p) = S0

d—1 o) 7
rd2) P E9D), (47)

where £@(p) is the Fourier transform of the equal-time
velocity-velocity correlation function (v(¢,X) - T)(t,(j)). The
velocity-velocity correlation function (at arbitrary times) can
be expressed as the inverse Fourier transform of ng(a),c}),
that is,

(0a (£, %)5(0,0))
_ / emi=iD Gt (. G)
q

r'*?(@,§) — 2N.(@)

_ —i(wt—§-X) pL />
= — e P(q) ~ —. 48)
/q P (w.9) + R(@)P
One hence obtains
ED(p) = / A% e TP (0, (1,704 (1,0))
* dw T (w,p) — 2N(P)
:—(d—l)/ — = ——. (49
0 T} (w,p) + Re(p)

We focus on the inertial regime where |p| > «, bothind = 2
and 3. In this limit, the functions N, () and R, (p) tend to zero
rapidly, yielding

N * do T (w,p)
o T I} (w,p)

E. Second-order structure function

The longitudinal structure function of order n is defined as
the average of the nth power of the equal-time longitudinal
velocity increment

SOy = ({[3(z,€) — 52,0)] - £)"), (51)
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where ! = € / |Z |. Exploiting translation invariance, the second-
order structure function hence reads as

SO0y = =268 (v;(1,0)v;(1,0) — v;(1,00v:(£,0))  (52)

and in terms of Ggg, one has

(Va(t.)vp(2.0) — va (1.0)vp(1.0)) = / Glt(.g) [ — 1.
q

(53)
It then follows that
; ?-5)?
SP) = - /G””(w §) e —1][ S }
q
o0 d(!) o0
=Vd/ —/ dg g
0 T
5 r*?(,g) — 2N, @ , @) 54)
P .9 + R@PE
with
47rd=D/2
Yd = =TT
myT ()
T
[d(v)E/ d6 sin? [e'" 7 — 1] (55)
0

1
/ du(l — u®) =D — 1. (56)

1
In dimensions d = 2 and 3, the integrals /;(v) are given by

4 v3
sinv —vcosv — — |,
3

L) =7 [—1 + 1J1<v)}, (57)
2 v

I3(v) =

where J;(v) denotes a type J Bessel function of the first kind.

Again, let us focus on the inertial regime corresponding to
£k < 1. Since the integral in Eq. (54) is dominated by values
of g such that g/ is of order one, it is dominated by values
of ¢ > k in the inertial range. Accordingly, one can neglect
in this regime the functions N,(g) and R, (q) that tend to zero
rapidly and one obtains

s £y, / f

V. NPRG FLOW EQUATIONS AT THE LEADING-ORDER
APPROXIMATION

d 1 F(OZ)( J])

|F(1 1)( )| d(q )

(58)

In this section, we devise a simple approximation to study
the stationary regime of the stirred NS equation, designed to
provide a reliable description of the large distance properties
of the system (that is, small wave-number sector), and is
therefore appropriate to investigate the existence of a fixed
point of the NPRG flow. This approximation is similar to
the approximation implemented in Refs. [83,85], although
presented differently, with emphasis on its condition of validity
and limitations.
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A. Approximation scheme

We here explain the principles and justifications of the
approximation scheme. This technical section may be skipped
in a first lecture. The NPRG flow of the effective action
I, is given by the exact equation (17). However, as this
equation cannot be solved exactly, one has to devise some
approximation. The standard approximation schemes within
the NPRG framework are the derivative expansion [61] and
the BMW approximation scheme [68].

The derivative expansion consists in an expansion of I'y
in powers of gradients and time derivatives. It is tailored to
provide an accurate description of the long time and large
distance properties of the theory (zero external wave vector
and frequency sector), which encompass phase diagrams and
critical exponents. However, if one needs the wave-vector
and/or frequency dependencies of the vertex functions, one
has to resort to a more sophisticated approximation scheme
such as the BMW one. It consists in a closure at a given
order n of the hierarchy of flow equations for the p-point
vertex functions I'”’ with p < n by approximating the T'"+D
and I'"*2) vertices. For instance, for n = 2, the set of flow
equations (19) for the two-point functions involves the vertices
I'® and '™, that are approximated in the BMW scheme in
such a way that they can be expressed in terms of derivatives
of I'®, thus yielding a closed set of equations.

In this work, our aim is to compute the wave-vector-
dependent two-point functions, in order to calculate the energy
spectrum (50) and the second-order structure function (58) of
the stationary NS incompressible flow. Hence, the derivative
expansion is not appropriate and we resort to the BMW
scheme. However, the standard implementation of this scheme,
well established for equilibrium problems [68], is hindered
here by the symmetries. The reason is that, on the one
hand, the BMW approximation requires an expansion of the
vertex functions ' and T'™ in the internal wave vector
and frequency, but on the other hand, these dependencies are
very much constrained through the Ward identities, ensuing in
particular from the time-gauged Galilean symmetry, such that
both are very difficult to conciliate a priori.

In fact, this obstacle has been successfully circumvented in
another closely related nonequilibrium classical problem, the
Kardar-Parisi-Zhang (KPZ) equation, which is a stochastic
(Langevin) equation describing interface growth and rough-
ening [76]. The KPZ equation turns out to share with the
NS one a very similar invariance under time-gauged Galilean
transformations, and also under time-gauged shifts (although
of the field itself instead of the response field) [79]. This
similarity is easily conceivable as the KPZ equation maps
onto the Burgers equation. Thus, the approximation scheme
devised in the context of the KPZ equation [78-80] can be
quite simply transposed to the NS equation.

For the KPZ equation, the solution consists in constructing
an ansatz for I', explicitly preserving the symmetries of the
action, in particular, the time-gauged Galilean symmetry. At
second order (SO) of this scheme, the effective action I',
is truncated at quadratic order in the response field, while
retaining for the two-point functions an arbitrary dependence
in wave vectors and frequencies (and also in the field itself
through arbitrary powers of the covariant time derivative).
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The two-point correlation and response functions for the KPZ
problem were calculated within the SO approximation in
d = 1[79]. The existence of scaling forms for these functions
could be proved analytically, and the related scaling functions
in one dimension turned out to reproduce with an impressive
agreement the exact results established in Ref. [109], including
the finest detail of their tails. The SO approximation can
therefore be roughly considered as a BMW-like scheme (for
the field but not for the response field) rendered compatible
with the KPZ symmetries.

From a numerical viewpoint, the SO approximation is
demanding in dimensions larger than one. Two simpler
approximations were thus proposed in Refs. [78-80]. They
both consist in a simplification of the frequency sector, by
either completely neglecting the frequency dependence of the
three-point vertices [leading-order (LO) approximation] or ap-
proximating it (next-to-leading-order (NLO) approximation].
The predictions obtained at NLO for some universal amplitude
ratios of the KPZ problem in Ref. [80] were very accurately
confirmed in d = 2 in recent large-scale simulations [110].
As for the LO approximation, which only retains the bare
frequency dependence but preserves the full wave-vector
dependence of the two-point functions, it clearly suffices in
the KPZ problem to obtain the full phase diagram, including
the strong coupling rough phase. The related estimates for the
critical exponents are in good agreement with the numerical
ones in dimensions d = 2 and 3 [78,80]. Let us underline that
the values of the KPZ critical exponents are greatly improved
at LO compared to those obtained within the derivative
expansion [111], which is probably to be imputed to the
derivative nature of the bare vertex.

As we merely consider, in this work, the wave-vector
dependence of the two-point functions of the NS problem,
we choose to implement the LO approximation for the NS
equation, which is achieved in the next section. For the NS
effective action I, in Eq. (27), it consists in

(i) performing a field expansion in # at order two;

(ii) keeping only the bare wave-vector and frequency
dependencies of all n-point functions with n > 3;

(iii) preserving an arbitrary wave-vector dependence of the
two-point functions while restricting to their bare frequency
dependence.

In this approach, all the symmetries of the theory are
automatically encoded by writing the proposed ansatz for
[, in terms of Galilean scalars only. Notice that within the
LO approximation, point (ii) implies that all n-point vertex
functions with n > 4 vanish and point (iii) that T, is also
truncated at order two in # since the dependence in the D,
covariant derivative is neglected. The LO ansatz is given by
Eq. (59).

