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Breakdown of nonlinear elasticity in amorphous solids at finite temperatures
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It is known [H. G. E. Hentschel et al., Phys. Rev. E 83, 061101 (2011)] that amorphous solids at zero
temperature do not possess a nonlinear elasticity theory: besides the shear modulus, which exists, none of the
higher order coefficients exist in the thermodynamic limit. Here we show that the same phenomenon persists up
to temperatures comparable to that of the glass transition. The zero-temperature mechanism due to the prevalence
of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the
divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids
elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.
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I. INTRODUCTION

By cooling glass-forming liquids below their glass tran-
sition temperature one forms amorphous solids. They are
solid because particles are not free to move ergodically but,
rather, can only vibrate around equilibrium positions. They are
amorphous because, differently from crystals, these positions
possess no long-range periodicity. As a result, a glass sample
is always unique: while the structure of a crystalline solid is
always realized in the same manner (barring local defects),
the amorphous structure of a glass is randomly selected
[1,2]. So, even if an ensemble of glasses is prepared with
a perfectly reproducible protocol, one always ends up with
pieces of material with different structural properties. Is it
important to know whether these structural differences have
any important effect on the physical observables of the glass,
or, in other words, which observables would self-average such
that their sample-to-sample fluctuations would be negligible
in the thermodynamic limit. Self-averaging assumptions go
a long way back, at least to Tool’s first work on fictive
temperatures [3], and are a basic underlying assumption in the
field of study of the thermodynamics of disordered systems in
general [4], beyond structural glasses. As a matter of fact,
self-averaging can be shown to be rigorously realized (at
least for systems with short-range interactions) for extensive
quantities as a consequence of the central limit theorem [4].
From an experimental point of view, this means that if one
measured an extensive observable (say, the internal energy or
the thermal capacity) in a given glass, the result would be
representative of all the glasses manufactured with the same
protocol. From a theoretical point of view, this means that
some properties of glassy states can be safely computed by
averaging them over the amorphous structures available [5,6].
The assumption of self-averaging is not sufficiently scrutinized
for intensive variables. While some observables strictly related
to the structure of the glass, such as the refractive index
[7], do not self-average, it is still a common assumption that
all thermodynamic quantities, whether extensive or intensive,
should share this property.

In this paper we show that this expectation is not met
in the case of the nonlinear elastic coefficients [8] of a
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model molecular glass at any temperature below the glass
transition. This leads to a breakdown of the elastic theory
for the material. It has been shown that this is the case for
amorphous solids at zero temperature [9]; however, one could
think that temperature fluctuations might destroy the relevance
of the findings at T = 0. We show in this paper that this is not
so: the presence of anomalous sample-to-sample fluctuations
of nonlinear elastic coefficients leads to a breakdown of
elasticity theory also in amorphous solids at experimentally
and practically relevant temperatures.

II. EXPRESSIONS OF ELASTIC COEFFICIENTS

Let us consider a standard elasticity theory for a solid under
simple shear strain (with γxy = γ the only nonzero component
of the strain tensor). This is written in the form of a Taylor
expansion around zero strain [8],

σ (γ ) = B1γ + 1

2!
B2γ

2 + 1

3!
B3γ

3 + · · · , (1)

where σ = σxy is the only nonzero component of the stress
tensor and

Bn ≡ dnσ

dγ n

∣∣∣∣
γ=0

. (2)

B1 is the usual shear modulus, which is usually denoted μ,
with μ ≡ B1. In a thermal setting, the stress can be written as
a canonical ensemble average [10–12],

σ (γ ) ≡ 1

V

〈
dU

dγ

〉
= 1

V

1

Z(γ )

∫
X∈α(R)

dX
dU

dγ
e−βUγ (X),

(3)

where, as usual, β ≡ 1
kBT

and V is the system’s volume, U (X)
is the system’s potential energy, and the strain is implemented
through an affine transformation of particle coordinates [10].
The canonical average is replaced below by a time average,
using time intervals τ for which the variables measured
reach a stationary value, but with τ being much shorter than
the glass relaxation time (usually denoted τα). This time
interval allows the system to visit a restricted domain α(R)
of configurations; accordingly, the integral is computed over
this set of configurations, which are visited by the glass
particles that are confined around an amorphous structure
R [5,13].
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To compute the elastic coefficients, one needs only to take
derivatives of Eq. (3) with respect to the strain. Note how in
Eq. (3) the strain parameter is contained in the derivative dU

dγ
,

in the Boltzmann factor, and in the partition function Z(γ ).
When taking further derivatives of the derivative term, one will,
in general, get a term of the kind 〈 ∂nU

