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From depinning transition to plastic yielding of amorphous media: A soft-modes perspective
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A mesoscopic model of amorphous plasticity is discussed in the context of depinning models. After embedding
in a d + 1-dimensional space, where the accumulated plastic strain lives along the additional dimension, the
gradual plastic deformation of amorphous media can be regarded as the motion of an elastic manifold in a
disordered landscape. While the associated depinning transition leads to scaling properties, the quadrupolar
Eshelby interactions at play in amorphous plasticity induce specific additional features like shear-banding and
weak ergodicity breakdown. The latters are shown to be controlled by the existence of soft modes of the elastic
interaction, the consequence of which is discussed in the context of depinning.
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I. INTRODUCTION

Most liquids flow as soon as they experience shear stress.
In contrast many complex fluids (pastes, foams, colloidal
suspensions, etc.) do not flow for shear stresses lower than
some threshold yield limit. The rheological behavior of these
yield-stress fluids parallels the plasticity of amorphous solids
(oxide and metallic glasses, polymers, etc.). Both families of
materials exhibit a rich phenomenology. Close to the yielding
threshold, critical-like behaviors are observed: avalanches
[1,2], growth of a correlation length scale [3], Hershell-Bulkley
law [4]... In parallel, other properties are reminiscent of glassy
phenomena, e.g., thermal [5] and mechanical [6-8] history
dependence. In the same spirit, strain localization [9,10], a
phenomenon of crucial technological interest (since it controls
the mechanical strength), can be analyzed as an ergodicity
breakdown process: plastic activity is trapped in a very limited
subregion of the phase space [11].

These two phenomenological archetypes (criticality and
glass transition) have motivated parallel modeling efforts.
Building on trap models [12] designed to capture ergodicity
breaking and aging at glass transition, Sollich et al. [13,14]
developed soft glassy rheology (SGR) models and could
associate different rheological behaviors of complex fluids to a
parameter of their model, an effective temperature associated
to mechanical noise (see a recent discussion in Ref. [15]). A
different glassy approach has been pursued by Bouchbinder
and Langer [16] who extended the shear-transformation-zone
theory [17] to explicitly account for an effective temperature
related to the slow configurational degrees of freedom of the
glassy material under shear.

The need to go beyond mean-field description and under-
stand the crucial effect of elastic interactions associated to the
localized rearrangements (Eshelby events) [17-21] responsi-
ble for amorphous plasticity has earlier led to the development
of mesoscopic models accounting for these interactions [22].
This effort of modeling amorphous plasticity and/or rheology
of complex fluids at mesoscopic scale has, since then, been
very active [23-35]. As earlier noticed in Ref. [23], the
competition at play in mesoscopic models between micro-
scopic disorder and elastic interaction strongly resembles the
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physics of the depinning transition [36] that naturally entails
critical features. Recently summarized in Ref. [35], most
features of the associated scaling phenomenology predicted
by depinning-like models of amorphous plasticity have been
observed numerically [37—40] and experimentally [1,2].

Noteworthily, some of the key nonergodic features (e.g.,
aging and shear-banding [32,41,42]) can be also recovered
within the framework of the mesoscopic elastoplastic models.
This has raised the question of the precise link with the
depinning transition. In particular, the crucial effect of the
nonpositiveness of the quadrupolar elastic interaction induced
by individual plastic events has been questioned. Recently,
Lin et al. [35] have shown the necessity of three independent
exponents (instead of two for standard depinning) to account
for the scaling properties of mesoscopic models of amorphous
plasticity.

Here we show that the specific features observed in
elastoplastic models are controlled by the presence of multiple
soft modes of the quadrupolar elastic interaction. Note that
the presence of such soft modes is not an artifact of lattice
discretization or of a specific numerical implementation [31].
In the present perspective, shear bands directly result from
the Eshelby interaction symmetry, i.e., extended modes of
plastic deformation that satisfy compatibility and consequently
induce no internal stress. This property, absent in classical
depinning models, has dramatic effects on the stability, the
dependence on initial conditions, as well as the ergodicity
properties of plastic yielding models.

In the following we present in Sec. II the details of
the mesoscopic models of amorphous plasticity. We give a
particular emphasis on the comparison with the models of
depinning an elastic manifold in a random landscape. The
emergence of anisotropic elastic interactions associated to
local plastic inclusions is discussed. In Sec. III, a comparison
is presented between numerical results on strain fluctuations
obtained with mean-field (MF) and “Eshelby” anisotropic
elastic kernels [43,44]. In Sec. IV, a Fourier space analysis
allows us to unveil the presence of multiple soft modes of
the Eshelby elastic interactions. We show in Sec. V that
this soft mode analysis sheds a new light on the diffusion

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.93.063005

TYUKODI, PATINET, ROUX, AND VANDEMBROUCQ

and shear-banding behaviors of the mesoscopic models of
amorphous plasticity. Our main results are finally summarized
in Sec. VL.

