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Nucleation of plasticity in nanoparticle collisions
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While at small collision velocities collisions of nanoparticles (NPs) are elastic, they become plastic at higher
velocities. We study the elastic-plastic threshold and the onset of plasticity using molecular dynamics simulation
for a Lennard-Jones material. The reasons behind the R−2/3 increase of the threshold velocity for small NP radii
R found recently are discussed. At the threshold, NP orientation strongly influences the generation of plasticity,
and averaging over many orientations is required to predict the critical velocity for dislocation generation. The
onset of plasticity is governed by the generation of isolated stacking faults and nanotwins spanning the entire NP.
At higher velocities, the fraction of defects becomes proportional to the total number of atoms in the NP.
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I. INTRODUCTION

Collisions of spherical nanoparticles (NPs) are ubiquitous
in physics as well as in applications ranging from engineering
to astrophysics [1–6]. This topic is central to the field of
granular mechanics, which studies the behavior of ensembles
of grains interacting with each other [7,8]. However, even
the interaction of two identical spherical particles still poses
fundamental problems. Macroscopic collision models use
interparticle adhesion, elastic repulsive forces, and viscoelastic
damping to describe central collisions at small velocities [9].
For noncentral collisions, a number of various friction forces
have to be introduced [10]. At higher collision velocities,
the plastic deformation of the colliding spheres forms an
increasingly important channel for energy dissipation which
strongly influences the outcome of the collision.

It is therefore decisive to characterize the threshold velocity
vc, termed the “critical velocity,” above which plasticity
starts to play a role: the elastic-plastic threshold. Early
models assume the critical velocity to be independent of the
NP size [11–14], but it was found recently by molecular
dynamics (MD) simulation that vc ∝ R−2/3, where R is the
NP radius [15].

In recent years the elastic-plastic threshold could also be
investigated by uniaxial compression experiments performed
on NPs under well-controlled conditions, in which a contin-
uously increasing pressure enforces plastic yielding of the
material. These experiments are quasistatic in the sense that
the compression velocity is orders of magnitude smaller than
that in collision experiments. They have been performed on
nanoclusters [16,17] and nanopillars [18] and also in adhesive
contacts [19]. While NP collisions occur under high strain
rates, controlled experiments are more easily performed for
quasistatic compression experiments. Here, Han et al. [20]
show that indeed small (<200 nm) Fe NPs may be defect free
and show ideal strength; this may serve as a motivation to use
crystalline, defect-free NPs for our study. Mordehai et al. [21]
studied dislocation nucleation in Au NPs under quasistatic
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compression. Experiments performed on R = 100–500 nm
sized NPs showed a decrease of the critical stress for the
onset of plastic deformation as a power law, σc ∝ R−n with
n = 0.77 ± 0.16.

In this paper we study the onset of plasticity in NP collisions
using MD simulation. We use the Lennard-Jones (LJ) inter-
action potential as a generic and well-understood potential.
LJ has been used in previous studies of material failure,
both fracture and under shock loading [22–27]. Zimmerman
et al. [28] showed that it describes well the plastic deformation
behavior of fcc EAM solids. In particular, it reproduces well
the unstable stacking fault energy of these materials. We study
the dependence of the plasticity generated on NP size and
collision velocity. We show that a careful consideration of
collision statistics (averaging over orientations) is necessary
at the threshold.

The shape and structure of NPs may be complex and
depend on their growth or production process [29]. In addition,
depending on the material, besides the crystalline phase, also
the amorphous phase may contribute to its structure. Even if the
structure is crystalline, defects such as grain or twin boundaries
may be present. For instance, in metallic NPs prepared by inert
gas condensation, multiply twinned structures have been found
and lead to peculiar mechanical properties such as increased
ductility and tensile strength [18,30]. In this paper, we take
the approach to study single-crystalline fcc particles with
a nonfaceted spherically shaped surface, since already such
a simplified structure gives rise to a considerable richness
in plastic-deformation behavior. Future investigations might
study the influence of pre-existing defects in these NPs—such
as the well-known multiply twinned NPs—of an amorphous
phase, and of faceted surfaces.