∂γ n 〉, while derivatives of the
partition function and Boltzmann factor will yield cumulants of
the stress and additional covariance terms. The shear modulus,
for example, has the expression [13]

μ ≡ B1 = 1

V

〈
∂2U

∂γ 2

〉
− βV [〈σ 2〉 − 〈σ 〉2], (4)

which is the sum of a generalization of the Born term found
in crystalline solids [14] and thermal fluctuations of the stress.
For the first nonlinear coefficient B2 one has

B2 = 1

V

〈
∂3U

∂γ 3

〉
− 3βV [〈σ ′σ 〉 − 〈σ ′〉〈σ 〉]

+ (βV )2〈(σ − 〈σ 〉)3〉, (5)

where we have used the compact notation σ ′ = ∂σ
∂γ

. In
Appendix A we derive the expressions for the nonlinear
coefficients up to third order. Since these coefficients are
computed by sampling a glassy space of configurations
selected by an amorphous structure, their values will depend
on the particular glass sample under consideration, as detailed
in Sec. I. We are interested in their probability distribution over
samples and, in particular, in sample-to-sample fluctuations,

(δBn)2 ≡ (Bn − Bn)2, (6)

where (·) denotes the average over samples. Naive central limit
theorem considerations suggest that (δBn)2 � 1

V
, which would

imply self-averaging. In the following we present evidence that
this assumption fails for all n � 2.

III. NUMERICAL SIMULATIONS

A. Method

We compute the elastic coefficients Bn up to third or-
der from molecular dynamics (MD) simulations of a Kob-
Andersen [15] 65/35 binary mixture in two dimensions.
The Lennard-Jones (LJ) potentials used are presented in
Appendix B together with the details of the simulations. We
always start by simulating the liquid at T = 0.4, whereupon the
relaxation of the binary correlation function is still exponential.
Next we cool the system at a rate of 10−6 in LJ time units,
as explained in Appendix B, to the final target temperature
of T = 10−6. The system is now heated up instantaneously
to a working temperature in the range T ∈ [0.05,0.25] in
steps of 0.05. The system is then “equilibrated” by running
100 000 MD steps. To measure any desired quantity we now
run τ = 200 000 MD steps and measure the time average of the
said quantity. Thus, for example, if we want to measure 〈σ 4〉 we
compute

〈σ 4〉 ≡ τ−1
τ∑

i=1

σ 4(ti), (7)

where ti are the MD steps. Having computed the desired
quantity in this way, we repeat the process 1000 times,

using different initial configurations from the run at T =
0.4, each of which will yield a different glass sample, or
realization. The values found are histogrammed and nor-
malized to yield a probability distribution function (pdf).
This pdf is then used to evaluate the average over the 1000
samples and the variance, Eq. (6). Our numerical setup is
thus equivalent to the production of an ensemble of glass
samples, each manufactured with the same, exactly reproduced
protocol.

B. Results

A representative set of results for the distributions of
B1, B2, and B3 over the realizations is shown in Fig. 1
for T = 0.15. Similar results are seen for the entire tem-
perature range: the distribution of the shear modulus over
the realizations sharpens with the system size, indicating
self-averaging in the thermodynamic limit. The distributions
of B2 and B3 (and, in fact, of all Bn with n � 2) broaden
rapidly with increasing system size, indicating a breakdown
of self-averaging and of nonlinear elasticity. The rate of
broadening of the distributions increases with the order of the
coefficient under consideration. As an example, let us consider
the variances of the distributions of the first three moduli; to
evaluate their finite-size scaling, we perform Gaussian least-
squares fits of the data and consider the resulting variances,
which are shown in Fig. 2 as a function of the system size
at different temperatures. One should stress that measuring
the variances without Gaussian fits is a bit noisier but it
yields very similar scaling plots as a function of the system
size.