II. DEPINNING-LIKE MODELS
FOR AMORPHOUS PLASTICITY

A. A scalar mesoscopic model

Here we restrict ourselves to a simple scalar case [24].
Assuming biaxial loading conditions, we define, respectively,
for stress and strain the scalar quantities o = oy, — Oy,
& = &, — &y, from their tensor counterparts. The material is
discretized on lattice at a mesoscopic scale £ and is assumed
to be elastically homogeneous. A simple plastic criterion is
defined from the comparison between the local values of the
scalar equivalent stress field o (r,{e?'}) = 0 4+ o™[r, {sP'}]
with a threshold stress o°[r,P'(r)]. The local stress o results
from the addition of a spatially uniform external stress o'
and of a spatially fluctuating internal stress o™ due to the
successive plastic rearrangements mediated by the elastic
interactions. Here the local stress threshold o¢ encodes the
disordered nature of the structure, it depends both on space
and on the local value of the plastic strain &P'.

From this local criterion a simple equation can be written
to model the evolution of the plastic strain field:

3,6P'(r,1) = P(o™ 4+ G xeP(r, 1) — o [(r,eP(r,)]). (1)

Here the threshold dynamics is accounted for by the positive
part function P(-) such that P(x) = x if x > 0 and P(x) =0
if not.

The heterogeneity of the plastic yield stress at mesocopic
scale is represented by the quenched variable o¢. The latter
is defined by its average (0¢) =o° and its correlations
(0¢(r,2)o°(r + 8r, &P + §eP)) = 2 £(6r)g(8eP!), where ¢?
gives the variance. Short-range correlations are considered,
namely, f(8r) — 0if |8r| > £ and g(8z) — 0 if |5&P!| > e.
The length scale £ is given by the mesoscopic scale at which
coarse-graining is performed. The strain scale ey corresponds
to the typical plastic strain induced by elementary plastic
events.

Finally, the internal stress o™ is represented through a
convolution of the plastic strain field e and the elastic
kernel G®' associated with the reaction of the matrix to a
unit local plastic strain: o™ = G® % &?' (Eshelby inclusion
[43]). The properties of this long-ranged and anisotropic elastic
interaction are discussed in more details in Sec. II C.

Instead of directly integrating Eq. (1), an extremal dynamics
algorithm of the model discretized on a lattice is implemented
[23]. Only one site (the weakest one) experiences plastic de-
formation at each iteration step. The external stress is adjusted
accordingly. Such an algorithm corresponds to shearing the
system at a vanishing strain rate and is very close in spirit to
the athermal quasistatic protocols under conditions of imposed
strain developed in atomistic simulations [37,45].

int

B. From plastic yielding to depinning

In the framework of upscaling amorphous plasticity from
the microscopic to the macroscopic scales [46], the equation
of evolution Eq. (1) can be understood in one of the two ways.
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First it can be seen as presented above, i.e., as a description
of the (visco-)plastic dynamics of a plastically heterogeneous
material, discretized at scale £.

Second, such a threshold dynamics also naturally emerges
after coarse-graining (in the direction of motion) from the
equation of evolution of a driven elastic manifold in a
continuous random landscape. In order to illustrate this
direct mapping to depinning we discuss in the following the
geometry of the equivalent manifold and the emergence of
the threshold dynamics associated to the multistability of the
elastic interface.

Let us recall the equation of evolution of the overdamped
motion of an elastic manifold A (x) in a random landscape [36]:

ext el oUu
ah(r,t) = @)+ G" xh(r,t) — W[r,h(r,t)]. 2)

Here f°' stands for the external driving force, G® x h for the
elastic restoration force and U is a random potential such that
(3:U) =0 and (3:U(r,2)d:U(r',2")) = > f(8r/£)g(8z/ev),
where £ and eg give the correlation lengths along the manifold
and in the direction of propagation, respectively.

The present depinning equation is very close to Eq. (1)
proposed to model amorphous plasticity. In the latter the
external stress plays the role of the driving force for the de-
pinning, the elastic kernel associated to the Eshelby inclusions
corresponds to the elastic restoration force, and the disordered
stress thresholds are associated with the random potential.

To illustrate more clearly the direct analogy between
deformation under shear and motion of an elastic manifold we
give here a simple geometric interpretation. Let us consider
the plastic strain field ¢,(r) of a d-dimensional material. As
sketched on Fig. 1, we can define an extra coordinate z,
orthogonal to the space variable r after embedding ina d + 1-
dimensional space. The equation z = &P'(r) thus defines an
elastic manifold whose propagation in the random landscape
o¢[r,eP\(r,1)] is governed by Eq. (1).

TR
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FIG. 1. Sketch of a 2D amorphous material upon biaxial loading.
(a) The mesh is deformed according to the displacement. The asso-
ciated strain has a reversible elastic contribution and an irreversible
plastic contribution. The latter is represented according to the color
scale. (b) The plastic strain field (colors) is represented on the
undeformed reference frame. (c) The plastic strain field can be
represented as a d-dimensional manifold moving in a d 4 1 space.
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An obvious difference still remains between the two
equations. While the depinning Eq. (2) models a continuous
evolution, Eq. (1) shows a discontinuous threshold dynamics,
here encoded by the presence of the P(.) function. We argue
here that, far from being different in nature, such a threshold
dynamics is a direct outcome of the competition between
elasticity and disorder upon coarse-graining in the direction
of propagation.

In order to give more support to the latter statement we
resort in the following to a simple example early developed in
the close contexts of solid friction [47] and rate-independent
plasticity [48], the over-damped dynamics of an isolated point
driven into a one-dimensional random potential:

dx = —d, [g(x - y)z] - V() == Wkx,y), O3

where V is a random potential such that (V'(x)V'(x")) =
2 fl(x — x")/eo], where f(u)— 0 for |u| < 1. Here y
denotes the external driving (e.g., at finite velocity y = vt)
and k is the strength of the confining potential (the stiffness of
the spring driving the system).