Let us comment on the validity and accuracy of the LO
approximation. Point (ii) implies that this approximation
is valid only for wave vectors typically smaller than «
and frequencies smaller than «x!/% because keeping the bare
wave-vector dependence of the n-point functions for n > 3
is equivalent to keeping their leading terms in a wave-vector
expansion. Notice that once this expansion is performed, the
frequency sector is entirely fixed by the symmetries gauged
in time (see Sec. VII). This expansion is certainly valid for
the internal wave vector g in Eq. (19) since it is suppressed
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for |g| > « by the 9, R, term but, a priori, is only justified
for small external wave vector, that is, | p| < « in Eq. (19). In
fact, in most systems, including the KPZ growth, the flow of
the two-point functions actually stops when the external wave
vector becomes larger than the RG scale «, a phenomenon
called decoupling. Thus, the determination of the momentum
and frequency dependencies remains accurate within the LO
approximation because (a) when « > |p| (and k > v'/?) the
LO approximation is controlled and (b) when « becomes
smaller than | p|, the flow almost stops, and although the LO
approximation is not valid in this region of wave numbers, this
has negligible impact on the two-point functions.

However, as stressed in the following, the NS problem is
very peculiar because the RG flow of the two-point functions
does not satisfy the decoupling property of the large wave-
vector sector. Thus, a complementary scheme is necessary
to determine the wave-vector dependence of I'®(p) at finite
p when ¥ — 0. The LO approximation analyzed below is
therefore only valid in the limit | p| — 0 when « — 0, which
is sufficient to determine the fixed-point structure and critical
exponents, but not to investigate multiscaling. On the other
hand, as shown in Sec. VII, exact RG flow equations can be
derived in the large p sector, relying on the very constraining
gauge symmetries of the NS field theory, which can take over
from the LO equations when x becomes smaller than |p|.
In fact, a source for the multiscaling behavior of the n-point
functions precisely emerges in the NPRG framework from
the nondecoupling of the large p sector and the associated
nontrivial behavior in both |p| and v (see Sec. VII).

B. LO ansatz

As explained in the previous section, one can construct
an ansatz for ', in Eq. (27) which explicitly preserves the
time-gauged Galilean symmetry by using as building blocks
Galilean scalars (see Ref. [79] for detail). The shift gauged
symmetry can then also be simply enforced. At LO, the
functional ', is truncated at quadratic order in the response
field # and moreover, the (nonbare) frequency dependence
(i.e., a dependence in the covariant time derivative D, of the
running functions f,’ ’a% below) is neglected. Hence, the LO
ansatz simply reads as

Pl = [ {0 £ = Fp )
£,x,x'
— i (1,%) [, — XNig(t,X)}. (59)
To further specify the running functions f:&%, let us introduce

the notation for the vertex functions

_ 8n+mFK
Sttg, (X1) . . . it (X)Si1g, (X)) ... 8l g, (Ry)

(60)

where from now on, the explicit index « is dropped for the
vertex functions ™" = """ and for the running functions
f;‘éD = Ku,&l; The Fourier transforms of the '™ only
depend on n + m — 1 wave vectors and frequencies because

of translation invariance.
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The dependence of the running functions f,, and faﬂ in

X — ¥’ is in fact through gradients as can be inferred from the

Ward identities (E4) and (E12). The latter imply that these two
functions vanish at zero wave vector:

fag(P=0) = f3(p =0)=0. (61)

The initial conditions of the flow at scale k = 5! for the two
running functions are

wp (X = X)e=pr =0,
fag& = Xy = =08 VI8P —X)]  (62)

to recover the original NS action (5) at the microscopic scale.

The calculation of the two-point functions from the LO
ansatz is straightforward. At vanishing fields and in Fourier
space, one obtains

r (. p) =0
Fas(P), (63)
P (@.p) = —2£.(P).

Within the LO approximation, all vertex functions of order
m +n > 4 vanish, and the only nonzero three-point vertex
function is the bare one, which reads as in Fourier space

Fop (@) =

aﬁy (a)1 ,P1,@2,P2) = _1)\(172 Spy + P 80!)/) (64)

C. Derivation of the LO flow equations

In this section, we derive the LO flow equations of the
two running functions f,, and fa%. In fact, for incompressible
flows, only the transverse sector plays a role, which means

J

WR(@) PP +9)

2
8suq= —— == T e—
Ji(p) u—né[ﬁ@+wwﬂw+ﬁ@+wﬁ
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that only their transverse components, denoted f| and f f s
are eventually needed. The flow equations of f} and fP
are proportional to the projection in the transverse sector
of the flow equations of the two-point functions F;};l)(O, D)
and r;‘/’s’Z)(o, p), which are given in matrix form by Eq. (19)
evaluated at zero external frequency. At LO, the matrices Ffjg ;
entering these equations are zero and only one three-point
vertex, the bare one '@V, contributes in the matrices F,(:l)

The transverse components of the propagator in the u, u
sector (30) are given within the LO approximation, i.e., with
the ansatz (63), by

G (w,p)=0

_ 1
Guu N D - =5 65
“U(w, p) et T (65)
wy = 2fP(p)
G , = T A, .5 5
L= RGP
where
L) = f1(P) + Re(@),
L) = P + Ne(@). (66)

One has to compute the trace of the matrix product (19), and
project the result onto the transverse sector. In the obtained
expression, since the frequency dependence remains the bare
one at LO, the integral over the internal frequency w can
be analytically carried out. These calculations are detailed in
Appendix B. The resulting flow equations for the two running
functions f} and fP are given by

S o = p-q)
2 PPy —op g1 - £L07T)

(p+9)? q%p
D> 2V T2 =
o 1 _ {a‘RK(*)ffv(({)[zfj(qq)+~fj(f +dq)] —BSNK@}
FI@Lf (@) + fi(p+q)] SI@Uf (@) + fi(p+q)]
- q)z] -(ﬁ+§)[q2 (ﬁﬁ)z}”
— d—1 ~E — , 67
X{[ P ( o G+pr | p? 7

2fP@G + p)

A
axD_'Z_ \/[—'—»-»*'—»“—» o2 o,
O = a D L\ Foraro @+ 7+

p-G+PF (- q)2
(P +4q)* q?

(o

where 9y = k0.

D. Dimensionless LO flow equations

As we seek the fixed-point solution of the flow equations,
we work with dimensionless and renormalized quantities, as
defined in Sec. IV. Let us determine the dimensions of the
terms entering the LO ansatz (27) and (59). According to
the definitions (31) and (32), the two functions #(g%/«?) and
A(g?/k?) introduced in Egs. (8) and (11) are dimensionless,

Pk(vfﬂanﬂ@*ﬂﬂ@+5”
@U@ + 7B+

- 3sNK(l})}

(P37

d-1D+2—— [*2 _
} 2+ ! p?

}[ﬁ Pdg+2p-4°—p%q ]>]
(68)

[
and the flows of the regulator terms in Eqs. (67) and (68) are

given by
m&@ﬁnwﬁﬂm@%—w%ﬁ(ﬂ
0, Ne(@) = De@*[~(1 +2)2@%) - 29°00@7)].  (69)
Then, according to Eq. (59), the dimensions of the running

functions f,, and f, ?, are the same as the ones of R g
and N,qg in Eqs. (31) and (32) and we thus define the
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dimensionless functions /4" and 4P as

LB =vek® pPPR°(p) and  fP(p) = D, p* hP(p).

(70)
Their flow equations are given by
. woa s o a B fL(P)
dsh"(p) = nlh"(p) + p - 9h (p)+vxlf;2”,
~ 5 ~ 5 ~ 5 ax bp
ok (p) = (02 + 2R (p)+ p - 9:h°(p) + DEI%
(71)

with the substitutions for dimensionless quantities in the flow
equations (67) and (68) for o, ff(ﬁ) and o ff(ﬁ).