II. METHOD

We employ a generic interatomic interaction potential, the
LJ potential, which has been frequently used in the past to
model NP collisions [31–35]. The plastic behavior of LJ solids
has been thoroughly studied, in particular under shock loading
and the dislocation activity in LJ solids has been found to
be typical of that of fcc crystals [25–27]. LJ potentials are
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TABLE I. LJ parameters, ε and σ , and mass, m, for Ar [36,37] and
Au [38]. LJ units for velocity, v̄ = √

ε/m, time t̄ = σ
√

m/ε, temper-
ature, T = ε/kB , and pressure, p̄ = ε/σ 3, where kB is Boltzmann’s
constant.

ε (meV) σ (Å) m (amu) v̄ (m/s) t̄ (ps) T̄ (K) p̄ (MPa)

Ar 10.32 3.41 39.95 158 2.16 119.8 41.6
Au 441 2.637 196.97 464 0.568 5123 3848

characterized by their well depth ε and the length parameter
σ . The potential is cut off at rc = 2.5σ . Data will be reported in
reduced LJ units. Table I specifies these units for two materials:
Ar and Au.

The NPs are built by carving spheres of radius R from
a perfect fcc structure. They are energy minimized to relax
their structure and then equilibrated to a final temperature of
T = 0.1, while keeping the total angular and linear momentum
zero. We note that we tested the effect of additional relaxation
steps in the initial configuration, but the final outcome did not
significantly differ with respect to plasticity nucleation. After
relaxation, the NPs exhibit some roughness on an atomistic
scale, in particular the smaller ones. Such surface roughness
might provide nucleation sites for plasticity, but the averaging
over many collision sites tends to minimize this effect.

The number of atoms, N , in a spherical NP is connected
to its radius by R = 0.607×N1/3 or N = 4.47×R3. We study
NPs in the range of N = 103 to 106, equivalent to R = 6.1
to 61. The relative orientation between the colliding NPs has
been varied; the quantitative results shown are averages of up
to 1000 orientations.

The molecular dynamics code LAMMPS [39] is used to
perform the simulations. We employ a time step of 0.001.
The simulations are carried out at in the constant energy
ensemble for an initial temperature of T = 0.1. We pursue the
simulations for a time of at least 2×105 LJ units. The generated
defects are tracked using the dislocation extraction algorithm
(DXA) [40,41] and the crystal analysis tool (CAT) [42]. Visual
molecular dynamics (VMD) [43] and OVITO [44] are used to
view the simulation results.

For comparison with macroscopic models, a number of
materials parameters for LJ materials are relevant. Quesnel
et al. [45] calculated for a LJ fcc solid a density of
ρ = 1.08485. In the same paper they recommend isotropic
values for the elastic properties—as determined from an
appropriate orientation averaging over the elastic constants.
Young’s modulus is E = 100 and the Poisson ratio amounts
to ν = 0.25. This results in an indentation modulus of Eind =
E/(1 − ν2) = 107. The shear modulus is G = 40 and the bulk
modulus is K = 67. The longitudinal velocity of sound in the
isotropic case is cl = √

(K + 4G/3)/ρ = 10.52. The surface
energy is γ = 2.3 [46].

III. RESULTS

A. Time evolution

We first discuss the time evolution of the collision for two
exemplary cases. In Fig. 1 the dynamics of the collision of two
NPs of radius R = 13.2 (N = 104) colliding with velocity
v = 0.5 is displayed. Figure 1(a) shows the evolution of the

FIG. 1. Temporal evolution of the collision of two NPs of radius
R = 13.2 (N = 104) colliding with velocity v = 0.5. (a) Normal
pressure, pzz, and shear pressure, pshear, Eq. (1), averaged over a
sphere of radius r = 5 over the contact zone. The arrow highlights
the onset of plasticity. (b) Snapshots showing the nucleation and
evolution of plasticity in the collision. Green: fcc; red: planar defects,
gray: surface atoms. Numbers correspond to those in subfigure (a).

pressure in the contact zone during the collision. The contact
area has a maximum radius of roughly r = 5 in this case; so
we average the pressure in a sphere of radius r = 5 centered
on the collision point. The normal pressure component in the
direction of the collision axis (i.e., connecting the two centers
of the NPs), pzz, is shown together with the shear stress, which
is obtained as the difference of pzz and the average normal
pressure in perpendicular direction,

pshear = pzz − (pxx + pyy)/2 . (1)