Denoting the variance of Bk as (δBk)2 we find that

(δB1)2 ∼ Nα1 , (δB2)2 ∼ Nα2 , (δB3)2 ∼ Nα3 , (8)

with α1 = −0.68 ± 0.08, α2 = 0.78 ± 0.05, and α3 =
1.92 ± 0.06 independently of the temperature in the range
T ∈ [0.05,0.25].

To shed light on the breakdown of self-averaging it is useful
to consider the sample-to-sample fluctuations of the moments
of the stress. We note that fluctuations in the Born-like
terms in any of the Bk moduli are always convergent. The
reason for divergence are the moments 〈σ k〉 which appear
in the expressions for the coefficients Bk , multiplied by a
suitable factor of V k−1 ∼ Nk−1 to make all the Bk’s intensive.
It is therefore interesting to consider the sample-to-sample
fluctuations of Xk ≡ Nk−1〈σ k〉. Accordingly, we consider
the pdf’s of P (Xk) over our glass samples. In Fig. 3 we
show representative results of these pdf’s in a rescaled form.
The upshot of the analysis is that we can collapse the
data for these pdf’s for different system sizes if we plot
Nk/2−1P (Xk) as a function of Nk/2〈σ k〉. It is an immediate
exercise therefore to evaluate the system-size dependence of
the variance of Xk , denoted here (δXk)2, obtaining the scaling
dependence,

(δXk)2 ∼ Nk−2, (9)

independently of the temperature. It now becomes clear that
the convergent result for (δB1)2 and the fact that α2 < 1
and α3 < 2 must follow from a cancellation of the leading N

063003-2



BREAKDOWN OF NONLINEAR ELASTICITY IN . . . PHYSICAL REVIEW E 93, 063003 (2016)

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

B1

P
(B

1)
200
500
2000
4000
10000

−4000 −2000 0 2000 4000
0

5

10

15

x 10
−4

B2

P
(B

2)

200
500
2000
4000
10000

−1 −0.5 0 0.5 1
x 10

6

0

1

2

3

4

5

6x 10
−6

B3

P
(B

3)

200
500
2000
4000
10000

−1 −0.5 0 0.5 1
x 10

7

10
−8

10
−7

10
−6

10
−5

B3

P
( B

3)

200
500
2000
4000
10000

FIG. 1. Distributions of B1 = μ, B2, and B3 over the realizations
for T = 0.15, for system sizes from N = 200 to N = 10 000. Lines
are Gaussian fits to the data, from which we compute the variances.
The distribution of the shear modulus sharpens when the system size
increases. The distributions of B2 and B3 broaden with increasing
system size, refuting any hope for self-averaging. The distributions
of higher order coefficients broaden more and more rapidly. In the
last panel we present the same data for B3 semilogarithmically, to
stress the complete form of the pdf of B3.
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FIG. 2. Variances of B1, B2, and B3 over the realizations as a
function of the system size for different temperatures. Lines are least-
square fits to the data. Note that, to within the available accuracy, the
system-size dependence of the variances appears to be temperature
independent, at least up to T = 0.25.

dependence in the terms involving stress fluctuations.
A precise determination of the scaling exponents and
the question of their universality or nonuniversal-
ity must await a very extensive set of numerical
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FIG. 3. Examples of rescaled pdf’s of Xk for k = 1, 4, and 5,
multiplied by Nk/2−1 and plotted as a function of Nk/2〈σ k〉 at T =
0.05. Similar data collapses are found for other k values and for other
temperatures without changing the exponents. A similar data collapse
for k = 2, 3, and 6 can be found in Appendix B.

simulations which are outside the scope of this
paper.