VI. FIXED-POINT SOLUTIONS

One has to integrate the two flow equations (71) to
determine the scale evolution of the two running functions
hV( f)) and hP( ﬁ). For simplicity, the two running exponents
n, and 77,? are fixed to the values (43) in d = 3 and (46) in
d = 2 at any «, that is, all along the flow (note that 855»,( =0
for all k once the exponents are fixed). We checked that it does
not affect the critical properties at the fixed point. These flow
equations are integrated numerically from the initial conditions
hP(p) =0 and h"(p) = 1, with different values of A and
different values of the a parameter in Eq. (12). The detail
of the numerical procedure is summarized in Appendix D. We
observe that the flow always reaches a (fully attractive) fixed
point without fine tuning any parameter, and independently
of the initial conditions, both in d = 3 and in 2. Hence, the
corresponding stationary regime is universal.

A. Fixed-point functions /* and i”

Along the flow, the two functions AP are smoothly
deformed to acquire a fixed form, which is illustrated on the
example of the function A4 in d =2 and 3 in Fig. 1. The
fixed-point profile of the two functions in both dimensions is
displayed in logarithmic scales in Fig. 2. This figure shows that
both functions decay algebraically at large wave number. We
determined the corresponding decay exponents and observed
that they deviate from the expected (dimensional) scalings. We
indeed found

RY(p)~ p~" ™ and AP(p)~ p~ DB, (72)

where o and 8 are the deviations from the dimensional (K41
or KB) scalings, with the estimated values o ~ 8 >~ 0.33 in
d=3and ¢ ~ 8 >~ 1.00 in d = 2. The values found are in
agreement with the values reported in d = 3 in Ref. [83]. They
are also very close to the values that can be estimated from
the Figs. 3 and 7 of Ref. [85], which confirms that the large €
regime in this work corresponds in fact to the fixed-point with
localized forcing, although this was not noticed by the authors.
It was shown in particular in Ref. [83] that these exponents are
independent of the choice of the stirring profile. In fact, one
can prove by inspection of the regime p >> « of the LO flow
equations (67) and (68) that the exponent « is exactly % in
d =3 and 1 in d = 2. Moreover, we found numerically that
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0.81— -

"o

FIG. 1. RG evolution of the dimensionless running function
fz”(ﬁ) in dimensions d = 3 (upper panel) and d = 2 (lower panel)
starting from the initial condition /"(p) = 1 at the microscopic scale
k& = n~". The red arrow corresponds to decreasing RG scales « and
the black thick line to the fixed-point function.

B~ % ind =3 and 8 >~ 1ind = 2, if not exactly at least very
precisely [112]. Let us now probe the effect of these deviations
on physical observables.

B. Energy spectrum

Within the LO approximation, the two-point functions are
given by

r{?@.q) = -2D.4°h"@).
r'"(,q) = ve?lio + §*h° @) (73)

—_
W
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FIG. 2. Fixed-point functions AP (p) (lower panel) and fz”(ﬁ)
(upper panel) in dimensions d = 3 (black curves) and d = 2 (red
curves). Both horizontal and vertical axes are in logarithmic scales.
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0.01 1 100

A

p

FIG. 3. Energy spectrum (multiplied by the appropriate power
k™3 ind = 3 and k3 in d = 2) of the turbulent flow in dimensions
d =3 and 2 as a function of the dimensionless wave number p =
| p|/k. The dashed lines are guidelines for the eyes.

Inserting these expressions into Eq. (50) and performing
the integral over the frequency, one obtains for the energy
spectrum

22 D, WP
s (d—l)pdq « ! ([7)
'(d/2) vk hv(p)

E“(p) ~ (74)

The corresponding energy spectraind = 3 and 2 are displayed
on Fig. 3. At small wave vector, the two functions 7"?(p) tend
to a finite constant. It follows that the energy spectra grow as

EDp) ~ phe (75)
with the power law p?~' reflecting equipartition of energy.
At large wave vector, the two functions 4”P(p) follow the
asymptotics (72) and the energy spectra in both dimensions
thus decay algebraically as

p-a -
E9(p) ~ p"‘3‘”0+”"(£> = {p

K

using Egs. (43) and (46).

In d = 3, we hence recover the Kolmogorov scaling when
o = B which describes the decay of the energy spectrum when
all the energy is dominantly transferred towards the small scale
in the direct cascade.

Let us compute at LO approximation the rate of dissipated
power at the microscopic scale in d = 3 and check that the
presence of deviations from dimensional scalings does not
alter the analysis of Sec. IV A. The average dissipated power
per unit mass (40) is expressed as

r®2(,3) — 2N, (§)
T8 (,3) + R(@)|

(eats)) = —v(d - l)f 7 (77)
w.q

PHYSICAL REVIEW E 93, 063101 (2016)

For g in the inertial range, N, and R, are negligible, and within
the LO approximation one obtains

iny _  K9Dx d—1 e i @
(Edis > =V d—1,d/2 dq q ~
v 2471gd21(d/2) Jo h'(q)

(78)

This integral is UV divergent in d > 2 without an UV cutoff,
and hence dominated by the UV scale n~!. Indeed, for x <
n~", the two functions 4”2 and A" follow the asymptotics (72)
and thusind =3

1/n d—nP+n¥ Hoem 1/3+p—
<6dis)O(K ! n/o dgq’>mre
I n—4/3—ﬁ+aK0[—ﬁ’ (79)

and is independent of k for o >~ B. This corroborates the
analysis of Sec. IV A. Thus, the flux of energy is constant
in the inertial range between the injection scale «~' and
the dissipation scale 7, as expected in three-dimensional
turbulence.

Ind = 2, we find according to Eq. (76) that the decay of the
energy spectrum in the direct cascade is steeper (slope —3) in
d = 2 than in d = 3. This is expected since part of the energy
is transferred in the inverse cascade in d = 2. We recover the
p~3 decay in the direct cascade predicted by KB theory with
no (or very small) corrections when « >~ . One can check
explicitly that the mean rate of dissipated vorticity (44) is
indeed dominated by the UV scale n~! (behaving as ~2) and
thus independent of k, confirming the analysis of Sec. IV A. We
remind that we do not have access here to the inverse cascade
since the integral scale is merged with the (inverse) RG scale
and sent to infinity with it, that is, the energy is effectively
injected at the boundaries of the system. To investigate the
inverse cascade, the integral scale (energy injection scale)
should be kept fixed while the volume scale, identified in that
case with the RG scale, should diverge in the limit k — 0.
This important study is left for future work.

Both these results seem to indicate that, although the
two-point functions do display substantial deviations to their
dimensional scalings, these deviations cancel out (or almost)
for the energy spectrum, which is in agreement with experi-
mental and numerical results which find very small (if any)
corrections [3]. However, as explained previously, the LO
approximation is not appropriate to study this regime since
it is based on an expansion of all wave vectors, including
the external ones, in powers of wave vectors over «. Definite
conclusions are postponed to Sec. VII.

C. Second-order structure function

Within the LO approximation, one obtains for the second-
order structure function (58) inserting the expressions (73):

DK 00 iiD A
SP() ~ —yy — K2 / dg g~ = @ Li(kg0). (80)
Vie 0 hv(q)

Let us determine the behavior of this quantity within the inertial
regime, which corresponds to the limit k £ < 1. Performing the
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change of variables x = k§¢, one obtains

D 00 hP(x
SA(0) ~ —yy — 72 (Kﬁ)fd'/. dx x? 1= (KZ) I4(x)
c 0 h* (%)
~ —yq B R e
o0 D N
X / dx x4737 B (), (81)
0

where in the second equality the asymptotics (72) are used.
The integral over x is both IR and UV finite. Hence, ind = 3,

[o.¢]
SD() ~ —yy kP rap / dx x PP L(x), (82)
0
and the Kolmogorov scaling is again recovered (or receives a
very small correction) fora >~ 8. Ind = 2,

[o.¢]
SO) ~ —yq kPt / dx x P [y(x),  (83)
0
and no deviation (or very small effect) from the KB scaling
is found when o >~ B. Both these results are again not in
contradiction with experimental and numerical results [3].

As previously, one should be cautious with these results
because the regime of wave numbers much larger than « is
not controlled in the LO approximation. Let us also point
out that finding standard scaling for S does not entail
that the higher-order structure functions S™_ n >3, do not
exhibit intermittency either because this result for S@ relies
on compensations which are not likely to be generic. This is
further discussed in Sec. VII.