Upon approaching, the attractive forces lead to a tensile stress;
when the two NPs start overlapping, the pressure grows
and assumes large values, up to pzz = 6. At t = 21×103,
dislocations are nucleated at a pressure of pzz = 3.1; the
shear stress here amounts to pshear = 0.75. We note that the
pressure in the contact zone area is highly inhomogeneous
and reaches maximum values of ∼15. After the onset of plas-
ticity, the pressure reaches a small plateau during dislocation
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nucleation, since the yield process relieves stress. However,
since the collision continues the pressure keeps increasing
after dislocation emission. Upon reversal of the NP velocities,
the pressure is reduced again. A series of oscillations after the
end of the collision indicates the excitation of large-wavelength
vibrations in the spheres that help dissipate the collision energy
in the fused NPs.

To put the pressures into perspective, we note that in
bulk LJ material, dislocations require a pressure of 24.5 to
nucleate [26]; this characterizes the Hugoniot elastic limit
(HEL) of a LJ crystal. However, in that same study it was
found that the introduction of defects (a void with radius r) in
the crystal decreases the HEL dramatically. The HEL reaches
20% of the original value (pzz = 4.9) for a void of radius
r = 5 and continues dropping for larger voids. The void acts
as a nucleation site for dislocation nucleation. This situation is
comparable to the emergence of nanoplasticity in our system,
where the highly disordered contact area assists the nucleation.

Figure 1(b) provides snapshots showing the generation of
dislocations. As this collision is at the elastic-plastic threshold,
the pressure is barely sufficient to generate a few isolated
dislocations. Note that here and in the following we shall
denote by planar defects both the stacking fault (SF) planes
and the twin boundaries of nanotwinned regions. They are
typically formed by the emission of a partial dislocation which
runs through the NP until it is absorbed at the surface at
the opposite end. Due to the small SF energy, these large
SF platelets may form without a trailing partial dislocation
following the leading one. We note that SFs are characterized
in our plots by the occurrence of two neighboring {111} planes,
nanotwin boundaries by one {111} plane.

The first plastic activity is seen at a time of around t =
21×103; a dislocation starts growing into the lower NP and has
penetrated it fully at t = 55×103. Quite late, at t = 200×103,
a second dislocation has also appeared in the upper NP. Note
that dislocations nucleate directly at the contact area. First
they only nucleate in one of the NPs, even though both NPs
are identical. This is due to the different orientations of both
spheres with respect to each other; the critical resolved shear
stress to activate dislocation glide on a {111} plane is reached
only in one of them.

In Fig. 2, we display the dynamics of a second collision
event, for two NPs of radius R = 60.7 (N = 106) colliding
with velocity v = 0.5. This case is far above the elastic-
plastic threshold. Plastic activity starts here somewhat later, at
t = 27×103, again followed by a plateau in the compressive
pressure. Note that in this case, the collision does not show
the pressure oscillations that characterized the collision of the
smaller NPs, Fig. 1. This is due to the pronounced plastic
activity which dissipates energy.

Initially, at time t = 30×103, two dislocations are nucleated
at the contact interface in the lower NP. The two dislocations
intersect after which their motion is retarded. At time t =
70×103, beyond the pressure maximum, a burst of dislocations
is emitted from the contact area parallel to the first ones in
the lower NP and defines nanotwin regions there. At this
time also dislocation emission into the upper NP becomes
possible. Note that dislocations now also are emitted from the
boundary of the upper NP, showing the heterogeneous nature
of dislocation nucleation. After the end of the collision the

FIG. 2. Analogous to Fig. 1 but for two NPs of radius R = 60.7
(N = 106) colliding with velocity v = 0.5.

number of defects has again been reduced—in particular in
the upper NP—since the pressure has relaxed. By the action
of the various glide systems activated the contact interface has
become considerably rough. The series of SFs in the upper NP
enclose a nanotwin region.

