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Crack velocity jumps engendered by a transformational process zone
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We study a concerted propagation of a fast crack with the process zone where a rearrangement of the solid
structure takes place. The latter is treated as a second-order local phase transformation. We demonstrate that
the propagation of such a zone gives rise to a nonlinear frictionlike force exerted on the crack tip, resisting
its propagation. Depending on the temperature, it produces three regimes of crack motion, which differ in the
behavior of the crack tip process zone: (i) always existing, (ii) only emerging at a high crack speed, and (iii)
flickering. We show that the latter regime exhibits crack velocity jumps.
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I. INTRODUCTION

The speed, V , of a brittle crack has long been believed to
be a continuous, monotonic function of the driving force G

[1]. In contradiction to the above picture, experiments have
recently revealed a fast crack propagation [2] exhibiting a
terminal crack speed considerably lower than the Rayleigh
velocity [2,3]. In addition, discontinuities in the dependence
of the crack velocity on the driving force have been recently
observed in materials as different as silicon [4,5] and limestone
[6]. Until now, no explanation of these discontinuities has been
available. Here we argue that this behavior can be generated
by a transformational process zone (PZ).

A common opinion exists that the crack behavior is deter-
mined by the PZ, a nano- to meso-sized domain in the vicinity
of its tip. For a long time, the structure of the PZ was beyond the
reach of experiments. Recently, however, new experimental
techniques have changed this situation. Traditional indirect
methods are now being replaced by others that make it possible
to obtain the PZ structure with a high spatial resolution, usually
combining several techniques in one investigation. These
recent techniques are often appropriate for propagating cracks.
High-angle annular dark-field scanning transmission electron
miroscopy (TEM) presently allows the direct imaging of
atomic locations [7]. It can be combined with electron nanod-
iffraction [8]. A micromechanical loading has been combined
with in situ high-resolution x-ray microdiffraction [9], and in
situ scanning electron microscopy (SEM) has been combined
with electron backscatter diffraction [10]. One used an in
situ optical correlation technique [11] combined with Raman
mapping [12]. Atomic force microscopy allows one to map the
spontaneous strain [13,14]. Nanoindentation makes it possible
to study the temperature dependence of the size of the PZ [15].

The emergence of the notion of the process zone reflects the
understanding that a small domain in the immediate vicinity
of the crack tip has specific properties that differ from those of
the bulk of the solid. The PZ can only be distinguished from
the rest of the solid if at least one of its physical properties
varies perceptibly across its boundary. This may be an abrupt
quantitative change, such as a steep growth of the elastic
nonlinearity [16] or hyperelasticity [17] at the tip. Much more
probable is, however, a qualitative change. In the latter case,
the PZ differs from the bulk by, e.g., its chemical composition,
electronic properties (such as, e.g., metal-isolator or exciton
condensate-exciton gas), or crystal structure.

We focus here on the case in which the PZ and the bulk
differ qualitatively, the difference being parametrized by a
field, η = η(r,t), referred to as the “order parameter.” Without
loss of generality, one may assume that η �= 0 inside the PZ,
while vanishing outside. In this respect, our approach is akin
to the theory of phase transitions [18] as well as to the popular
phase-field approach [19].

The terms “phase transition” and “order parameter” pertain
equally to indicate a variation in the crystal structure in
solids and bifurcations in nonlinear systems, both equilibrium
and nonequilibrium, such as, e.g., bifurcations taking place
during chemical reactions [20]. This implies that each of these
transitions can be described by its order parameter, the inherent
degree(s) of freedom responsible for the bifurcation or for the
structural variation.

With respect to the formation of the PZ, all order parameters
split into two classes. An order parameter belonging to the first
class is conjugate to the strain tensor, ε = ε(r). This means
that under the action of the solid symmetry group, the order
parameter η transforms as the strain tensor ε or as some of
its components. In the theory of phase transitions, this case is
classified as “proper ferroelastic.” In this case, the equation for
the order parameter admits an absolute term ∼ε [21]. The latter
gives rise to the PZ existing at any value of the temperature
and stress intensity. Far from the tip, such an order parameter
has the asymptotics η ∼ ε(r). The crystal structure of such a
zone can be obtained from that of the bulk by superimposing
a certain strain representing the order parameter.