D. Large wave-number sector and limit
of the LO approximation

In this section, we analyze the large wave-number limit of
the flow equations (71). This analysis unveils that the nonlinear
parts of these equations given by Egs. (67) and (68) do not
become negligible at the fixed point compared to the linear
(dimensional) parts for large external wave vectors p. This
means that the large wave-number sector does not decouple
from the flow when k < | p|, which is a very unusual property.
As a consequence, the existence of the fixed point does not
lead to the usual scale invariance, as encountered in ordinary
critical phenomena. Indeed, the nondecoupling entails that the
large wave-vector sector is not determined by the small wave-
vector one, that is, the large |p| behavior (the exponents of
the algebraic tails of the correlation functions) is not fixed
in terms of the anomalous dimensions (" and 7”) and can
develop deviations from them.

These deviations cannot be reliably computed at LO
because this approximation is fully justified only when all
the wave numbers are small. As already explained, whereas
this expansion is always valid for the internal wave vector
because of the presence of the regulator term 0, R, which
effectively cuts off the contributions |g| > «, it is justified
only for small external wave vectors p. Hence, one has to
devise an alternative approximation to properly describe the
large wave-number sector. This is achieved in Sec. VII. In fact,
we prove in this section that the nondecoupling is a real feature
of the exact NPRG flow of the NS problem and not an artifact
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of the LO approximation. Therefore, it is instructive to first
understand how this nondecoupling works on the example of
the LO flow equations.

To this aim, we now study the large p sector of the
flow equations (71). We observed that the dimensionless
running functions 2" reach a fixed point for k < 1!, which
means by definition 8sz"( p) = BsﬁD (p) = 0. We concentrate
in the following on this regime. Let us assume for a moment
that, as it generally occurs, the nonlinear terms of the flow
equations (71), denoted L' = d;f}(p)/(v,p?) and LP =
s f2(p)/(D,p?) and which explicit expressions are given
by (67) and (68), become negligible in the large wave-number
limit |p| > « compared to the linear terms, that is, they
decouple. One then deduces that the general solutions at the
fixed point of the remaining homogeneous (linear) parts of the
flow equations are the scaling forms

hb(py=p~"¢" and AP(p) = pHI¢P, (84)

where ¢V'P are constants. Had we considered running func-
tions depending on wave vector and frequency, we would have
obtained, e.g., 1" (@, p) = p~" ¢(®/p*""). We now show that
this leads to a contradiction, that is, these scaling solutions
are incompatible with the assumed decoupling of the large
wave-number sector. For this, the leading contribution in
p of each nonlinear term £” and £” can be analytically
determined substituting the two functions 72" with the scaling
solutions (84). One obtains that the dominant contributions
of £V and LP are, respectively, p" and ﬁ’(”D“). Hence,
they are not negligible (subdominant) compared to the linear
terms, but of the same order. One concludes that in LO
approximation the nonlinear parts of the flow equations do
not decouple at the fixed point, which invalidates the general
scaling solutions (84).

This nondecoupling property entails that the existence of
the fixed point does not generate scale invariance as usual
(in critical phenomena). As a matter of fact, we found in
the previous section that the two functions 4*? do decay
algebraically, but not with the dimensional exponents (84).
Instead, they exhibit the deviations « and f§ to these scalings
following the asymptotics (72). Of course, the realm of the
nondecoupling property for the exact NS flow equations
cannot be asserted at the LO level and the obtained values
of these deviations are not to be trusted. However, we now
specifically address the large wave-number regime, and prove
that nondecoupling indeed occurs in the exact NPRG flow for
NS.

VII. EXACT NPRG FLOW EQUATIONS IN THE LARGE
WAVE-NUMBER REGIME

The LO approximation is justified and expected to be accu-
rate in the small wave-number regime |p| < «. In this section,
we devise an alternative and complementary approximation
for the large wave-number regime |p| = k which becomes
exact in the limit | p| > « or, equivalently, in the limit « — 0
for any fixed external wave vector and frequency. The flow
equations for the two-point functions can indeed be exactly
closed in this limit using Ward identities [113].
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FIG. 4. Diagrammatic representation of the exact flow equation
of I"Y(v,p), with § = 8,R, 52 7%= T 8N 73~ The combinatorial
factors are not explicitly written, and diagrams involving I':0

vertices are omitted since they are vanishing.

A. Derivation of the flow equations in the large
wave-number limit

The exact flow equations for the two-point functions (19)
are represented diagrammatically in Figs. 4 and 5. The
diagrams involving "% vertices are not depicted since they
are vanishing as a consequence of the general properties of
NPRG within the Janssen—de Dominicis formalism and Ito’s
discretization [89,100].

Let us show that the remaining diagrams in Figs. 4 and 5
are either negligible or closed (expressed in terms of two-point
functions) in the large |p| limit. Indeed, the presence of the
regulator term 9, R, (implicit in the J; operator) effectively
cuts off the internal wave-vector g integral to values of order
|7 < k [and similar conclusions can be drawn when p + g is
cut off instead of ¢ (see Appendix F)]. In the limit of large
external wave number |p| > k, the internal wave vector ¢
is negligible in all vertices compared to p and can be set
to zero. Let us emphasize that this can be safely done since
analyticity is ensured for all vertex functions at any scale « 7% 0
[114], and only |p| >> |g| is required, without assumptions on
k. This implies that, in this limit, the three- and four-point
vertex functions are to be evaluated at one, respectively two,
vanishing wave vectors, and this implies the following:

(a) If the zero wave vector is carried by a u leg, then the
corresponding vertex is vanishing as a consequence of the

J

PHYSICAL REVIEW E 93, 063101 (2016)

FIG. 5. Diagrammatic representation of the exact flow equation
of T'"?(v,p), with 3, = 8, R, -2 r T 0s N, 52-. The combinatorial
factors are not explicitly written, and d1agrams involving '
vertices are omitted since they are vanishing.

time-gauged shift symmetry [encoded in the general Ward
identity (E9)] and thus such diagrams are negligible in the
large p limit [Figs. 4(a), 4(b), 4(d), 5(a), 5(b), and 5(f)].

(b) If the zero wave vector is carried by a u leg, then
the corresponding vertex is exactly related to lower-order
vertices by time-gauged Galilean Ward identities and thus such
diagrams are closed in the large p limit.

Let us make this last assertion explicit. There are two
three-point vertex functions, I'">! and I'"":?), involved in the
(nonzero) diagrams of Figs. 4(c), 5(c), and 5(d), which are to
be evaluated at a zero wave vector on a u leg. As derived in
Appendix E, they are related by a time-gauged Galilean Ward
identity to two-point vertex functions as

réh

wby [F“ Y0+ 0.4) ~ T @.9)],

(85)

(vOa)q)——

I .0;0.§) = [F“’ Y0+ 0.§) - Ty @.9)].

(86)

Similarly, one can deduce from the Ward identi-
ties (E19), (E20), (85), and (86) that the two four-point vertex
functions, '®? and I'G-D_involved in the remaining diagrams
of Figs. 4(e) and 5(e), to be evaluated at two vanishing wave
vectors, are related to two-point vertex functions as

- = - - o ﬂ =
FE .4 =0.~0.~4 = 0v.5) = L~ [T +v.5) - 2T . 5) + TG~ + v, )], ®7)
o
G @, = 0,~w,—§ = 0,v,5) = pwf 15" @ +v.5) = 2055 0. 5) + T V(0 + v. ). ®8)

Thus, the expressions of all the nonvanishing diagrams contributing to the flows of the two-point functions can be exactly closed,
i.e., expressed in terms of two-point functions only, in the limit of large external wave number.

Let us emphasize that, since the Galilean symmetry is gauged in time, no approximation is needed for the internal frequency
once the internal wave vector is neglected. This is a great advantage since an expansion on the internal frequency would not be
justified as it is not cut off. Indeed, the regulator functions N, and R, only depend on momenta, but not on frequencies (which
is required in order to maintain the various symmetries of the model along the flow). Hence, the internal momentum can safely
be neglected when |p| > k, and once this is done, the internal frequency dependence is entirely fixed by the symmetries and no

approximation is necessary in the frequency sector.