For further use we also display the evolution of the contact
radius a for the two events studied in Fig. 3. It is calculated
from the MD data of the N0 interface atoms with positions ri

and center-of-mass r̄ via [47,48]

a =
√√√√ 2

N0

N0∑
i=1

(ri − r̄)2 . (2)

For the smaller NPs, the oscillatory nature of the collision
visible in the pressure, Fig. 1, is also reflected in the contact
radius. The contact radius of the larger NPs shows a constant
increase during the time when the pressure is compressive, up
to t = 4×104. The subsequent decrease in the contact area is
caused by the relaxation and reorganization of the interface
caused by pressure relaxation and dislocation reactions; it is
also directly visible in Fig. 2(b).
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FIG. 3. Temporal evolution of the contact radius a during the
collision of two NPs of radius (a) R = 13.2 and (b) R = 60.7
colliding with velocity v = 0.5. The JKR estimate, Eq. (4), is
indicated.

We include in Fig. 3 the macroscopic estimate of the con-
tact radius provided by the Johnson-Kendall-Roberts (JKR)
model [12,49]. This model is designed for large compliant
particles with short-ranged attraction and is believed to
describe LJ systems well [33,47]. For vanishing external force
it is

a =
(

9πw

Eind
R2

)1/3

, (3)

where w = 2γ is the work of adhesion, γ is the surface energy,
Eind = E/(1 − ν2) is the indentation modulus, and E and ν are
Young’s modulus and Poisson ratio. For a LJ material, Eq. (3)
yields

a = (1.22R2)1/3. (4)

Figure 3 demonstrates that the JKR estimate predicts the max-
imum contact radius quite well. This finding is in agreement
with the results of Luan and Robbins [50,51], who studied the
validity of JKR for describing the quasistatic interaction of
tips with surfaces using the LJ potential. They showed that the
MD results fulfill well the a ∝ R2/3 prediction of JKR.

B. Plasticity at the threshold

Figure 4 gives a view on the plasticity developing at
velocities slightly above the critical velocity. The large stress

FIG. 4. Typical defects generated above the critical velocity. Data
taken for two NPs of radius R = 28.7, N = 105 colliding with
velocity v = 0.5. Blue: Undisturbed lattice; red: SF; green: twins. (a)
View on the collided system; (b) undisturbed lattice atoms removed.

in the contact area leads to partial dislocations traveling rapidly
through the material. When they reach the opposite surface of
the NP, they are absorbed, leaving behind the SF. The genera-
tion of SFs is characteristic of the plasticity of the NPs studied
here. If several SFs are produced in consecutive planes, then a
nanotwin is formed, such as that seen in Fig. 4(b). For certain
events around vc, we observe production of transient SFs
which do not reach the opposite surface and can be reabsorbed
leaving defect-free grains at the end of the simulation, as noted
before [52,53].

While below the critical velocity (not shown here), only
embryonic features are seen—amorphous or platelike strongly
constrained structures—above vc full SF platelets spanning
the entire respective NP have formed. This demonstrates that
already slightly above vc plasticity is characterized by the
formation of volume-spanning planar defects. Dislocations
generally nucleate directly at the contact area; from there they
expand until they span the entire NP.
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FIG. 5. Typical example of a complex defect structure obtained far above the critical velocity. Data taken for two NPs of radius R = 28.7,
N = 105, colliding with velocity v = 2. (a) View on the collided NPs. (b) Intermediate damage structure; note the occurrence of a full
dislocation in the upper NP. (c) Final damage structure. Colors distinguish material of the two NPs.

As a consequence of the collision, the temperature in the
NPs is changed. We checked the temperature increase in the
NPs after the collision in the velocity range around the critical
velocity. For all NP sizes the temperature increase caused
by the collision is less than 0.005; compared to the initial
temperature of 0.1 this increase is negligible.

C. Plasticity far above the threshold

In Fig. 5 we display the defect structure in a high-velocity
collision, far above the elastic-plastic threshold. The two NPs
merge and are considerably deformed; note the clear slip bands
noticeable in particular in the upper NP in Fig. 5(a). The defect
structures in the middle of the collision, Fig. 5(b), and at its
end, Fig. 5(c), are characterized by planar defects. These are
as a rule SFs extending throughout the NP, but also several
nanotwin boundaries are observed. Note the dense packing of
planar defects. While several glide planes have been activated,
the SFs run mainly parallel to each other. In this way, a volume
filling defect density is reached. Note that no amorphized
regions are seen, since slip is an easy way to relax pressure out
of the highly activated collision zone.