IV. DISCUSSION

It is interesting to examine the correspondence between
the divergence of the variances of the nonlinear elastic
coefficients at T = 0 and that at a finite temperature. At
T = 0 the expression for the shear modulus, instead of Eq. (4),
reads [16]

B1(T = 0) = 1

V

∂2U

∂γ 2
− 1

V
� · H−1 · �, (10)

where H is the Hessian matrix and � ≡ ∂2U/∂ r i∂γ . Higher
order nonlinear moduli contain three, five, and more factors
of H−1 and their sample-to-sample fluctuations stem from
the existence of arbitrarily small eigenvalues of the Hessian
matrix when the system size increases [9]. It can be proven that

the stress fluctuation term in Eq. (4) approaches smoothly the
second term in Eq. (10) and that the cumulant terms in Bk(T )
approach in the same way the analogous term of the athermal
counterpart (see [17] and Appendix C). In recent years, much
research has been devoted to the concept of marginality [18]
in disordered systems, which can be broadly defined as the
possibility of destabilizing a system with a generic perturbation
without having to pay an energy cost. In the case of athermal
systems, such as jammed packings, these perturbations are
mechanical in nature (for example, the opening of a contact
between two grains in a packing) and marginality manifests
under the guise of arbitrarily low-lying eigenvalues in the
Hessian of the system, related to floppy modes that can be
excited with no energy cost. As detailed in [9], these are
precisely the modes that cause the breakdown of nonlinear
elasticity in athermal glasses. The correspondence between
the second term in Eq. (10) and the stress fluctuations in the
thermal case (which, as we pointed out, cause the breakdown
of nonlinear elasticity in the present case) highlights how the
mechanical marginality found in athermal amorphous systems
must have a thermal, thermodynamic counterpart in terms
of the presence of anomalous thermal fluctuations, which in
turn induce, through the fluctuation-dissipation theorem, an
anomalous response of the system to even arbitrarily small
thermodynamic perturbations, such as strain or a magnetic
field. We argue that a better understanding of the links between
mechanical and thermal marginality is paramount for the final
achievement of a complete and consistent theoretical picture
of the physics of amorphous systems.

Finally, we should relate these findings to a recent theoret-
ical work [19] predicting a so-called Gardner transition [20]
in thermal glass-forming liquids [19,21]. Fundamentally the
prediction is that at some temperature, lower than the glass
transition temperature, there should be a qualitative change in
the nature of the free-energy landscape, generating a rough
scenery with arbitrarily small barriers between local minima.
The connection to the present work is that this phenomenon is
accompanied by a breakdown of nonlinear elasticity in much
the same way as reported above. The available theory pertains
to a mean-field treatment, and comparison of exponents is
probably not warranted. Nevertheless, it is interesting that
the shear modulus is expected to exist, and the variances
of Bk with k � 3 are expected to diverge with the system
size, in agreement with the predictions in Ref. [9] and the
findings in the present paper. In Ref. [19] it is also predicted
that the phenomenon should disappear when the system is
heated above the (protocol-dependent) Gardner temperature,
a claim that we are not in a position to confirm or refute.
A careful search for a putative Gardner temperature would
require repeating our analysis on extremely slowly quenched
glasses as a way to provide a good separation of the Gardner
point and the point of disappearance of the shear modulus
[19]. Such an analysis is beyond the scope of the present
paper but appears to be a worthwhile endeavor for future
research.
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APPENDIX A: EXPRESSIONS OF THE ELASTIC
COEFFICIENTS

We present here the expressions of the elastic coefficients
that are studied in the text. We start from the definition of the
stress,

σ = 1

V

[
1

Z(γ )

∫
dU

dγ
e−βU (γ )dX

]
, (A1)

where

Z(γ ) =
∫

e−βU (γ )dX. (A2)

We now take a derivative of this expression with respect to γ ,
which by definition will be equal (once computed at γ = 0) to

the shear modulus. We get

dσ

dγ
= 1

V

[
1

Z(γ )

∫
∂2U

∂γ 2
e−βU (γ )dX − β

1

Z(γ )

∫ (
∂U

∂γ

)2

× e−βU (γ )dX + β
1

Z(γ )2

(∫
∂U

∂γ
e−βU (γ )dX

)2
]
,

since
∂

∂γ
Z(γ ) = −β

∫
∂U

∂γ
e−βU (γ )dX; (A3)

now, since σ is an intensive quantity, σ ≡ 1
V

〈 ∂U
∂γ

〉, we have to

multiply the last two terms by V
V

, and we, finally, get

μ = 1

V

〈
∂2U

∂γ 2

〉
− βV [〈σ 2〉 − 〈σ 〉2], (A4)