The nonzero diagrams in Figs. 4(c), 4(e), 5(c), 5(d), and 5(e) are explicitly calculated in Appendix F. Gathering their
contributions, the NPRG evolution of the transverse two-point functions in the limit |p| > « is given by the exact flow
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equations

PHYSICAL REVIEW E 93, 063101 (2016)

F(l Dy, 5) = d-1 2/{_[Ff‘l)(a)+v,ﬁ)—rf’”(v,ﬁ) 2
d ",

Guﬁ_ _"'
w i| P(—w—v,p)

55 @ +v.p) = 2M P p) + T o+ v, ﬁ)]}és / G'"(.,7). (89)
q

ri'e+o.pf

G'"(w+v,p)

d—1 Yo, p) -
8, TV, = ¢ y )pZ/(‘ L wp)

w

, Ff’z)(a) +v,p) —
a)

2w 2

re?o, ﬁ)i|Re { [rf*“«o +v.p) -

I, 57 e .
» L ]G'i“(—w — v,p)}

| B -\ = .
+ — P +v,5) — 22w, 5) + TP (—w + v,P)]>3s / G (w.9). (90)
i

We study below the decoupling property of these equations
and its consequences.

B. Study of the (non)decoupling

In this section, we prove that the large wave-number sector
does not decouple in the NS flow equations (89) and (90). Our
strategy is as previously to assume that such a decoupling does
take place and then to show that this leads to a contradiction.

We consider the inertial regime of wave numbers |p
much larger than the running inverse integral scale x and
much smaller than the inverse microscopic Kolmogorov scale.
The effective action I, has thus already approached the IR
attractive fixed point, and it is convenient to rewrite Egs. (89)
and (90) in terms of dimensionless quantities:

AT p) = kPv{@ = TV 0.p) = pa TV, )
=@ ="V 0.) + ALV, p)),
Del=n” P2 0.p) = po; L2 0. p)

—@ =98P0 p) + AL PP, p)),

8,1 (v, p) =

on
where
r{Pw,p) = o 800, p),
F0%,p) = D025, ). o
At the fixed point, by definition 3,[(""(D,p) =

8sf‘$)'2)(f), p) =0 and the running coefficients behave as
D, ~ k" and v, ~ k~"". We now assume that for Ipl > «k,
the right-hand sides of Egs. (89) and (90) are negligible
(decoupled), that is, 9,I'"* ~a,I'"" ~0 in Egs. (91).
The general solutions of the remnant homogeneous linear
equations are the scaling forms

P05y =52 200/,
rO20,p) = p7 270/ (93)

or, equivalently,
P800, p) = p> D/ pP ),

re2wp) = p" x 20/ p*. (94)

(

Both functions x“/(z) and {7 (z) are equal up to some
(nonuniversal) normalizations (of the functions and of their
arguments).

Let us now prove that this is inconsistent. For this, we
substitute the obtained solutions (94) in the right-hand sides
of Eqgs. (89) and (90) and show that they are not negligible
compared to the other terms of Egs. (91). To determine the
behavior of the right-hand sides of Egs. (89) and (90), we
assign to each quantity appropriate powers of p:

(i) The internal wave vector g is tailored to values g ~ «
by the presence of the term 9;R,, that is, it is of order one as
p>K.

(ii) The external frequency v scales as p>~"

(iii) The internal frequency o satisfies w < v ~ p>~"", as
shown below.

As a matter of fact, the internal frequency is not cut off
by the regulator and it is not clear a priori which region of
integration on w dominates. There are essentially two scales, «
and p. If one assumes that @ ~ v ~ p>~"" then the resulting
integral on w behaves for small w as f dw/w?* which is IR
divergent. This means that the dominating internal frequencies
are @ < v~ p> . In this limit, the flow equations (89)
and (90) acquire a simpler form

(dd 1)1721 {2 vr(l Dy, )

8, w.p) =

— 13,0V, )1 G4 (v, ﬁ)}, 95)

d-1 ,
d

—28,I'"? (v, p)Re[0,T " (v, )G (—v, )]

8,2 (v.p) = 10{2 8T . p)

+ |8UF$’”(v,ﬁnzci"w,ﬁ)}, (96)
where
Iy = &/ G (@,9).
w,q

Under this form, the relevant scale for the internal frequency
o is manifestly « since the integral Iy does not depend on the
external scales p or v.
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Substituting the scaling solutions (94) in the right-hand
sides of Egs. (95) and (96), one obtains that the equations
for TD(v, p) and T©2 (v, p) behave as p" and p=2-1"+21",
respectively. Since the left-hand sides behave as p>~""
p*"D, respectively, this yields violations of the scaling which
are not marginal, but quite substantial: the right-hand sides are
not subleading compared to the left-hand ones but dominating
by a factor p?/? ind = 3 and p? in d = 2. This clearly is not
consistent and proves that there is no decoupling of the large
wave-number sector |p| > k.

and

C. Consequences of the nondecoupling and intermittency

This nondecoupling property is extremely peculiar. It
means that correlation functions remain sensitive to the integral
scale even at |p| > «, which is completely different from
what occurs in critical phenomena, where correlation functions
have a well-behaved infinite-volume limit. The prominence of
the integral scale in the onset of intermittency was already
observed in the perturbative context [18]. The origin of
this difference can be intuitively understood. A dissipative
system such as a fluid cannot sustain well-defined stationary
correlation functions without injection of energy, and thus it
remains in some way sensitive to the corresponding scale, the
integral scale, even at much larger wavelength scales. It is
therefore reasonable to infer that this violation of scaling is
general in fully developed turbulence, and not restricted to
two-point correlation functions. This could explain the origin
of intermittency: correlation functions are dominated by the
existence of an IR fixed point, leading to power-law behavior,
but the absence of decoupling prevents the existence of usual
scaling (determined by a finite set of anomalous dimensions,
here " and n?), and opens the door to multiscaling.

Let us make one further step and try to explain why
the lowest-order structure functions display only very small
corrections to the dimensional scaling exponents. Obviously,
the four-fifth theorem forbids anomalous corrections for the
S® structure function. As for S, one can justify very small
but nonzero corrections in the following way. In the regime
of large wave numbers, Eqgs. (95) and (96) become exact.
These equations read as, in terms of the connected two-point
correlation functions,

d-1
2d
d-1
2d

Again, if the associated dimensionless functions approach a
fixed point and if decoupling is assumed, one can show that
right-hand sides are enhanced with respect to the other terms by
afactor p?/?ind = 3 and p? ind = 2. However, the functions
that are usually measured experimentally are not directly the
functions Gﬁ_ﬁ(v, p)or G'“(v, p), but correlators at equal times
such as

3,G'"(v,p) = P pd2G (v, p), (97)

3,G""(v,p) = P2 1d*G " (v, p). (98)

dw uu g
5. Gl (@.p) (99)

[see, e.g., Eq. (58)]. As the function G'* (w, p) is expected to
remain regular in frequency when x — 0, one can integrate
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Eq. (98) over the frequency, which yields

= (100)
This means that the leading term that violates the decoupling
is zero when integrated over frequencies. Accordingly, the
possible leading intermittency correction to this quantity
comes from a subleading contribution. This could explain
the smallness of the deviation for the second-order structure
function. On the contrary, higher-order n-point functions bear a
more complicated frequency structure and such compensations
are very unlikely to occur, and thus intermittency effects
could be much larger for higher-order structure functions, as
observed in experiments and numerical simulations.

dw R .
9 | —G'"(w,p) < leading terms.

VIII. CONCLUSION

In this paper, we expounded the NPRG formalism to investi-
gate the regime of fully developed isotropic and homogeneous
turbulence of the NS equation in the presence of a stochastic
forcing. We then developed two complementary approaches
to solve the NPRG flow equations. We first implemented a
simple approximation, called the LO approximation, which
consists in proposing an ansatz for the running effective action
[, based on the NS symmetries. By numerically integrating
the corresponding equations, we found a fully attractive fixed
point in dimensions d = 2 and 3, governing the stationary
regime of fully developed turbulence in the presence of an
integral-scale forcing. This fixed point was already identified
with approximations similar to ours in d = 3 in Refs. [83,85]
and in d =2 in Ref. [85]. The remarkable feature of this
fixed point is the emergence of deviations to the dimensional
scaling for the two-point functions. These deviations turn out
to compensate very precisely for the energy spectrum and
the second-order structure function, such that for instance for
the energy spectrum, the Kolmogorov scaling p=>/3 in d = 3
and the Kraichnan-Batchelor one p—3 in d = 2 (in the direct
cascade) are recovered.