SFs are produced when one partial dislocation is emitted
from the contact area and expands throughout the NP, reaching
the opposite boundary before a trailing partial dislocation is
emitted. At high-velocity collisions it is possible that the stress
produced in the contact zone is high enough that also a trailing
partial is emitted and thus a full dislocation runs through the
NP. In the intermediate plot, Fig. 5(b), such a full dislocation
is visualized while it is still running through the NP, before
its absorption on the NP surface. Its width amounts to 10–14
in LJ units; note that this constitutes a lower bound since the
leading partial has already encountered the surface.

The width, wSF, of a fully dissociated dislocation depends
on the shear modulus G, the Burgers vector length b, and the
stacking fault energy γSF as [54,55]

wSF = Gb2

2πγSF
. (5)

The stable stacking fault energy is small; Ziegenhain et al. [56]
give a value of 0.024 in LJ units and Kogure et al. [57] a value of

0.052 for another LJ cut-off radius. Hence dislocations show
a broad stacking fault ribbon between leading and trailing
partial. This allows also partials to easily cross the NP leaving
behind a SF. From Eq. (5) we hence obtain a width of wSF =
316 (146) for γSF = 0.024 (0.052). These excessively large
values hold in equilibrium in bulk material. Under the large
stresses prevalent in the contact zone the trailing partial is
emitted earlier and the SF width is shortened.

We thus conclude that partial dislocations and even full
dislocations play a dominant role in NP plasticity, while
amorphization is not found. This finding is at variance with
previous arguments that dislocation plasticity plays no role
in NP collisions due to the limited space and time scales
[58].

D. Bouncing

We note that we occasionally see bouncing of the two NPs.
This is in agreement with the systematic study of Kalweit and
Drikakis [31], who investigate the bouncing regime—called
“stretching separation mode” by these authors—for small
NPs as a function of collision velocity and impact parameter.
Bouncing occurs around vc, when the velocity is high enough
to allow the 2 NPs to separate again after the collision but
small enough that plasticity does not yet dominate energy
dissipation [31,33]. Figure 6 shows an example of such an
event. We observe that some mass transfer occurred at the
contact area from the upper to the lower NP. This grain mixing
is caused by the fact that the strong adhesion between the two
grains, consisting of the same material, has led to a welding
of the two NPs at the contact area; on break-up atoms feel
equally bound to either of the NPs. We note that in dedicated
studies of NP bouncing, some authors judiciously choose a
purely repulsive interaction between the NPs [35] in order to
enhance the bouncing effect.

E. Dependence on impact parameter

NP collisions are characterized by their impact parameter
b, which ranges between 0 and 2R; central (collinear) colli-
sions are characterized by b = 0, while (peripheral) glancing
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FIG. 6. Sequence of snapshots showing bouncing of the two NPs. Radius R = 28.7, N = 105, velocity v = 0.2.

collisions occur at values close to the maximum impact
parameter. We show in Fig. 7 how the impact parameter
influences the plasticity formation. Except for the lowest ve-
locity v = 0.3—which is still below the critical velocity—we
observe the clear trend that defect formation is maximum for
central collisions and monotonically decreases with increasing
impact parameter. This decrease is due to the fact that less
volume is involved in the collision at large b.

This is shown in Fig. 8, where we see the plasticity resulting
from a glancing collision. We use a high velocity, v = 3,
since the number of defects formed at glancing incidence
is small. The two NPs shear material off each other such
that material is mixed between the two NPs. Despite the
high velocity, only one NP received internal damage, in the
form of plasticity. Note the simplicity of the resulting defect
structure.

We note that at smaller velocities, the usual result is
sticking of the 2 NPs, resulting in a NP-dimer rotating at
high angular velocity but with no or only little internal defect
creation.