The second class unifies those solids for which symmetry
prohibits the order parameter’s being conjugate to the strain
tensor. Unlike the first class case, the crystal symmetry
here cannot be obtained from the bulk symmetry distorted
by a strain. In this case, the strain has an indirect effect
on the order parameter: the PZ only emerges as soon as
certain thermodynamic conditions are met. In other words,
the behavior of the PZ exhibits features of a bifurcation.

Such a classification can be applied to the cases with a
group-subgroup relation between the PZ and matrix symme-
tries or if the PZ and the matrix symmetries are subgroups of
a common group. Transitions referred to as “reconstructive”
exhibit no such relations and require a special modification of
the Landau theory [22]. In particular, the family of martensitic
transformations occupies a position intermediate between
these two classes. On the one hand, the symmetry changes
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during such transformations are described by the so-called
“transcendental” order parameters, differing from a strain
[23]. On the other hand, the transitions are accompanied by
spontaneous strains which are typically large, admitting an
approximate treatment of the problem similar to that in proper
ferroelastics [24].

Transformational PZs of the second kind have been ob-
served in many materials. Ferro- [25] and antiferroelectric
ceramics [12] exhibit local phase transitions (LPTs) at the
crack tips with the polarization playing the role of the
order parameter in the former case and the optical phonon
amplitude in the latter. Superconductive yttrium barium copper
oxides and bismuth stronium calcium copper oxides [26]
exhibit superconducting LPT at the tip, described by the
order parameter representing the condensate wave function.
Formation of hydride at the crack tip has been observed in
the ZrNb alloy [27], where the order parameter describes the
hydride number density. Structural rearrangement within the
crack tip zone has been recently reported in sapphire [28].
Transformational PZs have also been reported in polymers
[29]. Crack tip induced crystallization of the amorphous
material has been observed in metallic glass Zr-Al-Ti-Cu-Ni
alloy [30] as well as in resins, where it strongly affects the
fracture process [31]. All these cases admit a description
of the LPT by various order parameters η different from
a strain.

In the theoretical description of the LPT, two strands of
research can be pointed out. On the one hand, atomistic
mechanisms of LPTs have been revealed by computer sim-
ulations and density-functional-theory-like calculations for
several solids, such as iron [32–34], silicon [5,35,36], tantalum
[37], zirconium [38], UO2 [39], molybdenum [8], and Nitinol
[40].

On the other hand, an analytical theory has been developed
within a mechanical approach based on the assumption that
the LPT zone only differs from the rest of the solid by
(i) its elastic constants and (ii) spontaneous strain. Here we
only cite a few such papers [41–47]. The transformation
toughness mechanisms established up to now are static [48,49]
or quasistatic and velocity independent [50]. In addition, they
essentially require the presence of a metastable state. That
is, they only work inside the two-phase region of the phase
diagram, while vanishing outside.

In the present paper we develop an approach that differs
from the above two. We address the stress-induced structural
phase transformation related to the condensation of the
optical phonons at the tip of a propagating crack described
by the order parameters ηi = ηi(r,t), subject to a specific
equation of motion (the time-dependent Ginzburg-Landau
equation), which determines their spatial distribution and
dynamics. In other words, we study a transformational PZ
of the second class, representing a phase localized at the
crack tip and differing from the phase in the bulk of the
solid.

Nabutovsky and Shapiro pioneered such an approach by
describing an LPT generated by a dislocation [51]. This
enabled revealing the effect of the local transition on the
behavior of a dislocation and on the plastic properties of solids
[52], describing the local phase formation at a propagating
dislocation [53], as well as at wide [54] and narrow [55]

domain walls and twin boundaries. The general properties
of such a local phase formation have been described in
Ref. [56].

The transformational PZ at the tip of a motionless crack
within this approach has been analytically described in
Refs. [56–58] and numerically addressed in Refs. [59] and
[60].

A propagating crack with a transformational PZ at its tip
has been recently studied in our papers [58,61,62]. We have
described the formation of a transformational PZ at the tip of
a propagating crack in the case of a second order [58,61] and
a first order LPT [62]. We have demonstrated that the zone
vanishes at high crack speeds [58]. We have further shown
that the dynamics of the PZ order parameter strongly affects
the motion of the crack, giving rise to a stick-slip instability
during wedging [61] and limiting the terminal crack velocity
[62].