To further analyze the regime of large wave number where
these deviations lie, we derived a set of closed flow equations
for the two-point functions, which are exact in this regime.
We proved that the usual decoupling property of NPRG flows
is violated, that is, the large wave-number sector does not
decouple from the flow equations, which in turn prevents the
usual scale invariance. More precisely, on the one hand,
the existence of the fixed point entails power-law behavior for
the correlation functions. On the other hand, the nondecoupling
of the large wave numbers allows for violations of simple scal-
ing to occur, which means that the exponents can deviate from
their dimensional values. This opens the door to multiscaling
and intermittency. We also suggested why these deviations
remain small for the low-order structure functions (and the
energy spectrum), but may be larger for higher-order ones.
The value of the corresponding intermittency exponents can
be computed by integrating the exact flow equations obtained
in the large wave-number regime, which will be investigated
in a future work. It would also be interesting to work out the
link between the absence of operators of negative dimensions
in the OPE in the perturbative context and the nondecoupling
property unveiled in the NPRG framework. More generally,
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the purpose of this work is to provide a detailed basis for APPENDIX A: GENERAL STRUCTURE OF THE NPRG
future investigation of NS turbulence using NPRG methods. PROPAGATOR

In this Appendix, we establish the general structure of
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this work. notation)
“p ip p p
Uy O Fgﬁ,l)(w7ﬁ) + RK,Dtﬂ(ﬁ) O —ipa
- (1 1) 02, o o
2. 5) + Re(p) = "o| o 0P+ RepulP) - Lo @) =2Neapp) ipafp 0 (A
b 0 —ipp/p 0 0
P ipg 0 0 0

Using rotational invariance and parity, one may infer that the propagator matrix is endowed with the following generic structure:

up ugp P p
u, [ Gup@:p) Guf(@,p) ipaG"(@.P)  ipaG"P(w.p)
ii G”” G (w,p 0o G (0,7)  ipyG™(w,p
Gk(w’l—)v) — Uy ( w p) aﬁ(a) P) 2% ((1) p) Lp (Cl) p) (Az)

p —lPﬂG“”( ®.p)  —ippG"(-w.p)  G"(w.p) GPP(w, p)

P \=ipsG*?(~w,p) —ipsG"’(~w,p) G'’(~w,p)  G"P(w,p)

in obvious notation for the two upper indices of the different matrix elements of G,. The latter are obtained by requiring that the
product [['? + R, 1(w, p)G(w, p) is the identity matrix. This yields in the pressure sector

2, o
Gpp(w,m:p—’;ﬁ()(p), G"P(w, ) = ; [—iw+ [P, GPP(w,p)x = 0. (A3)

In the mixed sector, only two elements are nonvanishing, which are

_ R 1 = N
Guﬁ(w’p) - Gup(w,p) — ﬁ (A4)
p

P

As for the velocity sector, one obtains that all longitudinal components vanish. As a consequence, the propagator in this sector
is purely transverse and given by

1 . o T%9w,3) — 2N (G
M. = — PG D2,
' (~w,q) + R(q) I (w,q9) + Re(q)]

Guf(@,§) = Pp(q) op(@,4) = 0. (A5)

APPENDIX B: DERIVATION OF THE NPRG FLOW EQUATIONS AT LO

In this Appendix, we derive the flow equations for the transverse components of the two running functions f,,( p) and fw% (p)
of the LO ansatz. They are related to the flows of F ) (v =0,p) and F(O )(v = 0, p), respectively, which we now calculate.

1. Flow equations of F(l D and F(O 2 at LO
According to Eq. (19), the flow equation of Ffwﬁ )(v = 0,p) is given by
3T (v =0p) = / 0R(§) - Gl {T2), (p.@) - Ge(p+ @) L) (p+q. — P} - Gl (B1)
w,q
omitting the contributions of the four-point vertices which are vanishing at LO. As apparent in Eq. (A1), the regulator matrix
R, has only three nonvanishing entries: [R,]12 = [R¢]21 = Re(p) and [R,]12 = —2N,(p). Moreover, at LO, only the vertex

function Fgéjl/) is nonzero and contributes in the Ffjl) matrices. Performing the matrix product (B1) and taking the trace, one is
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left with only four terms, which are
PEOPEF+D  27P(5+d)
9T (v =0,p) = AZ/ 3, R@([qzai — (P4 @i8iplil(p + Qabij — Prbaj] L LA A )
; g ’ / Meio+ f1@P (0 + 170G+ )P

w.q

. AfP@ 1@ 3 Ne(@)
+)\2/ <8KRK = = L_. -2 AV >
P o T e

P () Pg(p+q) }
8i %) a ) ———— "~ B2
{[ qi18ip +(q + plidp1li(qadjk + pjd k) ot PG D) (B2)
with the notation
@ = fl@+Rc@ and fP@G) = fP@ + Nc(@. (B3)

This flow equation is to be projected onto the transverse sector. Hence, all the terms proportional to p, or pg can be discarded
since Pojs( D)o = P,j;g( p)pg = 0. The two tensor structures in Eq. (B2) can be then simplified in the following way:

T\ = =PI + @adij — Prbajl Pir (P + Dlaidip — (p + q)idis]

o PP+ PP 9adp 5
Z{_p2+— oy — 22290

> - ¢ + longitudinal parts,
(r+q»

T\Y = —P(§)(qud + Pi0a) Pa (B + DI—aiis + (p + q)iis]

D)
- {_ﬁ2 + M}(Saﬁ + 2%[) (p + g) + longitudinal parts, (B4)
q p

where only the transverse contributions are explicitly specified.
Similarly, the flow equation of I‘gl)g’z)(v = 0, p) is given by Eq. (19):

0Ly =0,p) = f R - Ge@ - (T, 0.0 Gep+@) - T (p+ ¢,—P)} - Ge(@) (BS)
®.§
omitting the vanishing four-point vertices (at LO). Only three terms are left in the trace of the matrix product (BS), which are

AT (v =0.p) = 22 / il + Pidja — q;8ui)ilqdis — (P + @S] PT@ PSP + )
w.q

(B6)

o (8KRK(67) 4ff(t?~)fli(67) 5 BKNi(cjz ) 2ff~(é-—>+_ﬁ)_> |
(@D +[fT@P? P+ f1@P) B+ 1f(p+

As previously, ignoring the terms proportional to p, and pg, the tensor structure in this equation simplifies to

702 _ —P,-IL@)(PiSja + pj8ia) P; k(p + @)(— pidkg — pidip) + longitudinal parts

. (p-(P+ P (13'21)2} qeqp oo o 2 o0 2222 -
=12p%*+ E— - —= o 20— -q+2(p- — + longitudinal parts. B7
{ p G 1) 72 p qz(erq)z[p P-q+2p-q9°—p-q] g p B7)

2. Flow equations of /P and f}

According to the expressions (63) of the two-point functions at LO in the velocity sector, the flow equations of the transverse
functions fP and f} may be defined as

B fL(P) = Pa(PaTys (v =0.5), 3 fP(p)=— P(Pa T (v =0,p). (BS)

1 1
d—1) 2d — 1)

The flow equations of 9, FL}B’D and 0, FS}S’D are proportional to the tensor structures (B4) and (B7), respectively, which projections
onto the transverse sector are straightforward, using

L= 1L,= 2 (ﬁ‘})2
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One obtains
2fP (P + 9)dR(§)

)\’2
A fl(p) = ——— pe—
T =G5 /w,(} [[—iw @R LG

PHYSICAL REVIEW E 93, 063101 (2016)

2 [5-(ﬁ+a>]2}d_l _2_,[1_@@)2])
<{”+ Grap | DAl G

1

. AfP@ @ 3N (@)
+ | 9 R, = -2 —
( D@ o+ @GP
LG CDZ} -<ﬁ+c7>[ﬁ2
- d—1 22—
. {[ ( )t (g + p)*

io+ fl(p+4q)

B @@')2“]
52 )

3 Ne(@)

(B10)

w

R )LZ .4 FD(2N\ Fvez
axff’(m:—mf ﬂ[(aKRK(m{ zfl @W/ia) _,
w,q

+ [ (@1
VR CER) E q)2
2 2

X<{” MY 77

o + [

) 2fP@G+ p)
w? + [fj(ﬁ + )P

d—1+2 g2
}( I ﬁ2(ﬁ+q)2[q p?