Such a system of total energy W(x,y) = k(x — y)*/2 +
V(x) is known to exhibit multistability when disorder over-
comes elasticity. Namely, if k¢/eyp > 1, for every y position,
one and only one position x*(y) satisfies equilibrium and
stability conditions: 9, W(x,y) = 0 and 8§XW(x,y) > 0. An
effective potential Weg(y) = W[x*(y)] can then be defined
unambiguously.

Conversely, as illustrated in Fig. 2(a) that shows graphical
solutions of the equilibrium equation —k(x — y) = V'(x), for
kg/eg < 1 the potential W is characterized by a large number
of local minima, and several stable positions x*(y) of local
equilibrium can be found for a given position y.

Still, it is possible in this multistability case to resort to a
parametric representation and to build an effective potential
Wegt[y*(x)] = Wlx,y*(x)] associated to the multiple minima.
As shown in Fig. 2(b), the stable branches of this effective
potential consist of a series of truncated parabolas. Upon
driving, the system jumps from one local minimum i to
another one j as soon as a force exceeds the threshold value
fi = =V (x}) associated to the upper bound x}* of the basin
of attraction of the minimum i (the intersection with the next
parabola). One obviously recovers here the phenomenology
of the instability inducing local rearrangements at the atomic
scale in amorphous plasticity [45].

An example of such an (history-dependent) trajectory made
of a series of microinstabilities is shown in Figs. 2(b) and 2(c).
A threshold dynamics thus directly emerges from this simple
case of an isolated defect. In particular, as shown in Fig. 2(c)
it is clear that upon coarse-graining at scale &, the dynamics
of jumps between basins is entirely controlled by the series of
threshold forces f;.

The phenomenology remains unchanged when dealing with
more complex objects like manifolds. Rather than the stiffness
of an external device, the disorder has in this case to be
compared with the internal elasticity of the manifold. See,
e.g., Ref. [49] for a recent discussion in the context of crack
front propagation. Note that the nonregularity of the effective
potential induced by multistability is likely to be related to
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FIG. 2. Phenomenology of the motion of a particle of position
x driven by a spring of position y in a one-dimensional random
potential V(x): (a) Graphical representation of the multiplicity of
the solutions of the equilibrium equation V'(x) = —k(x — y) for two
positions of the spring. (b) Parametric representation of the complex
effective potential Wex(y) seen by the spring and representation (in
red) of one particular trajectory. (c) Associated representation of the
force landscape. Jumps in the potential Weg are associated to force
thresholds.

the emergence of a cusp in the correlator of depinning forces
observed under renormalization [50].

The present model of amorphous plasticity appears to
belong to the wider class of depinning models. We discuss
in the next section to what extent the peculiar nature of
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FIG. 3. Sketch of two kinds of shear geometry: (a) plane shear
geometry; (b) antiplane shear geometry. In both cases the strain field
is invariant along the z axis. The color scale gives the amplitude in
the xy plane of the plastic strain fields: (a) &P = egl‘, — 8§’L and (b)
8;’.12. A quadrupolar symmetry is observed in the plane shear case (a)
while a dipolar symmetry is observed in antiplane shear case (b).

the Eshelby elastic interaction associated with plasticity does
affect the phenomenology of depinning.

C. A peculiar elastic interaction

The occurrence of a plastic local rearrangement in the
amorphous structure induces internal stresses due to the
reaction of the elastic surrounding matrix. This results in
a stress relaxation of the region that rearranged and in
an anisotropic long-ranged stress field in the outer matrix.
This elastic interaction is very peculiar. In particular, it is
nonstrictly positive: the sign depends on the direction. The
elastic interaction thus either favors or unfavors the occurrence
of future plastic events depending on their position.

The exact internal stress field obviously depends on the
details of the rearrangement of the amorphous structure. A
classical approximation consists in resorting to a continuum
mechanics analysis and in using the solution of the stress
induced by a plastic inclusion earlier proposed by Eshelby
[43]. More precisely, independently on the precise shape of
the inclusion, only the dominant contribution of the internal
stress in the far-field is considered.

In the plane strain geometry considered in Fig. 3(a), a
pure shear plastic inclusion induces a long-range internal
stress characterized by a quadrupolar symmetry. In an infinite
medium, the dominant term in the far-field and the mean stress
drop in the inclusion can be written, respectively,

cos(40)

_ * 2
GQ(I‘) = —2M a €pr—2,

Go(0) = —p'ep, (4
where ©* is an effective elastic modulus, a the mean radius of
the inclusion, and ¢, the mean plastic strain experienced by
the inclusion. Here the subscript Q refers to the quadrupolar
symmetry. Note that the amplitude of this quadrupolar elastic
interaction is controlled by the product of the “volume” of the
inclusion by the mean plastic strain.