FIG. 7. Fraction of defect atoms after collision of 2 NPs with
radius R = 10.4, N = 5000, as a function of impact parameter b.
Data are provided for various velocities v.

F. Velocity dependence

Figure 9 assembles the information on the production
of atoms in planar defects as a function of velocity for
various radii studied. The data have been grouped for smaller
(N � 2×104, R � 16.6) and larger (N � 3×104, R � 18.9)
clusters in order to increase the readability of the plots. The
picture for the larger NPs is clear: While at small velocities
the number of defects formed is at the noise level (below 1
per mille), it increases steeply in a short range of velocities
and reaches saturation values of around 0.05 or above at high
velocities. The range of steep increase allows us to define the
critical velocity of the elastic-plastic transition, which will be
discussed in detail in Sec. III I. Its definition is, of course, prone
to some arbitrariness, since the transition occurs smoothly
in a velocity window. We shall use a fraction of 0.005 to
determine vc quantitatively. Figure 9(a) demonstrates that vc

monotonically decreases with increasing NP size.
The situation is somewhat less transparent at small NP

sizes, Fig. 9(b). Here the “noise level” at small velocities
strongly increases, since the number of atoms involved is
small. However, one can still discern the trend that with
decreasing NP size, the critical velocity increases, at least as
long as N � 5×103, R � 10.4. For even smaller clusters, we
use a fraction of 0.05 to determine vc quantitatively.

G. Statistics

The plasticity features shown here are typical of those
developing; however, a large variety exists in the number of
defects occurring in an individual collision event. It is caused
by the different crystalline orientations of the two colliding
NPs. Figure 10 shows this variety for several selected cases.

Figures 10(a) and 10(b) show the defect probability distri-
bution for collisions in the vicinity of the critical velocity.
We see a bimodal distribution, where either around 800
or around 0–100 defect atoms are created. At the smaller
velocity, v = 0.45, the maximum for no defect generation
is still dominant, but at the somewhat higher velocity of
v = 0.5, the generation of plasticity (with around 800 atoms)
takes over. Note that for the higher velocity also the number
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FIG. 8. Typical example of defects generated at glancing incidence. Data are for the collision of two NPs of radius R = 10.4, N = 5000,
colliding with velocity v = 3 at impact parameter b/R = 1.6. Panels (a)–(c) provide a time sequence of snapshots, where colors distinguish
material from the two NPs. Panel (d) shows the defects formed inside the 2 NPs. Green: Undisturbed lattice; red: SF.

of high-damage events becomes more pronounced. At both
velocities the average of these distributions—493 (783) defect
atoms for v = 0.45 (0.5)—is actually rarely realized. Note,
however, the strong increase (by around 60%) in the average

FIG. 9. Fraction of defect atoms created in central collisions as
a function of collision velocity v. Data are for various NP sizes
characterized by the number of atoms N in one NP.

defect number at the small velocity increase of 10%; this is
the sign that we are around the critical velocity. This figure
shows that the creation of plasticity in NP collisions sensitively
depends on the NP orientation, in particular, in the vicinity of
the critical velocity. This is also true of the energy dissipated
in defect creation.

Figure 10(c) shows the probability distribution for a colli-
sion scenario far above the critical velocity. It is approximately
Gaussian distributed around the mean value of 12 297 with
a standard deviation of 31%. It shows that while above the
critical velocity, the creation of plasticity is the rule—no cases
of 0 damage are seen in this figure—still the variation in
relative orientations of the NPs with respect to each other leads
to a wide variation in dislocation production in the individual
cases.

H. Size dependence

While up to now we focused on the velocity dependence
of the plasticity generation, Fig. 11 shows the evolution of
the number of defects as a function of the NP size. At the
largest velocity chosen here, v = 0.5 (far above the critical
velocity for large spheres), we see that the relative number of
defect atoms saturates for large spheres at a value of around
7%. Note that we observe planar defects, thus one might have
assumed that the number of defect atoms evolves as R2. But
since the data in this plot have been normalized to the total
number of atoms N , the MD data reveal that the number of
defects increases as R3, if the velocity is above the critical
velocity.