Within linear elastic fracture mechanics, the classical
uniform rectilinear crack propagation is described by Freund’s
equation [1]. In contrast, the description of the dynamics of
a crack with a process zone at its tip requires an essential
modification, taking into account the energy dissipation by the
zone.

In the present paper we derive such an equation and describe
a concerted motion of the crack with a transformational PZ.
We show that the transformational PZ considerably alters the
crack dynamics. We introduce a characteristic plane in terms
of the temperature and the crack driving force and show that
each specific regime of crack propagation defines a trajectory
within this plane. We further determine the plane region where
the process zone exists and explicitly find its boundary. For
the first time, we show that the energy dissipation within
the transformational PZ gives rise to the discontinuities in
the V = V (G) dependence as soon as the crack evolution
trajectory crosses the boundary of the domain of existence of a
PZ. We separate three possible regimes of crack propagation,
differing in the number and positions of such V = V (G)
discontinuities.

In this paper we only focus on the second-order phase
transition within the PZ. This enables us to perform a rigorous
analytical analysis based on bifurcation theory and valid in the
vicinity of the bifurcation boundary. This analysis is further
supported by finite-element simulations valid also far from the
bifurcation boundary. The first-order PZs will be addressed
elsewhere.

This paper is organized as follows. In Sec. II we derive
a general expression for the viscouslike friction force engen-
dered by the internal dynamics within the propagating zone.
We put forward a system of equations of motion describing the
concerted propagation of the crack-PZ complex. For the con-
venience of the reader, a detailed description of the bifurcation
is published separately [58] in a freely downloadable form. It
contains a description of the internal dynamics of the PZ, as
well as detailed discussions. In Sec. III we briefly summarize
its results. In Sec. IV we derive the equation of motion of the
crack and discuss the regimes of crack propagation following
from its analysis. The latter is carried out in Appendix A.
Section V describes our simulations, yielding a numerical
solution of the concerted motion of the crack-PZ complex.
A discussion and numerical estimates are given in Sec. VI.

063001-2



CRACK VELOCITY JUMPS ENGENDERED BY A . . . PHYSICAL REVIEW E 93, 063001 (2016)

Section VII summarizes our results. Appendix B contains
technical details of our simulations.

II. FREE-ENERGY DISSIPATION RATE AND
DISSIPATION-GENERATED CONFIGURATIONAL FORCE

In this section we derive a fundamental expression relating
the viscous force resisting the crack propagation to the
dissipation function of a system depending on the internal
degrees of freedom exhibiting a dissipative dynamics.

Let us consider a solid with several internal degrees of
freedom, such as optical and acoustic phonons, magnons,
etc., n of them, ηi (i = 1,2, . . . ,n), forming a macroscopic
condensate. In its most general form, the free energy of this
system can be written as

F =
∫

�(ηi,∇ηi)d�, (1)

where ηi are referred to as the “order parameters,” ∇ηi are their
gradients, and � is the volume of the domain occupied by the
system. The positively defined function, � = �(ηi,∇ηi), is
the mean-field free-energy density.

The kinetics of this system is controlled by the dissipative
function, D [18]:

D = 1

2

n∑
i=1

∫
κi

(
∂ηi

∂t

)2

d�, (2)

where κi > 0 are the kinetic coefficients of the corresponding
degrees of freedom and t is the time. It is assumed here that
both (1) and (2) are written in terms of normal coordinates
of the solid, which is always possible [18]. For this reason,
the quadratic form (2) contains no offdiagonal terms. Let us
note that generally the parameters κi are unequal to each other,
unless this is required by symmetry.

The rate of the free-energy dissipation, ∂F/∂t , is related to
the dissipation function, D:

∂F

∂t
= −2D (3)

the relation (3) being exact [18].
Let us consider a PZ propagating together with the crack

tip with the velocity V along the x axis. In a standard
linear-viscous case one finds: ∂F/∂t = kV 2, where k is a
constant. One can then represent as ∂F/∂t = −f V . Then
the factor f = kV is a linear viscous friction force. In
general, ∂F/∂t may be a complex function of the velocity.
Representing ∂F/∂t = −f (V )V one interprets the function
f (V ) as a nonlinear viscous friction force. One concludes that
the friction force applied to the crack tip has the form:

f = 2D

V
. (4)

In the comoving frame, x ′ = x − V t ; y ′ = y, ηi(x,y,t) =
ηi(x ′,y ′) the dissipation function (2) takes the form:

D = V 2

2

n∑
i=1

∫
κi

[
∂ηi(r′)

∂x ′

]2

d�, (5)

where r′ = (x ′,y ′) is the radius vector in the moving frame.
Let us introduce the friction force (per unit crack length, Lz,

in the Oz direction): �	 = f/Lz. Making use of the general
relation (4), one finds the configurational friction force exerted
on the crack tip:

�	 = V

n∑
i=1

∫
κi

(
∂ηi(r′)

∂x ′

)2

d2r, (6)

where the integration runs over the (x,y) plane.
The origin of this force can be made evident by the

following arguments. Let us consider a point M lying far
away in front of the tip but close to its trajectory. At this
point the order parameters initially have values close to zero
[ηi(rM) ≈ 0]. As soon as the crack tip approaches this point,
the order parameters increase, reach their maximum values
(ηi(rM) �= 0), and vanish again after the tip has passed. The
order parameters thus evolve over time, which is followed
by a certain energy dissipation. It is this energy dissipation
that gives rise to the friction force. It is worth noting that the
configurational friction force (6) is nonlinear in the velocity,
the nonlinearity being hidden in the dependence of the order
parameters ηi on V .

One concludes that in order to calculate the friction force (6)
one only needs to know the distribution, η = η(r′), of the order
parameter in the vicinity of the crack tip. This distribution can
be obtained by solving the equation of motion for the order
parameter discussed in the next section.

A. Equation of motion for a crack-transformational
process zone complex

Within the scope of linear elastic fracture mechanics, steady
crack propagation is described by the inertialess equation put
forward by Freund [1]:

(1 − V/VR)G = 	, (7)

where V is the crack speed; VR is the Rayleigh velocity;

G = K2
I (1 − σ 2)

E
; 	 = K2

IC(1 − σ 2)

E
(8)

are the driving force and its threshold value; and KI , KIC , E,
and σ are the stress intensity factor, the fracture toughness,
Young’s modulus, and Poisson’s ratio. Equation (7) predicts
that the crack velocity

V = VR(1 − 	/G) (9)

increases monotonically from zero to VR when the driving
force increases from 	 to infinity [1]. Within the Freund
approach, the terminal crack velocity, VT (at G → ∞), is,
thus, equal to VR .

The Freund’s equation (7) disregards the contribution of the
internal dynamics of the PZ to the crack motion. To take this
into account, the friction force, �	, (A5) should be added to
the right-hand side of Freund’s equation (7):

(1 − V/VR)G = 	 + �	. (10)

III. PROCESS ZONE DYNAMICS

A. Equation of motion for the order parameter

Detailed derivation of the equation describing concerted
zone-crack propagation is lengthy. It can be found in Ref. [58].
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Here we only cite its key points. PZ dynamics is described by
a system of equations

κ
∂η

∂t
= g�η − [α + 2Aεii(r)]η − β0η

3,

∂σik/∂xk = 0, (11)

where � is the Laplace operator; α depends on the temperature
T as α = a(T − Tc), where a > 0 is a constant and Tc is the
Curie temperature; and A is the so-called striction constant
describing the interaction between the order parameter, η, and
the elastic degrees of freedom. In general, it may have either
sign. Further, g > 0 and β0 > 0 are constants, and σik is the
stress tensor:

σik = Eν

(1 − 2σ )(1 + σ )
εjj δik + E

1 + σ
εik + Aη2δik, (12)

εik is the strain describing both the contribution of the crack
and that of the order parameter distribution, and δik is the
Kronecker symbol. The last term, Aη2δik , in (12) describes
the spontaneous stress generated by the phase transition. For
simplicity we omitted the inertial term in the second Eq. (11),
which is valid if V 	 c, where c is the speed of sound.

Eliminating elastic degrees of freedom one comes to a
single time-dependent Ginzburg-Landau equation,

κ
∂η

∂t
= g�η − [

α + 2Aε
(0)
ii (r)

]
η − βη3, (13)

where the parameter β is expressed in terms of β0 as follows:

β = β0

{
1 − 2A2

Eβ0

(1 − 2σ )(1 + σ )

1 − σ

}
(14)

and ε
(0)
ik (r) is the strain field at the “undressed” (that is, η = 0)

crack tip:

ε
(0)
ii (r) = (1 + σ )(1 − 2σ )KI

E(2πr)1/2
cos(θ/2) (15)

given by the the well-known elastic fracture mechanics
expression [63]. Here r and ϕ are the polar coordinates
centered at the crack tip and σ is the Poisson ratio. Let us
note that Eqs. (13) and (15) account both for the elastic field
of the crack as well as for that of the order parameter. Details
on the derivation of Eq. (13) may be found in our paper [58].