For the numerical implementation, biperiodic boundary
conditions are considered and following Ref. [24], a quadrupo-
lar lattice Green function is defined from the following
expression in the Fourier space:

Go(p,q) = —Alcos(@0,,) + 11, G(0,00=0, (5)

where 6, is the polar angle and (p,g) the wave vector in
Fourier space. While the first term directly stems from the

PHYSICAL REVIEW E 93, 063005 (2016)

quadrupolar symmetry of the Eshelby far-field Eq. (4), the
null value of the zero frequency term G ((0,0) is required by a
stationarity condition: a spatially uniform plastic strain induces
no internal stress. In other words, no plastic incompatibilities
are generated because of the assumption of uniform elastic
moduli. When translated to discrete form, it means that
Zi, j G (i, j) = 0; henceforth, this condition directly imposes
the value of the lattice Green function at the origin, i.e., the

stress drop:
— > Goli)
(i,))#(0.0)

A
=3z Z [cos(460,4) + 11. (6)

(p.q)#(0.0)

G(0,0)

The prefactor A has the dimension of an elastic modulus.
Here it is chosen so that the local stress relaxation in the
site that experienced a unit plastic deformation is unity:
G(0,0) = —1.

In the plane shear strain geometry (invariant along the z
coordinate) illustrated in Fig. 3(a), the quadrupolar elastic
interaction G is positive in the directions at 47 /4 and
negative in the directions at O and 7 /2. The associated plastic
strain field is thus orientated along the diagonals of the x,y
plane.

For the sake of completeness, we also illustrate in Fig. 3(b)
another loading geometry: the antiplane shear geometry.
Here the strain field is again invariant along the z axis, but
the system is sheared along the yz direction so that only u.,
the z component of the displacement field, is nonzero and the
strain component of interest is &,.(x,y) = d,u.(x,y). Within
this antiplane geometry earlier studied in Ref. [23], the elastic
interaction associated to a plastic inclusion obeys a dipolar
geometry, Gp(r) = Acos(20)/ r2, so that the plastic strain
field is orientated along the x direction. The specificity of
this loading geometry will be further discussed in Sec. VI.

Due to their long-range character, it may be tempting to
approximate the “Eshelby” elastic interaction by a simple
mean-field (MF) interaction [28]: Gmr(ri;) = 1/(N 21, if
[r| # 0 and Gyp(0) = —1. The latter will be used (all other
parameters being kept constant) to illustrate the expected
behavior of a standard reference depinning model. In the
following, we compare the respective effects of mean-field
and quadrupolar interactions on some specific properties of
amorphous plasticity, i.e., strain diffusion and localization. In
order to investigate the origin of the specific effects of the
“Eshelby” elastic kernel, we also define a weighted average
of two propagators, G, = (1 —a)Gg + aGwmr, where the
parameter a gives the relative weight of the mean field. For
moderate values of a, the quadrupolar symmetry is mainly
preserved in the sense that the Green function remains strictly
negative in the 0 and /2 directions.

III. MEAN-FIELD DEPINNING VERSUS PLASTICITY

A. Family-Vicsek scaling versus diffusion
We first discuss the behavior of the variance of the plastic
strain W¢ = (W}, where we defined the spatial fluctuation
of the plastic strain field 8P = &P' — ¢Pl). Here X and (X)
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FIG. 4. Plastic strain variance W* and elastic stress variance W*
vs. cumulated plastic strain P! for a quadrupolar propagator G, and
a mean-field Gyg. A linear behavior is represented for comparison.

denote the spatial average and the ensemble average of the
variable X, respectively. We show in Fig. 4 the evolution of
the variance W¢ with respect to the mean plastic strain gPl.
In the context of depinning, as illustrated in Fig. 1, W? is
nothing but the width of the propagating interface. Moreover,
in the framework of extremal dynamics used here, the mean
plastic strain eP' defines a fictive time directly associated to
the total number of iterations. It is thus legitimate to discuss
our results in the framework of the classical Family-Vicsek
scaling [51-53] for interface growth. The latter predicts first
for the interface width W, a power law growth W oc t* up
to a timescale T o< L* such that the correlation length & has
reached the system size £(t) ~ L and beyond which saturation
is obtained.

Our numerical results are shown in Fig. 4 for mean-field
and quadrupolar elastic interactions. As expected, the classical
Family-Vicsek scaling is recovered for the width W, obtained
in the case of the mean-field depinning. In the amorphous
plasticity case, the first power-law growth regime is recovered
but, past £ &~ L, the interface width W, shows no saturation
but rather a diffusive trend [24]. The evolution of the variance
We of the elastic stress field o¢ is also shown in the two
cases. Here saturation is recovered in plasticity as well as
in MF depinning. Note that the elastic stress field can be
directly obtained from the plastic strain field from a simple
convolution with the propagator: 0¢ = G x P'. The fact that
the diffusive trend at play with the strain field does not show in
the stress fluctuations is a first indication that strain fluctuations
are controlled by soft modes of the elastic interaction.

In order to characterize in more details the diffusive-
like behavior of the plastic strain field obtained with the
quadrupolar elastic interaction, we show in Fig. 5 the evolution
of the associated effective diffusivity, Dy = Wé /&p1. This
ratio is expected to be constant for standard diffusion. At very
short times, a plateau is observed; in this very early regime,
plastic activity is not correlated yet. Then the diffusivity Dy
shows a power-law growth. This simply derives from the fact
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FIG. 5. Size-dependent behavior of the plastic strain diffusivity
Do =W, /&P obtained with the quadrupolar kernel G for sizes
N =32, 64, 128 with M = 1000, 100, 30 realizations, respectively.
The larger the system, the longer the anomalous subdiffusive
behavior.

that in this regime the growth exponent « is larger than unity:
Do = W§,/gn o [gq|* .