The smallest velocity, v = 0.2, is still below the critical
velocity for small NPs; hence virtually no plasticity is gener-
ated for R � 30. For larger NPs, the volume fraction of planar
defects slowly increases. It must be assumed that it reaches
a saturation level, however, only for considerably larger NPs
than those investigated here. The velocity of v = 0.3 shows a
behavior that is intermediate between the two other velocities
studied.

I. The elastic-plastic threshold

The statistics of our simulation results allows us to
determine the critical velocity vc. We used the criterion that a
collision is considered to result in plasticity if the fraction of
defect atoms is above 0.5% of the total number of atoms in

063004-7
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FIG. 10. Statistics of defect generation shows bimodal distribu-
tion for collisions of N = 104 NPs, R = 13.2, with v = 0.45 (a),
which shift towards higher defect production at v = 0.5 (b). Far
above the plasticity threshold (N = 105, R = 28.7, with v = 0.5)
the distribution becomes unimodal (c).

the NPs; only for the two smallest cluster sizes used here,
N < 5000, was a threshold of 5% used instead. The data
shown in Fig. 12 exhibit a clear size dependence of the critical
velocity [15].

FIG. 11. Relative number of atoms contained in SFs as a function
of the NP size, R. Data are for various collision velocities v.

An early model assumes vc to be independent of the NP
size; for two equal spheres it predicts [11–14]

vc = 10.06

√
Y 5

E4
indρ

, (6)

where Y is the yield stress, Eind = E/(1 − ν2) is the indenta-
tion modulus, E and ν are Young’s modulus and Poisson ratio
for the material assumed to be isotropic, and ρ is the mass
density. For a LJ material and assuming Y = G/10 = 4 for a
defect-free single crystal [59], Eq. (6) gives vc = 0.027. This
value is far below our MD results.

Recently, the size dependence of vc has been explained
using the so-called modified source model [15]. It assumes
that dislocations are formed in the contact zone of radius a;
similarly to the idea behind a Frank-read source [54,60], the
dislocations are emitted from the contact zone into the NP if
the applied stress is larger than

pc = α
Gb

a
. (7)

FIG. 12. Plastic threshold velocity, vc, as a function of NP radius,
R. Symbols: Our MD data. Line gives the modified source model,
Eq. (9).
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Here b denotes the Burgers vector and α is a prefactor in the
range of 0.25–1 [61,62]; we use here α = 0.4.

The pressure in the contact zone can be estimated from the
Hugoniot relation

p = ρvcl = 11.41v, (8)

where the density ρ and longitudinal velocity of sound
cl for a LJ solid have been inserted to obtain the latter
equality.

Using finally the R2/3 dependence of the contact ra-
dius a, Eq. (4), the nucleation pressure is obtained from
Eq. (7) as pc = 16.4/R2/3 and the critical velocity follows
as

vc = 1.43

R2/3
. (9)

Figure 12 demonstrates that this law describes our MD data
surprisingly well.

In the past, the size dependence of NP collisions has been
studied for other quantities than the elastic-plastic threshold.
In particular, the rebound velocity, vr , was investigated, which
measures the minimum velocity necessary for NPs to bounce
off each other; at lower velocities they stick. The rebound
velocity is thought to be related to the critical velocity for
plastic failure. Rennecke and Weber [63] measured vr for Ag
NPs and showed an increase with decreasing particle radius
R. The model by Weir and McGavin [64] assumes rebound
to occur on complete plastic failure and predicts vr ∝ 1/R.
Using MD simulations of Cu NP collisions, Han et al. [53]
showed that the onset of plasticity is shifted to higher velocities
for smaller NPs. Eventually, Takato et al. [35] determined
a so-called yield velocity vy as the velocity, above which
the rebound velocity stays constant; their simulations on LJ
NPs gave vy ∝ R−0.65. We conclude that the modified source
model [15] provides a transparent explanation for the R−2/3

decrease of the threshold for plasticity in NP collisions, which
is related to the decrease of the rebound velocity and the yield
velocities discussed above.