as reported in the text and in [13]. We now take further
derivatives in order to compute the second- and third-order
coefficients. For the second derivative we have

d2σ

dγ 2
= 1

V

[
1

Z

∫
∂3U

∂3γ
e−βUdX + β

1

Z2

∫
∂2U

∂γ 2
e−βUdX

∫
∂U

∂γ
e−βUdX − 3β

1

Z

∫
∂U

∂γ

∂2U

∂γ 2
e−βUdX

− β2 1

Z2

∫
∂U

∂γ
e−βUdX

∫
∂2U

∂γ 2
e−βUdX + β2 1

Z

∫ (
∂U

∂γ

)3

e−βUdX

+ 2β

(
1

Z

∫
∂U

∂γ
e−βUdX

)(
1

Z

∫
∂2U

∂γ 2
e−βUdX − β

Z(γ )

∫ (
∂U

∂γ

)2

e−βUdX + β2

Z(γ )2

( ∫
∂U

∂γ
e−βUdX

)2)]
;

and once we have taken care of the volume factors, we get the final result for B2,

B2 = 1

V

〈
∂3U

∂γ 3

〉
− 3βV [〈σ ′σ 〉 − 〈σ ′〉〈σ 〉] + (βV )2〈(σ − 〈σ 〉)3〉

= 1

V

〈
∂3U

∂γ 3

〉
− 3βV Cov[σ ′,σ ] + (βV )2κ3[σ ],

(A5)

as reported in the text. Higher order coefficients can be computed with the same method, and even though the expressions become
longer and cumbersome, the calculation in itself is trivial. The result for B3, for example, is

B3 = 1

V

〈
∂4U

∂γ 4

〉
+ 3βV 〈σ ′〉2 − 3βV 〈(σ ′)2〉 + 4βV 〈σ ′′〉〈σ 〉 − 4βV 〈σ ′′σ 〉 + 6β2V 2〈σ 2σ ′〉 − 6β2V 2〈σ 2〉〈σ ′〉

+ 12β2V 2〈σ 〉2〈σ ′〉 − 12β2V 2〈σ 〉〈σσ ′〉 + β3V 3(4〈σ 3〉〈σ 〉 + 3〈σ 2〉2 − 12〈σ 2〉〈σ 〉2 + 6〈σ 〉4 − 〈σ 4〉)

= 1

V

〈
∂4U

∂γ 4

〉
− 3βV [〈(σ ′)2〉 − 〈σ ′〉2] − 4Vβ[〈σ ′′σ 〉 − 〈σ ′′〉〈σ 〉] + 6V 2β2[〈σ ′σ 2〉 − 〈σ ′〉〈σ 2〉]

− 12V 2β2〈σ 〉[〈σσ ′〉 − 〈σ 〉〈σ ′〉] + 3V 3β3(〈σ 2〉 − 〈σ 〉2)2 − V 3β3〈(σ − 〈σ 〉)4〉

= 1

V

〈
∂4U

∂γ 4

〉
− 3VβVar[σ ′] − 4VβCov[σ ′′,σ ] + 6V 2β2Cov[σ ′,σ 2]

− 12V 2β2E[σ ]Cov[σ,σ ′] + 3V 3β3(Var[σ ])2 − V 3β3κ4[σ ].

APPENDIX B: DETAILS ON THE NUMERICS

1. Model details

We study the two-dimensional Kob-Andersen binary mix-
ture with a 65:35 ratio of particles A and B, where particles
are point particles and interact via shifted and smoothed

Lennard-Jones potentials, uαβ(r), given by

uαβ(r) =
{

uLJ
αβ + Aαβ + Bαβr + Cαβr2 if r � Rcut

αβ ,

0 if r > Rcut
αβ ,

(B1)
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where

uLJ
αβ = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
. (B2)

The smoothing of the potentials in Eq. (B1) is such that they
vanish with two zero derivatives at distances Rcut

αβ = 2.5σαβ .
The parameters for smoothing the LJ potentials in Eq. (B1)
and for A- and B-particle-type interactions in Eq. (B2) [15]
are given in the following table:

Interaction σαβ εαβ Aαβ Bαβ Cαβ

AA 1.00 1.0 0.4527 − 0.3100 0.0542
BB 0.88 0.5 0.2263 − 0.1762 0.0350
AB 0.80 1.5 0.6790 − 0.5814 0.1271

The reduced units for mass, length, energy, and time have
been taken as m, σAA, εAA, and σAA

√
m/εAA, respectively.