Let us mention that far from the crack tip (ε(0)
ii ≈ 0) in

equilibrium and at high temperatures (α > 0) one finds the
solid in the bulk phase η = 0, also referred to as the “mother
phase,” while at T < Tc (corresponding to α � 0), the bulk
“daughter phase,” η = ±(−α/β)1/2, takes place, as should be
expected from the theory of bulk phase transitions [18].

B. The automodel regime

Assuming that the crack tip propagates with velocity V

along the Ox axis, and passing to the comoving frame, x ′ =
x − V t , y ′ = y, one obtains the configurational force:

�	(V ) = κV

∫ (
∂η

∂x ′

)2

d2r ′. (16)

Equation (13) together with (16) and (10) yields the system of
equations:

g�η + κV
∂η

∂x ′ −
[
α ± B

cos(θ )√
r ′

]
η − βη3 = 0,

(1 − V/VR)G = 	 + κV

∫ (
∂η

∂x ′

)2

d2r ′, (17)

where

B = 4|A|(1 − 2σ )(1 + σ )√
2πE

KI > 0 (18)

and one chooses the plus sign if A > 0 and otherwise the minus
sign. Further, r ′ = (x ′2 + y ′2)

1/2
, and the Laplace operator

is defined as � = ∂2/x ′2 + ∂2/y ′2. Since we only use the
comoving frame, from here onward the primes are omitted.

Let us assume α > 0 and describe the transformational PZ
as a local daughter phase η(r) �= 0 embedded into the matrix of
the bulk mother phase η = 0, localized at the crack tip, (x,y) =
0 and vanishing away from it. This is referred to as the “dressed
crack tip.” The boundary condition takes the form η(∞) = 0,
corresponding to no daughter phase away from the tip.

Equation (17) represents a closed system of equations
with unknowns V and η(r) describing the concerted, steady
propagation of the crack and the process zone. We give its
solution in the following section.

C. The propagating process zone

Let us consider the first equation, Eq. (17), regarding
the velocity, V , as a parameter. It is nonlinear and exhibits
a bifurcation. The full solution of the bifurcation problem
is reported in our paper [58]. For the convenience of the
reader, we below provide the results of Ref. [58] necessary for
understanding our further arguments. For the sake of brevity,
we only focus here on the case of a daughter PZ embedded in
the matrix of the bulk mother phase.

At large values of α, (17) has the trivial solution η = 0. The
bifurcation point, α = α∗ = a(T∗ − Tc), has the form

α∗ = 22/3

π2/3g1/3

[ |A|(1 − 2σ )(1 + σ )

E

]4/3

× K
4/3
I − κ2V 2

4g
.

(19)
The LPT takes place at α < α∗, while at α > α∗ the crack
tip is undressed. Since at α < 0 the whole bulk of the solid
transforms into the phase η �= 0, the LPT domain is restricted
to 0 < α � α∗, where the solution of (17) takes the form [64]

η(r) = ξ�∗(r), (20)

where

�∗(r)=exp

[
− V

3
√

4V∗

r

R
cos(θ )− r

3
√

4R
+ 3

√
4

√
r

R
cos(θ/2)

]
(21)

defines the form of the order parameter distribution and the
amplitude ξ has the form

ξ =
{

0, α > α∗

±(
I2
I4

)1/2( α∗−α
β

)1/2
, α � α∗,

(22)
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FIG. 1. The spatial distribution of the order parameter, η(x,y), in
the vicinity of a motionless (a) and a propagating (b) crack. Two red
lines indicate the crack tip position.

The notations used in (21) and (22) are as follows:

V∗ = 24/3g1/3

π1/3κ

[ |A|(1 − 2σ )(1 + σ )

E

]2/3

K
2/3
I , (23)

R =
(

g

B

)2/3

= π1/3

2

[
gE

|A|KI(1 − 2σ )(1 + σ )

]2/3

, (24)

while the factors In (n = 2, 4) are the integrals over the whole
(x,y) plane:

In(V ) =
∫

�n
∗ (ρ,V/V∗)d2ρ, (25)

depending on the crack velocity, V , and ρ is the dimensionless
radius-vector: ρ = r/R.