~\2

Within the LO approximation, the frequency dependence remains the bare one, and the integration over the internal frequency
o can be carried out analytically in the above expressions. Denoting A = f}()* and B = f](p + ), the different frequency

integrals are given by

, _/dw 1 1 1
"7 ) 2n (miw+ A2 w? + B2 2B(A+ B2’
do 1 1
122 ~_ = )
27 iw + B2 w? + A2 2A(A+ B)
dw 1 2A+ B
L= | —- — = = (B11)
27 iw+ B (0® + A2)?  4A3(A + B)
; _/dw 1 B 1
YT ) 2m?+ B2w? + A2 24B(A + B)
2A+ B

I_/‘da) 1
T 2 B (0 +

which yield the two flow equations (67) and (68).

APPENDIX C: AVERAGE INJECTED POWER
PER UNIT MASS

The injected power per unit mass is f,(x)v, (x). The average
of a quantity linearly depending on the stochastic forcing f
can be calculated using the Janssen—de Dominicis procedure
(see Ref. [94] for detail), which yields

(fu(t,X)O[V]) = 2ﬂ Niap(IX — X'(0p(2,X)O[V])  (CD)

denoting « the inverse integral scale. Averages of quantities
linear in f are hence related to response functions. In the
particular case where f,, and O are defined at equal times, one
must carefully consider the Itd’s prescription. As a matter of
fact, the average of the injected power per unit mass would
naively be given, according to Eq. (C1), by

nalve

(fat,X)v0(1,X)) / Neap(IX — X'){va(t,X)0p(t, X)),

(C2)

but the response function at equal times is zero because of
Itd’s prescription. However, the precise meaning of equal time
must be carefully specified in discrete time. In particular, for
the injected power, one should examine the kinetic energy
theorem and properly discretize it. The energy at a given space
point comes from both direct injection by the external force

A2)2 -

4A3B(A + B)?’

(

and transfer from its neighboring points. We here only seek the
variation of the velocity induced by the external force and thus
omit transferred power from one point to another. Accordingly,
in discrete time, [t0’s forward discretization is

Su(t,X) = Qvy(2,%) = %[va(t + 82,X) — ve(t,X)].  (C3)

Thus, the discretized kinetic energy theorem is

3 (30200 (1.5) = [(Vave)(t + 82,%) — (Ve )(1,X)]/(261)
Lt D) et + 81,%) + v,(1,5)],  (C4)

which indicates that half of the quantity to be averaged is not
defined at coinciding but at successive times and the associated
response function has a nonzero contribution. In conclusion,
the average injected power is precisely defined as

ot S D) = i [ Neop(lF ~ %)
X (v (t + 81,X)0p(1,X")), ((&=))}

which, apart from the correct limit process and the one-half
factor, coincides with the expression (C2).
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APPENDIX D: NUMERICAL INTEGRATION OF THE LO
FLOW EQUATIONS

In this Appendix, we expound the detail of the nu-
merical procedure implemented to integrate the LO flow
equations (71). The running functions 4"-? (ﬁ) only depend
on the modulus p of the wave vector 3 The dimensionless
wave numbers are discretized on a /p grid of typical size
~/Pmax == 30 and spacing A = A/p ~ % The integrals over
the internal wave vector Ej are calculated numerically using
Simpson’s rule, in Cartesian coordinates, chosen with the
g1 axis along the external wave vector 1_;' and the (d — 1)
other axes ¢; spanning the hyperplane perpendicular to [3’
With this choice, one simply has ﬁ . E}' = p g and ( 3 + 3)2 =
(p+4)*+ 2%, 9% As a square root grid is used for
the wave numbers, the values of the functions 2" °( 1? + cA])
for arguments | ﬁ +§ |'/2 not falling onto mesh points are
interpolated using cubic splines.

The presence of the d;R, terms in Eqgs. (67) and (68)
ensures that the integrands decrease exponentially with g,
such that the internal wave-number integral can be safely
cut at an upper finite bound Py, < Pmax. For wave numbers
such that Ip +q| > Pmax, the functions A" D(p +q) are
extended outside the grid using power-law extrapolations.
This corresponds to the expected asymptotics of the flowing
functions, at least close to the fixed point. The derivative
terms pd, are computed using five-point differences. For the
propagation in renormalization time s, explicit Euler time
stepping is used with a typical time step As = —1 x 107,
Starting at s =0 from the bare action [ﬁ”(ﬁ):l and
hP(p) = 0], we observe that the two functions A"P are
smoothly deformed from their flat initial shapes to acquire
their fixed-point profiles, typically after |s| = 8. The
fixed-point profiles are recorded at s = —30 (e.g., in Fig. 2).

APPENDIX E: WARD IDENTITIES

In this Appendix, we derive the Ward identities for the
vertex functions which originate in the time-gauged shift and
Galilean symmetries.

1. Ward identities for the time-gauged shift symmetry

Let us consider the (functional) Ward identity (26) associ-
ated with the time-gauged shift symmetry, and rewrite it using
the explicit Ward identity for the pressure sector:

ST, 88
§p(x)  8p(x)

= Bulty. (E1)

One obtains

/{ (?F( S+ up (99, uy(x)} ﬁa,uﬂ(x). (E2)

Differentiating this equation with respect to ii,(t,,y) and
evaluating it at vanishing fields, one obtains

[ Fo2(,3,0,,5) = 0 (E3)
X

or, equivalently, in Fourier space

(@, p = 0) = 0. (E4)
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Similarly, differentiating Eq. (E2) with respect to u4(fy,y) and
evaluating it at vanishing fields yields

/r“ D(ty,5,1,%) = /aaﬂata(z —1,)8G — ) (ES)
that is in Fourier space
I (.5 = 0) = iwse. (E6)

Lastly, taking two derivatives with respect to uy(t,,y) and
u,(;,2) of Eq. (E2), one obtains the identity

ﬁ{ T (1,582, 2,0.5%) + 8 038(ty — 1)8%(5 — 7)

+85,328(t, — 1,08 — M)} =0, (E7)
which yields, in Fourier space, relabeling the indices,
o) (@1, pr.o.—p) = ipidp, —ipl8uy.  (ES)

By taking additional derivatives of (E3) and (E7) with
respect to either fields # or u and evaluating the resulting
identity at zero external fields, one can infer the general
property

m,n - - - 2
F( “”)’awrm(w]’p]a c o s Wy P s Wm4-15 P41 = 07 . ') = O

for all (m,n) but (1,1) and (2,1), (E9)

which means that any (m,n)-point vertex function with a zero
wave vector on a u leg vanishes, except the functions (m,n) =
(1,1) and (m,n) = (2,1), which keep their bare forms (E6)
and (EB).

2. Ward identities for the time-gauged Galilean symmetry

Let us derive the (functional) Ward identities ensuing from
the time-gauged Galilean symmetry. Retaining only the terms
which give a nonzero contribution at vanishing fields in the
velocity sector (i.e., dropping the pressure terms), the Ward
identity (24) reads as

3 3 6T S8, Buii st S8y
/;{“”’3( Dt T g D x)}
—[8,2120,0,2). (E10)

Differentiating this equation with respect to 1 p(ty,y), and
evaluating the resulting identity at vanishing fields, one obtains

Bupd28(1 — 1) + / ;" (t.%,1,.5) =0 (E11)
which leads in Fourier space to
I (@, = 0) = iwdg. (E12)

Then, taking two derivatives of Eq. (E10) with respect to
u,(ty,y) and ii,(;,2) yields at vanishing fields

[ (0,75 (e, X 1y, 3,12,2) — 8(tc — 1,)8(X — 3)
—8(t, — 1,)8(X —2)

x 90ty 3,1.2)} = 0.