2. Simulation details

All simulations were carried out with MD under NVT
conditions, using a velocity-Verlet algorithm with a time step
of �t = 0.005 in reduced units. A Berendsen thermostat, with
a time constant of 5 in reduced units, was used to maintain
the desired temperature. All simulations were performed at
a constant density ρ = 1.162, with system sizes ranging
from N = 200 to N = 10 000 and a temperature range from
T = 0.05 to T = 0.25, with a gap of 0.05. At the highest
temperature, T = 0.25, the averaging time needed to stabilize
the moments of the stress is 1000 LJ units, which is orders of
magnitude shorter than the τα relaxation time at this tempera-
ture, which is expected to be about 1013 − 1015 LJ units [22].

3. Protocol for preparation of amorphous solids

In order to prepare amorphous solids, we always start
with a random configuration generated at ρ = 1.162 and then
equilibrate it at a high temperature, T = 0.4, for 400 000 MD
steps. At this temperature correlation functions still decay
exponentially and the system behaves like a liquid. Next, we
cool down the system, at a cooling rate of �T = 10−6 in
reduced units, to a target temperature of T = 0.000 001. We
repeat this process starting from different initial conditions at
T = 0.4 to generate the ensemble of 1000 amorphous solids
at each system size.

4. Data collapse for higher order moments

To complement the data presented in Fig. 3 in the text we
report in Fig. 4 the data collapse obtained with the scaling
ansatz Nk/2−1P (Xk) = f (Nk/2〈σ k〉) for k = 2, 3, 6.

APPENDIX C: LOW-TEMPERATURE LIMIT OF
THERMAL FLUCTUATIONS

We show here that, for two generic observables, A(X) and
B(X), one has

lim
β→∞

β[〈A(X)B(X)〉 − 〈A(X)〉〈B(X)〉]

= [∇A · H−1 · ∇B]|X=X∗ , (C1)

where H−1 is the inverse Hessian of the system and X∗
is the inherent structure into which the system settles when
T → 0. The proof is provided in [23] for the case of elastic
coefficients; here we report a simpler derivation for two generic

FIG. 4. Data collapse of the P (Xk) obtained with the scaling ansatz reported in the text. Even though it is a purely phenomenological ansatz
without a theoretical justification, the results are satisfying.
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observables. We start by considering the average,

〈A〉 =
∫

dX A(X)e−βU (X)∫
dX e−βU (X)

=
∫

dX e
−β[U (X)− 1

β
log A(x)]∫

dX e−βU (X)
. (C2)

We compute the integrals using the saddle-point method [24].
Let us expand the arguments of the exponentials around the
inherent structure. We get, for the numerator,∫

dX A(X∗) exp{−β[U (X∗) − 1

β

1

B
∇B · δX

+1

2
δX · A · δX + O(X3)]} (C3)

and, for the denominator,∫
dX exp{−β[U (X∗) + 1

2
δX · H · δX + O(X3)]}, (C4)

where A is a matrix defined as

A → Aiαjβ ≡ Hiαjβ − 1

β

∂2 log A

∂xiα∂xjβ

, (C5)

where the Latin indices denote particle coordinates and the
Greek indices spatial axes. The integral in the numerator
is a Gaussian integral with a linear term, which can be
straightforwardly computed. One gets

A(X∗) exp

[
1

2β

(∇A

A
· A−1 · ∇A

A

)]√
π

β

dN 1√
det A

, (C6)

while the result for the denominator is√
π

β

dN 1√
det H

, (C7)

where d is the number of dimensions (d = 2 in the present
case, but the derivation is valid for any d). In summary, we

get, for 〈A〉,

〈A〉 � A(X∗) exp

[
1

2β

(∇A

A
· A−1 · ∇A

A

)]√
det H
det A , (C8)

so in the T → 0 limit we get, as expected,

lim
T →0

〈A〉 = A(X∗). (C9)