The derivation of the solution (19)–(25) was explained and
discussed in Ref. [58].

The solution (20), (22), and (21) is asymptotically exact
[64]. The spatial distribution of the order parameter (20) is
shown in Fig. 1. Here Fig. 1(a) displays the order parameter in
the vicinity of the motionless crack tip, V = 0, while Fig. 1(b)
demonstrates the case of a propagating crack. The image
Fig. 1(b) was obtained at V = 0.5V∗.

D. Equation of the crack motion

The above results enable us to explicitly obtain the friction
force (6) exerted on the crack tip. After the substitution of (20)
into the second equation, Eq. (17), and integration, one derives
the equation of the crack motion:

(1 − V/VR)G = 	 +
{

0, α > α∗
κV [α∗(V ) − α]S(V )/β, α � α∗,

(26)

FIG. 2. Results of the numerical evaluation of the dependence
of the combination of integrals (27) on the dimensionless velocity
V/V∗ .

where S = S(V ) is a dimensionless parameter depending on
the crack velocity:

S(V ) = I2(V )

I4(V )

∫ {
∂�∗(r,V )

∂x

}2

d2r. (27)

For V �= 0, the integrals (27) cannot be calculated analytically.
Figure 2 shows the result of numerical evaluation of S(V ) by
using the standard NIntegrate routine of MATHEMATICA 10,
where we employed the even-odd subdivision method with a
local adaptive strategy [65].

The nonlinearity of (26) manifests itself (i) in the nonlinear
dependencies of α∗(V ) (19) and S(V ) (27), as well as (ii) in
its piecewise-smooth character. The nonlinearity gives rise to
a bifurcation of its solution. A detailed, rather cumbersome,
analysis of this equation can be found in Appendix A. Its
results are presented in the next section.

IV. DYNAMICS OF A CRACK WITH THE
TRANSFORMATIONAL PROCESS ZONE

A. Dimensionless parameters

Let us first introduce parameters αc and Vc as

αc = 22/3

π2/3g1/3

[
A(1 − 2σ )(1 + σ )

E

]4/3

K
4/3
IC , (28)

Vc = 24/3g1/3

π1/3κ

[ |A|(1 − 2σ )(1 + σ )

E

]2/3

K
2/3
IC . (29)

In contrast to α∗ and V∗ (19) and (23), depending on the
stress intensity factor, KI , these parameters only depend upon
material constants: g, A, E, σ , κ , and KIC . Using (28) and
(29) our results are most conveniently formulated in terms of
dimensionless variables. Let us introduce

τc = α/αc ≡ (T − Tc)/[T∗(KIC) − Tc] (30)

defining the actual position on the phase diagram. At T = Tc

one finds τc = 0, while T = T∗(KIC) yields τc = 1. Further,
rather than the driving force, G, we will use the dimensionless
parameter

γ = 1 − 	/G, (31)
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referred to as the “inverse driving force ” in the following. It
is equal to zero when G = 	 (that is, when the propagation
starts) and turns into unity as soon as G → ∞. Thus, the crack
propagation takes place at 0 � γ � 1.

The solution also depends on

νc = Vc/VR (32)

defining the ratio of the critical and Rayleigh velocities and
the dimensionless parameter:

k = κVR

β	
αcνc, (33)

equal to the ratio of the amplitude of the viscouslike resistance
force to 	. It controls the effect of the PZ dynamics on the
crack motion.

B. Characteristic plane

It is convenient to discuss regimes of cracks propagation in
terms of the characteristic plane (γ,τc) representing the crack
dynamics, with only the domain τc > 0 and 0 � γ � 1 being
of importance. A point within this plane completely determines
the crack motion, since γ defines the force driving the crack,
while τc fixes the position of the solid at the phase diagram.

The crack velocity V depends on the inverse driving force,
γ , Eq. (31), where γ = 0 at the left side of the characteristic
plane corresponds to V = 0, while γ = 1 at its right side to the
terminal velocity. Therefore, any crack propagation scenario
maps onto a trajectory on the characteristic plane, referred to
as the “crack evolution trajectory.”

Below we only consider the simplest horizontal type of the
trajectory. More complex ones are outside the scope of this
paper.