The evolution of the diffusivity then shows a strong
size-dependence. For small system size, a simple plateau is
obtained, the diffusivity saturates to a constant value. However,
for larger system sizes a long decreasing transient is observed
before a stationary value is obtained. The larger the system,
the longer the transient subdiffusive regime.

B. Shear-banding and plastic aging

The nature of the elastic interaction thus strongly affects the
evolution of the spatial fluctuations of the plastic strain field
and in particular the existence of a diffusive regime. In order
to get more insight on the respective effects of the mean-field
and the quadrupolar kernels, we now show results obtained
with the mixed kernel, G, = (1 —a)Gp + aGwr.

2
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FIG. 6. Strain variance (equivalently interface width) vs. cu-
mulated plastic strain g, for eight different propagators: Gy, G,
(@ =£10"1,£10"2,£1073), Gyr.
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FIG. 7. Maps of plastic strain field obtained for a mere quadrupolar elastic interaction (b), and with a positive (a) and a negative (¢) MF
contribution a = £1072 for g,; &~ 5, past the transient regime. The same color scale has been used in the three cases.

In Fig. 6 the evolution of the interface width is shown for
different (small) values of a. It turns out that even the lowest
positive MF contribution is enough to recover saturation at
long times. A transient diffusive regime appears when a tends
to zero, and the level of the final plateau increases accordingly.
But when the interface gets too distorted, if a > O the (low)
MF restoring force eventually stops the divergence of the strain
fluctuations.
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A negative MF contribution a < 0 has the opposite effect:
after a transient diffusive regime, the plastic strain becomes
unstable and its variance diverges very fast. The diffusive
regime thus appears to be a specific feature of the quadrupolar
kernel. It lives on the verge of stability and any mean-field
contribution to the elastic kernel sends the system either
toward saturation or ballistic evolution depending on the
sign of a.
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FIG. 8. Two-point correlation C(g,,€) of the plastic strain field as a function of the cumulated mean plastic strain € for four “waiting
times,” €, = 1, 4, 16, 64, and for four different propagators: G (a), G, with a mean-field weight a = 1073 (b),a = 1072 (¢),and a = 1073
(d). A clear aging effect shows for the quadrupolar propagator G: the longer the waiting time, the slower the decorrelation. The small MF

contributions in propagators G, gradually kills the aging behavior.
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The strong effect of the MF contribution is also manifest
in the spatial distribution of the plastic strain field. In Fig. 7
maps of the plastic strain are shown for a cumulated plastic
strain (gP!) ~ 5 for a = —0.01, 0, 0.01 using the same color
scale. The plastic case (a = 0.0) shows a superposition of
patterns localized at 4+ /4 following the symmetry of the
quadrupolar kernel. Similar patterns survive with a positive MF
contribution (a = 0.01) but get very attenuated (the interface
width is much lower). A negative MF contribution induces
conversely a strong localization behavior: plastic activity is
restricted along a unique very thin shear band.

As we mentioned previously, shear-banding can be ana-
lyzed as a kind of ergodicity breakdown: plastic deformation
only visits a subpart of the phase space [11]. It is thus
tempting to analyze the present model of plastic yielding along
these lines. In Fig. 8 we show two-point correlation functions
computed after various “waiting times” €,, (here the camulated
plastic strains):

(eP(x,y,8)eP (x,y,80))

(e2)12(ez)

CEw.8) = (7

For the bare plasticity model, a striking mechanical history
effect is observed: the larger the waiting time, the larger
the decorrelation time. Again, the addition of a very small
MF contribution is enough to destroy this mechanical history
dependence. Such results are reminiscent of recent studies of
depinning lines [54] that revealed aging properties but only
in the roughness growing stage. Here the saturation of the
interface roughness is postponed at infinity and aging can
persist forever. This regime is thus naturally associated to the
divergence of the interface width.

Note that such an aging behavior may also be observed in
a simple diffusion process. The diffusion regime at play in
amorphous plasticity is, however, highly nontrivial [39,24]. In
particular, as shown in Fig. 5, for large systems, a very long
subdiffusive transient regime is obtained; i.e., we get Wé o

g,1” with B < 1 over a wide range of strain. This observation
again supports weak ergodicity breakdown. The latter behavior
is indeed associated to subdiffusion [55].

IV. FOURIER SPACE AND SOFT MODES
OF THE ELASTIC INTERACTION

The introduction of yet a tiny MF component has thus
dramatic consequences on the localization behavior, a key
feature of amorphous media plasticity. In the following, a
rewriting in Fourier space allows one to emphasize the crucial
role of the soft modes of the propagator in this phenomenon
and their connection to plastic shear-bands.