Let us now consider 〈AB〉 and 〈A〉〈B〉. We get, using the
same reasoning,

β〈AB〉 � βA(X∗)B(X∗) exp

[
1

2β

(∇A

A
+ ∇B

B

)

·C−1 ·
(∇A

A
+ ∇B

B

)]√
det H
det C , (C10)

with the definition

C → Ciαjβ ≡ Hiαjβ − 1

β

∂2 log A

∂xiα∂xjβ

− 1

β

∂2 log B

∂xiα∂xjβ

, (C11)

while for the other term we get

β〈A〉〈B〉 � βA(X∗)B(X∗) exp

[
1

2β

(∇A

A
· A−1 · ∇A

A

)

+ 1

2β

(∇B

B
· B−1 · ∇B

B

)]√
det H
det A

√
det H
det B ,

(C12)

with the definition

B → Biαjβ ≡ Hiαjβ − 1

β

∂2 log B

∂xiα∂xjβ

. (C13)

We now expand the exponential in both expressions. Since
both are multiplied by β, we have to keep only the zeroth and
the first orders, as all other terms will go to 0 in the β → ∞
limit. We get

β[〈AB〉 − 〈A〉〈B〉] � βA(X∗)B(X∗)

{√
det H
det C −

√
det H
det A

√
det H
det B

+ 1

2β

[
1

A(X∗)2
∇A · C−1∇A + 1

B(X∗)2
∇B · C−1∇B + 2

A(X∗)B(X∗)
∇A · C−1∇B

]√
det H
det C

− 1

2β

[
1

A(X∗)2
∇A · A−1∇A + 1

B(X∗)2
∇B · B−1∇B

]√
det H
det A

√
det H
det B

}
. (C14)

We must now take the β → ∞ limit. The O( 1
β

) terms in
parentheses are easy to handle, and one gets

[∇A · H−1 · ∇B], (C15)

since

lim
β→∞

C = H, (C16)

lim
β→∞

A = H, (C17)

lim
β→∞

B = H . (C18)

The zeroth-order term requires more caution. At the leading
order in 1

β
, one has, in general,

det

(
M + 1

β
N

)
= det M + 1

β
det N ′ + O

(
1

β2

)
, (C19)

where N ′ is a matrix whose first row is the first row in N and
all the other rows are the other rows in M . This is due to the
fact that the determinant of a matrix is a linear application in
each of the matrix’s rows (or columns). So one gets, for the
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zeroth-order term,√
det H
det C −

√
det H
det A

√
det H
det B =

√
det H

det H − 1
β

det C′ −
√

det H

det H − 1
β

det A′

√
det H

det H − 1
β

det B′ + O

(
1

β2

)

=
√

det H

det H − 1
β

(det A′ + det B′)
−

√
det H

det H − 1
β

det A′

√
det H

det H − 1
β

det B′ + O

(
1

β2

)
,

(C20)

and it can now be easily proven that

lim
β→∞

β

(√
det H

det H − 1
β

(det A′ + det B′)
−

√
det H

det H − 1
β

det A′

√
det H

det H − 1
β

det B′

)
= 0. (C21)

So the zeroth-order term adds up to 0, and we are left with

lim
β→∞

β[〈A(X)B(X)〉 − 〈A(X)〉〈B(X)〉] = [∇A · H−1 · ∇B]
∣∣
X=X∗ , (C22)

which is our thesis. In the case where A(X) = B(X) = 1
V

∂U
∂γ

, one again gets the expression

1

V 2
� · H−1 · �, (C23)

where � ≡ ∇ ∂U
∂γ

. We thus recover the known athermal expression [16,23,25] for the shear modulus,

μ = 1

V

〈
∂2U

∂γ 2

〉
− βV [〈σ 2〉 − 〈σ 〉2]

β→∞−→ μBorn − � · H−1 · �

V
. (C24)

This shows how, in the thermal case, the mechanism for divergence of the shear moduli as a consequence of the presence of
low-lying modes in the Hessian of the potential energy (i.e., marginality in the mechanical sense) is now replaced by a mechanism
in terms of anomalous fluctuations and, as a result of the fluctuation-dissipation theorem, anomalous nonlinear response of the
system to external perturbations (i.e., marginality in the thermodynamic sense), as discussed in the text.
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