Finally, we note that quasistatic compression experiments
were used to determine a size dependence for the onset of plas-
tic deformation. Mordehai et al. [21] studied dislocation nucle-
ation in Au NPs under quasistatic compression. Experiments
performed on R = 100–500 nm sized NPs showed a decrease
of the critical stress for the onset of plastic deformation as a
power law, σc ∝ R−n with n = 0.77 ± 0.16. Accompanying
MD simulations were performed in the size range of R = 3–
12 nm and gave a similar power law with n = 0.74 ± 0.08;
here the NPs were compressed perpendicular to {111} faces
with a velocity of v = 1 m/s. The authors explained their
findings by regression to the well-known dependence of the
critical stress needed to nucleate a dislocation loop [65]

σc = Gb

2πrc

, (10)

where rc is the critical radius of the loop beyond which the work
done by the applied stress on loop expansion exceeds the elastic
energy of the dislocation, and the loop will grow. The authors
expanded this model by assuming that the elastic stress created
during compression is inhomogeneous in the NP; it is highest
near the vertices of the faceted NP and decays along the slip

planes with distance r from the NP vertices with a power-law
σ (r) ∝ (R/r)n where the power-law exponent n is motivated
by elastic theory [66] but is left as a free fitting factor.
Using crystal-elasticity finite-element-method simulations of
an R = 500 nm NP, the power-law decay is determined as
n = 0.74 ± 0.08. The extension of Eq. (10) to a spatially
varying stress field leads to

σc ∝ 1

Rn
. (11)

Thus this study [21] relates the size dependence of NP
to the inhomogeneous stress distribution inside a uniaxially
compressed faceted NP.

IV. SUMMARY

Low-velocity collisions are elastic in the sense that no
defects in the NP bulk are formed. However, due to the
strong mutual attraction, the two NPs merge at a circular
contact interface. Pressure and contact radius undergo a series
of damped oscillations. At higher velocities, planar defects
(SFs and nanotwins) are generated. Close to the elastic-plastic
threshold, these are generated as isolated planar defects; while
they nucleate at the interface they propagate through the entire
NP. The generation of SFs is the characteristic result of the NP
plasticity studied here. The large stress in the contact area leads
to partial dislocations traveling rapidly through the material.
When they reach the opposite surface of the NP, they are
absorbed, leaving behind the SF. If several SFs are produced
in consecutive planes, a nanotwin is formed.

With increasing velocity, also heterogeneous nucleation
at the vacuum surface of the NPs is observed. The density
of defects increases such that the number of defect atoms
becomes proportional to the total number of atoms; even
though the defects are generated as planar faults, their volume
fraction saturates (at around 7%).

Plasticity is generated above a critical velocity, vc. It
was recently found [15] that in contrast to the widely used
assumption that vc is size independent, the critical velocity
increases as R−2/3 for small NP radii R. This increase is caused
by the dynamics of the dislocations generated in the contact
zone: In order to emit dislocations from this zone into the NP,
a stress is necessary which depends inversely on the contact
zone radius, a, according to the line tension of the dislocation
described as for a simple (Frank-Read) source. We find here
that the dependence of a ∝ R2/3 valid for adhesive contacts
models well the R−2/3 dependence of the critical velocity.

Close to threshold, plasticity is subject to large fluctuations,
since different NP orientations will react differently to the
pressure developing in the collision. A statistics made over
many orientations shows a bimodal distribution of the number
of defects, which shows a peak at zero defects (purely
elastic collision) besides an additional peak due to a planar
defect spanning one of the NPs. A reliable estimate of the
critical velocity can only be made after averaging over many
orientations.

This study focused on the collision behavior of NPs with
a simplified shape and structure: spherical NPs with a single-
crystalline fcc structure. Future investigations might extend
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the present results to include the influence of pre-existing
defects in these NPs—in particular grain and twin boundaries.
In addition, it will be interesting to study the effect of a
faceted surface, such as it will be acquired by NPs close
to equilibrium. Finally, real NPs may be amorphous; the
deformation behavior of such particles cannot be described
by the generation of dislocations as for crystalline particles.
The analysis of the velocity dependence of amorphous NPs
needs hence be based either on macroscopic concepts such
as the energy dissipation during the collision (the coefficient
of restitution), on geometric parameters describing the overall

deformation of the NPs, or on the characterization of specific
deformation features existing in the amorphous state, i.e., shear
bands.
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