A. A Fourier representation of depinning

In the model presented above, the “Eshelby” quadrupolar
interaction was defined through its Fourier transform in order
to handle periodic boundary conditions [24]:

~ p2 . q2 2
Gpy = A[—cos(40,,) — 1] = _2A(P2 +q2) , (8
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where 6, is the polar angle and (p,q) is the wave vector in
Fourier space. A is a constant chosen so that G(0,0) = —1.
The Fourier transform of the plastic strain field is defined as

N/2—-1 N/2—-1 __

| _jmmp _ ;2ang
E E ehge N e N, 9

p=—N/2q=—N/2

pl _ !
Emn = N2

The Fourier components of the quadrupolar elastic interaction
is thus

~ _ 50 rP=a*\'~
o¥ = Gp,eP! =—2A< ) ePl . (10)
Pq pPq rq pz + qz prq
Denotinge,, = e¢™* % e~ ¥ the (p.q) Fourier mode, we get
G2 x e,y = Apgepy with A, = —2A[(p* — ¢H)/(p* + gD
In other terms, the eigenmodes of the Green operator are
precisely the Fourier modes, and the associated eigenvalues are
the above written A ,,. This property stems from the translation
invariance of the elastic propagator.
The same property also holds for the MF propagator:

GM = —8,,8, + (1 — 8,8,)/(N* — 1),

mn

2
G N s 1)
Pq Nz_l( pq)9 (

where N is the linear size of the system.

Let us now discuss the eigenvalue spectrum of the
quadrupolar interaction. One first recognizes the translation
mode of zero eigenvalue Agp = 0. In the classical depinning
case (say MF, Laplacian, or power-law in distance) this mode
is the only one characterized by a zero eigenvalue. It is the
signature of the invariance of the model with respect to a
uniform translation of the manifold along its propagation
direction.

In the quadrupolar case, a set of nontrivial eigenmodes
are also characterized by a null eigenvalue. Namely, e, , =
e and e, = N with p € [-N/2,N/2 — 1]\
{0}. Thus there is one trivial zero translation eigenmode and
2(N — 1) nontrivial ones.

Let us rewrite the the plastic strain field in the Fourier basis
using the more condensed form:

-1
pl _ _ _— .nl
el = E Cpq€pq, Where cpq = Na2ra (12)

P-q

In order to follow the evolution of the different modes we now
rewrite in Fourier space the argument of the P(-) function in
the equation of evolution, Eq. (1):

Flo™ + G e?'(r,1) — 0 (r.e")]

~ —~

= 5,8, + Ggqgglq —{oc[r,eP(0)]},y.  (13)

Ignoring for the moment the effect of the function P(-) in
Eq. (1), we thus get by Fourier transform the evolution of the
contribution of the different modes:

8 —~—
P 58,0 + g DCpg — (O[T EP D]} g (14)

This rewriting thus enables us a better understanding of the
diffusive-like behavior observed at long times for the plastic
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FIG. 9. Spectrum of eigenvalues of elastic propagators: mean-
field (MF), quadrupolar interaction, and MF-weighted quadrupolar
interactions. Eigenvalues are here simply ranked in the decreasing
order. The introduction of a fraction a of MF opens a gap between
the translational mode having a null eigenvalue and the other modes
A < 0. The evolution of the gap is zoomed in the inset.

strain. In real space, the spatial coupling is induced by the
nonlocal elastic interaction kernel, G¢!, while the noise term
is local. In the space of eigenmodes, the opposite character
is observed, namely the restoring force is local, but noise is
not. Since all eigenvalues are null or negatives (otherwise the
dynamics would be unstable), a competition emerges between
the relaxation of the eigenmodes induced by the elastic
contribution and a random forcing due to the quenched noise
contribution. In particular, at long times, the contribution of the
soft modes becomes dominant since they are not submitted to
relaxation. The diffusive-like behavior thus directly emerges
from a competition between the different soft modes controlled
by the quenched disorder.

The strong effect of a small MF contribution to the
quadrupolar propagator can now be reread as the consequence
of the opening of a gap in the spectrum of eigenvalues, in
other words to the vanishing of the soft modes. In Fig. 9,
the spectra of eigenvalues of the stress redistribution kernel
show the gradual gap opening due to the introduction of a
MEF contribution to the elastic quadrupolar interaction. The
associated restoring elastic force brings back the model to the
standard depinning phenomenology.

Note that this interpretation only holds if we ignore the P(-)
function that intervenes in Eq. (1). When a long integration
time is considered, the loading contributes to a positive average
that allows for such an interpretation. However, at short
timescales, the positive part function unfortunately cannot be
simply expressed in Fourier space. A similar situation appears
in classical depinning models. The point is that for the latter
ones, a long time integration gives a finite restoring force to
any wavelength of manifold fluctuations.

B. From soft modes to shear bands

In the present context of amorphous plasticity an appealing
alternative representation of the soft modes is given by the
unit shear bands orientated along £ /4. One defines d;
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such that dg(m,n) = 8,,_,—x and d'y(m,n) = 8,1k, Where
ke[-N/2+1,N/2 — 1] and §, is the Kronecker symbol.
Plastic shear bands thus directly appear as soft modes of the
quadrupolar elastic interaction, because of the null eigenvalue,
they don’t induce any internal stress.

We use this decomposition to rewrite the plastic strain field

e = Z Cpg€pq T+ chdk + chid/k’ (13)
k

IpI#lq] k

where the first sum gathers all modes of nonzero eigenvalues,
whereas the two last sums correspond to combinations of shear
bands oriented at =77 /4. Note, however, that the two systems
of shear bands are not independent since the scalar products
d;.d’; may be nonzero. Here the amplitudes ¢, and ¢} roughly
correspond to the mean plastic strain along the shear bands d;.
and d'y, respectively. In the same spirit as above, accounting
for the nonorthogobality between the two slip systems, it is
possible to write the equation of evolution of the amplitudes
of the shear bands:

aCk 1 3C]/<
+ N ; Sre

as

1
_ext__ c 1
B o = NZU [(r,eP ()],
redk
ac, 1 dck
— + ﬁze: Sre

o W gt ZY ol (16)

I‘Gd,k

where in the present case of bands at £7/4, fi,/2 = (k —1)
(mod 2).