X aar(l’l)(ty’itzaz)
(E13)
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This provides in Fourier space an exact identity relating the three-point vertex I'>! with a zero wave vector on a i leg to the
two-point function """V, which reads as

L= . )23 . _ .
Fézﬂ)l/)(wl,Pl = 0;02,p2) = —w—zl[r,(gl)}l)(wl + w2, p2) — F;;l,,l)(wz,l?z)] (E14)

Similarly, taking two derivatives of Eq. (E10) with respect to i, one obtains at vanishing fields
[ {0, T2 (1 X 1y, 3.1:.2) — 8(t, — 1,)8(F — $)A T 02ty 5.1,.2) — 8t — )8 — DT 021y, 5.1,.2)} = 0. (E15)
X

This yields in Fourier space an exact identity relating the three-point vertex I'"*? with a zero wave vector on its i leg to the
two-point function I'®? ag

Pogy (@1 pr = Ocen.po) = — [F(O w1 + w2, p2) — T2 (@2, )] (E16)

As for the four-point vertices, taking one additional derivative of Eq. (E13) with respect to i1, (#,,5) and evaluating the obtained
identity at vanishing fields yields

ﬁ {0, T2, (14, X 1y, ,15.5,12,2) — 8(tx — 1,)8(X — $)0a T 2(1y, ¥ .16.5.1,.2)
X

= 8(t = 1)8(F = D)0 T )53 (1.5.15.5.1.2) = 8(tx = 18 = $)da )15 (1. 3.15.5,1:. D)} = 0. (E17)

Similarly, taking one additional derivative of Eq. (E13) with respect to u p(tx,E) and evaluating the ensuing identity at zero fields
leads to

3, - - 2.1 - - -
ﬁ (0,50 (e X 1y 3,15.,5,12.2) — 8t — 1y)8(X — )0 T (1, 5,155, 12.7)
X

—8(t — 1)8(X — DG (1, 3.,1.5,1.,2) — 8(tx — 1)8(X — )L G1) (1, 3,1,.5,1.,2) } = 0. (E18)

wov wov
Fourier transforming the two previous relations, one deduces two exact identities relating the four-point vertices '®»? and T'3:D
with one zero wave vector on a  leg to three-point functions

> 1
2,2 = = - 2 > -
T @11 = 0,02, 2,03, 3) = — [ T3 (@1 + w2, pr.w3. B3) + pS ,gy[;)(wz,l?z,m + w3, p3)

+ (—Pz - P3)ar,(31);§)(0)2,1327w3,133)], (E19)

3.1 L onen ~ 5 ap@D, o -
Faﬂya(wlapl = 0,02, P2, w3, p3) = —aTl[pz Lpos (@1 + @2, p2,03,p3) + p3Tg) 5 (02, P2, 01 + @3, p3)

+(=p2 = p3)* Ty (@2, 2,03, P3)) (E20)

APPENDIX F: EXACT FLOW EQUATIONS FOR THE TWO-POINT VERTEX FUNCTIONS IN THE LARGE
EXTERNAL WAVE-NUMBER LIMIT

In this Appendix, we derive an expression for the flow equations of Ff’z) (v,p) and F(Ll’l)(v, p) which becomes exact in the
limit of large external wave number |p| >> k. The diagrams entering these flow equations are schematically depicted in Figs. 4
and 5. Some of them, Figs. 4(a), 4(b), 4(d), 5(a), 5(b), and 5(f) are vanishing (see Sec. VII). We calculate below the contributions
of the remaining nonzero diagrams.

1. Flow equation of I'"? (v, p) in the large p limit

We separately analyze Figs. 5(c)-5(e) which give nonvanishing contributions to the flow of F(O 2 We begin with determining
the expression of Fig. 5(d) in the limit of large external wave number | p| >> «. Introducing the operator 9, = d; R =~ ik T AN -2~

N’
this contribution may be written as
(0 2) 1 2,1 = = VG D -2 =N\ ~uu =
[, Tes” . 9)] 4y = —50 | T @4.—0—v—p—)Gj@+v.p+ DT (@ +.p +G.—0.—§) Gl (@.9).
®.q
(F1)

Either the operator d; acts on G} (w,q) and the internal wave vector ¢ is cut off to |g| < « so that it is negligible compared to p
and can be set to zero. Or, it acts on GYi(w+v ,P + @), in which case the combination p + g is cut off. Changing variables, this
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last contribution identifies with the first one. Hence, in the large | p| limit, the flow equation (F1) becomes
[0.057 W, 5)] ) = —/ re(@.0,—0 — v,— ))GU(w + v. )Ty (@ + v, p,—.0) 3 / G (0,§). (F2)
® q
Then, using the Ward identity (85) and projecting onto the transverse sector, one deduces
Pay(P[aTy v, p)] , = —(d - 1)(1 - %)pz /w é[rﬁ"k—v,ﬁ) T~y — 0. p)]
x [0V, 5) = T + 0, G (@ + v, 5) §; f G149, (F3)
q

where parity in  and the identity [2(p - §)* f(q”) = "’72 J;4° f(q*) were used. The contribution of Fig. 5(c) can be written as

_ / T @,G.v, PG (—0 —v,5 + PTG (@ + 1.5 + §,—0,—§) 3G} (©,§) + c.c.
w,q

[0,T57w. 5],

- _ / r§;jj2>(w,6,v,ﬁ)cjz(—w —v. )0 (o + v, 5, —,0) 3 / G (w,§) + c.c., (F4)
q q

where the second equality holds in the large | p| limit, when the internal wave vector g is negligible compared to p. Inserting the
Ward identities (85) and (86) for the three-point vertices and projecting onto the transverse sector, one obtains

d — 1) p2/ [rf*”(w +v,p) — Ff’2)(v,ﬁ):| [Ff’l)(a) +v,p) — F(j’l)(v,ﬁ):|

1L,= 0,2) = —
Pup(D)[3:Tes” 0. 9)] ) = y - -

x G (—w — v, p) d / G'"(»,q) +c.c. (F5)
q
Similarly, the contribution of Fig. 5(e) simplifies to

ﬁ 1. ﬂ I I s s o
(1% 0. 5], = EaS/ T (@,§,—0,—G,v, PGl (@,) = 5‘%/ I (@.0.—0.,0.v, p) [Gl.j (@,4), (F6)
w,q w q

which transverse projection reads as, using the Ward identity (87) for the four-point vertex function with two vanishing wave
vectors on its u legs,

. B, 1(d—1)? 1 . B, I
Py(Plaryv.p),, = 57192/ E[Ff’z)(w +v,5) = 20 P2, 5) + TP (—o + v, 5)] & / G'"(w,9). (F7)
w q

The exact flow equation of I‘f‘z)(v, p) in the large external wave-number limit is the sum of the three contributions (F3), (F5),
and (F7), which yields Eq. (90).

2. Flow equation of T'""" (v, 5) in the large j limit

Only Figs. 4(c) and 4(e) give a nonvanishing contribution to the flow of Fj_l’l) in the large external wave-number limit. The
contribution of Fig. 4(c) can be written as

[asrgﬂll)(vaﬁ)](c) = 55 / . Ffi}”(a),é,\),ﬁ)G?Z(—a) - \),[_} + é)l—‘](jjgl)(a) + U,I; + év —w, — a)GZLl(w,é)
w,q
_ 1—‘(2,1) 6 NG (—w — v. D F(Z,l) = 6 3. G =
= Tigj (,0,v,p) jk( ® —V,p) kB (w+v,p, —,0) 9,G;" (w,q)
«.q

- / (0 = 0,0, PG (—v — 0,§ + PN (—0,—G,0 + v,5) 3G (@,§),  (F8)
w.q

where, again, the second equality holds in the large p limit, when the internal wave vector g can be set to zero. The transverse
projection of this expression, inserting the Ward identity (85), is given by

_(d—1)2p2/ " +v,5) -0, 57
d © w

Py(P[aTy v, 9], = GY'(~w —v,p) B f Gl ..  (F9
q
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Lastly, the contribution of Fig. 5(e) is very similar to the one of diagram (e) in the flow of ij),z) and its transverse projection,

using the Ward identity (88), is given by

Pa(M[asTy" v, p)],,, =

Pas(P) B, / T0(@.0. — .00, 5)GH(0.9)

Pith) [ T8~ 0803, [ Gl
q

_1(61—1)22
2 d

1 N N e~ N
» / S0 40,7 = 200, )+ TV 0 40,1 / G (@.3). (F10)
1) q

The exact flow equation of Fil’l) (v, p) in the large external wave-number limit is the sum of the two contributions (F9) and (F10),

which yields Eq. (89).
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