As already discussed above, in the absence of elastic
restoring force in the equation of evolution, we expect the
strain field to be asymptotically dominated by the sole
superimposition of soft modes, which we interpret here as
shear bands at £+ /4.

Here we obtain for the dynamics of the bands an advec-
tion contribution due to the differnce (0™ — o¢) between
the driving force and the spatial average of the threshold
on the whole lattice. In addition, the average along the bands
of the fluctuating part of the thresholds and the interbands
coupling introduce randomness and lead to diffusion.

Note that another important source of interactions between
bands has been neglected here. Although shear bands are
expected to be dominant at long times, the short time dynamics
remains local. A natural consequence of the interplay between
a local threshold dynamics and the nonlocal effects of the
elastic interaction is the persistence of fluctuations along the
bands. The convolution of the latter with the elastic kernel
is responsible for a mechanical noise contribution in the
dynamics [15,56,57].

V. FLUCTUATIONS AND AGE STATISTICS
ALONG SHEAR BANDS

The interpretation of the plastic shear bands as soft modes
of the elastic interaction encourages us to reexamine our
results from this new perspective. In particular, we expect
that at long times, plastic activity concentrates along weakly
interacting shear bands. A natural question thus arises about the
respective contribution of intra-shear-bands and inter-shear-
bands fluctuations to the diffusive regime. This question is
reminiscent of earlier studies showing anisotropic correlations
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in the plastic strain field [39,24]. In the same spirit, we
suggested that the long subdiffusive regime observed in
the numerical results reflects an aging-like behavior. This
motivates us to characterize age statistics inside and outside
shear bands.

We first define the mean variance of the plastic strain field
inside the shear bands as

N
1
Wa' = <N Z Wk>, where

k=1

Wi

2
%Z[sp‘(rnz— %Zepl(r) .an

l‘Edk I‘Edk

In the quadrupolar geometry associated to plane shear
plasticity, the shear bands d; and d’; are oriented along the
+m /4 directions and receive a positive stress contribution
whenever one of their site experiences plasticity, hence the
superscript + in the notation of the variance W . In a similar
spirit we can characterize the fluctuations of the plastic strain
field along the directions at angles 0 and 7/2 that receive a
negative stress contribution when one of their site experiences
plasticity. We denote W/, the variance of the plastic strain field
along such negative stress directions.

We show in Fig. 10(a) the evolution of the global variance
Wy of the plastic strain field as well as the variances Wg

. O‘ﬂr? 10‘*l 160 161 162 103
1072 1071 100 10! 102 10°
P!l

(b)

0 = . A\ . .
103 1072 1071 100 10! 10? 103

A

FIG. 10. Quadripolar kernel. (a) Variance of the plastic strain
field inside and outside shear bands. (b) Age distribution inside and
outside shear bands
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inside the shear bands and Wé outside the shear bands. We

observe that the variance W} of intra-shear-bands fluctuations
are significantly lower than the global variance Wy in the
diffusion regime. Conversely, the variance W, measured in the
negative stress directions is indistinguishable from the global
variance. The inset shows the same data after rescaling by
the mean plastic strain, i.e., the effective diffusivities Dy =
Wo /&1, Dy = W /&1, and D, = W, /€,1. Here we see that
the effective diffusivity within the shear bands DE is about
two times smaller than the global diffusivity Dy.

Beyond the spatial fluctuations, we can also characterize
the temporal fluctuations. In order to do so, we define the local
age variable Agp =ns/N 2 that counts the number of plastic
events n, that occurred in the system since the last time the
site has experienced plasticity. In the case of an homogeneous
deformation, all N2 sites would be expected to experience
plastic events at the same frequency, hence the rescaling factor
1/N?. It is easy to extend this definition to a shear band:
AE = na+/N. Here n 4+ is the number of plastic events since
the last time a site of the band has experienced plasticity and
the rescaling factor stems from the number N of shear bands.
The age A, of bands in the negative stress directions is defined
in the very same way.

We show in Fig. 10(b) the distributions of ages P(log.Ap),
P(log AE), and P(log.A;,) measured in the diffusive regime.
The age distribution of sites P(log.Ay) peaks around unity
and shows a cutoff around ten. This suggests that on average,
the plastic activity is only moderately heterogeneous.

As for the spatial fluctuations we observe that the age
statistics of bands P(Aé) measured in negative stress di-
rections (outside shear bands) is close to the global age
statistics P(Agp) measured on individual sites. In contrast,
the distribution P (,AE) of ages of the shear bands is shifted to
larger values. A natural interpretation is that due to the positive
stress redistribution, plastic activity remains trapped for longer
periods within a shear band (while the age of the other bands
keeps increasing) before jumping to another one. We note
in particular that the cutoff of the shear-band age distribution
roughly corresponds to the duration of the subdiffusive regime.

The spatiotemporal fluctuations of the plastic activity
within the shear bands is thus clearly distinguishable from the
background. Still, this difference is not dramatic. Although the
diffusivity is decreased and the duration of plastic activity is
increased along the shear bands, the qualitative picture remains
unchanged. Shear bands can survive 5-10 times longer than
bands in the negative stress directions, but the age statistics
end up converging toward a stationary distribution. This is,
for instance, in contrast with the clear ergodicity breaking
identified in Ref. [11].

VI. PLANE VERSUS ANTIPLANE SHEAR
IN AMORPHOUS PLASTICITY

A potential reason for the system to escape aging actually
stems from the quadrupolar geometry of the elastic interaction
at play in the present model. Since, after a plastic event, the
elastic stress is positive along the two directions at £ /4, it is
possible to trigger another plastic event in a direction at 0 or
with a sequence of two successive events at + /4 then — /4
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(or the reverse). Such sequences thus restore some interaction
between positive and negative stress directions.

In this section we follow this geometric idea by focusing
on the case of antiplane shear geometry earlier studied in
Ref. [23]. As mentioned above, in this antiplane geometry
[defined in Fig. 3(b)], a plastic inclusion induces a dipolar
interaction:

20
GP(ro) ~ o, GP(0) =~ 1, (18)
r
—_—~ q2 ND
G =-2A———, Gy =0. 19
Pq P +q 00 (19)

Here the soft modes are shear bands oriented at 6 =0
and the negative stress directions are oriented at 6 = 7.
In contrast with the previous quadrupolar case, no direct
cross-talk mechanism is possible between the different shear
bands. This means in particular that if we now rewrite the
plastic strain field as

=Y cpepqt+ y cld’s, (20)

[pI#0 k

where the N horizontal bands d”;, are the soft modes of the
dipolar kernel G, we now obtain for the equation of evolution
of the band amplitudes

D
88% — ot _ % Z UC[(r’gp](I‘)]. (21)

l‘Ede

We thus get in the long-term dynamics a set of bands that can
grow independently of each other. Again, this statement has to
be softened to account for the effective noise induced by the
sort-term local threshold dynamics that restore weak coupling
between the bands.

In analogy with the previous section we show in Fig. 11(a)
the evolution upon deformation of the variances W, and
W, of the plastic strain field obtained along the positive and
negative stress directions, respectively, in comparison with the
global variance Wp. As in the quadrupolar case, the variance
W, in the negative stress directions is almost the same as
the global variance Wp. The result is strikingly different in
the direction of shear-bands. After the power-law transient,
instead of a diffusive regime, the variance W$ shows indeed
a clear saturation. Along the direction of the shear bands,
we thus recover the classical Family-Vicsek phenomenology
of depinning. Note, however, that saturation is reached at a
much later stage eP' &~ 10 than in the reference mean-field case
&Pl 0.5 (see Fig. 4). If one refers to the results obtained with
the composite kernels G, (see Fig. 7), this would correspond
to small mean-field weight a =~ 0.005.

In Fig. 11(b) we show the distribution of ages in the
antiplane shear geometry. Again, the age distribution (log A}))
of bands in the negative stress direction is very close to the
age distribution P(log Ap) of the individual sites. The case of
the shear bands is strikingly different. Here the age distribution
P(log AB) is much older (about two orders of magnitude) than
the two other ones. One recovers the same aging-like effect as
for the shear bands in the quadrupolar case but with a much
higher amplitude.

PHYSICAL REVIEW E 93, 063005 (2016)
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FIG. 11. Aging and diffusive behaviors obtained with a Dipolar
kernel. (a) Variance Wp, of the plastic strain field and variances W;)
inside and W, outside shear bands. (b) Age distributions P(log.Ap)
of the sites and age distributions P(log A}), P(log A},) of the bands in
the positive (shear bands) and negative stress directions, respectively.

VII. CONCLUSION

Depinning models rely on the interplay between disorder
and elasticity. While the yielding transition may be discussed
within the framework of depinning, it appears that some
specific properties of amorphous plasticity (diffusion, shear-
banding) are controlled by the peculiar form of the quadrupolar
elastic interaction. In order for such features to be recovered
in the framework of discrete lattice models, the discretized
implementation of the Eshelby kernel has to preserve a key
property of continuum plasticity: a unit plastic strain along
any band in a direction of maximum shear stress (here +m/4)
induces no residual stress.

The interpretation of the shear bands as soft modes of
the Eshelby elastic interaction may clarify the long debate
about the relative importance of localized rearrangements
and large scale shear-band-like events [21,58] as microscopic
mechanisms of amorphous plasticity and complex rheology.
It appears in particular that localized plastic events is the
rule at short timescales, but on a larger time horizon, mostly
shear bands account for the kinematics, as these are the only
displacement fields that prevent large shear stress buildup.

While the present study has been concerned with the model-
ing of amorphous media plasticity, a similar phenomenology
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is expected for any depinning model as soon as the elastic
propagator exhibits soft modes. As discussed in Ref. [35] in
the case of plastic yielding, this new subclass of depinning
model is expected to exhibit nontrivial scaling properties. More
generally, it is tempting to study in more details the ergodic
behavior of such models at finite temperature in relation with
the soft glassy rheology models [13] and with the recent

PHYSICAL REVIEW E 93, 063005 (2016)

observation of the strong effect of Eshelby events on relaxation
processes in the liquid state [59].
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