C. Dynamics of the dressed crack

The characteristic plane is divided into two regions. In
region I, no PZ at the crack tip takes place: the tip is
“undressed.” In region II the tip is “dressed,” that is, a PZ
is present. They are separated by the boundary:

τc = 1

(1 − γ )2/3
−

(
γ

νc

)2

. (34)

An analysis of the equation of crack motion (Appendix A)
reveals three possible scenarios of the crack-PZ propagation.

The first of them takes place, if at KI = KIC the tempera-
ture, T , exceeds T∗ = T∗(KIC) [Fig. 3(a)].

Let us denote by γ0 the point where the crack evolution
trajectory crosses the line (34) shown in Fig. 3(a). The crack
tip is undressed while γ < γ0. Correspondingly, the crack
propagation is described by the solution (9) of the Freund
equation (7). At the point γ = γ0, the LPT zone emerges at
the crack tip, giving rise to a configurational friction force. At
γ > γ0, the crack velocity exhibits a considerable decrease,
followed by its further growth [Fig. 3(b)].

Figure 4(a) shows another scenario. Here the whole crack
evolution trajectory lies within domain II, that is, the crack is
always dressed. This gives rise to the solution which is all of
non-Freund type and lies below the velocity corresponding to
Freund’s solution (9).

FIG. 3. The characteristic plane (a) and the corresponding de-
pendence of the crack dimensionless velocity, V/VR , on the inverse
driving force, γ (a). The diagram has been obtained with νc = 0.7
and k = 0.3. The characteristic plane (a) is separated into parts I and
II. Within the latter the crack tip is dressed. The red arrow shows the
position of the crack evolution trajectory. (b) The V/VR dependence
on γ corresponding to the crack evolution trajectory shown in
panel (a). “F” indicates the part of the velocity with Freund’s solution
(9) while “nF” points out the one with the non-Freund solution
described by Eq. (A11). The horizontal dashed line indicates the
level of the Rayleigh velocity.

The scenarios shown in Figs. 3 and 4 always take place if
the line of the boundary between regions I and II exhibits a
monotonic growth.

In the case of nonmonotonic boundary behavior, one
finds a third possible scenario, shown in Fig. 5(a). Let us
consider a crack evolution trajectory starting from region
II corresponding to the initially dressed crack. Its propa-
gation obeys Eq. (26) and the speed is smaller than that
predicted by Freund’s solution (9). After it crosses the
boundary

τc ≈ 1

(1 − γ )2/3
− 0.94

(
γ

νc

)2

(35)

at the point γ01, the PZ vanishes and the undressed crack
propagates with the velocity (9). One observes, therefore, a
dramatic increase of the crack speed.

Under a further increase of the inverse driving force, the
trajectory again enters the region II by crossing the line (34)
at γ = γ02. From this point onward, the crack tip is dressed,
its motion obeying (26). That is, at this point, the velocity
decreases. This gives rise to the V = V (γ ) dependence with
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FIG. 4. The characteristic plane (a) is separated into parts without
(I) and with the transformation zone at the crack tip (II). The red arrow
shows the position of the crack evolution trajectory, which is in this
case completely within domain II. (b) The V/VR dependence on γ

corresponding to the crack evolution trajectory shown in panel (a). In
this case it is all of the non-Freund type. The horizontal dashed line
indicates the level of the Rayleigh velocity. The diagram has been
obtained with νc = 0.7 and k = 0.16.

one Freund segment at γ01 < γ < γ02 and two sections of
the non-Freund type at 0 � γ � γ01 and γ02 < γ < 1. Note
that due to the second-order nature of the LPT in the
vicinity of the boundaries γ01 and γ02 the crack dresses
or undresses gradually. Therefore, close to these points the
velocity variation is continuous, although it may be rather
steep.

The described scenario requires that both lines (34) and
(35) exhibit a nonmonotonic behavior, which takes place at
νc � 0.7.

It should be mentioned that there is a fourth possible regime
of the crack propagation. It can be realized if the starting point
of the crack evolution trajectory is slightly above the point
τc = 1 but below the point of the maximum of the boundary
between the regions I and II in Fig. 5(a). In this case the
motionless crack is undressed, and it then dresses itself at a
low speed and undresses again at a slightly higher speed. As
in the previously described regimes the crack dresses again
at a high velocity. This corresponds to the places where the
crack evolution trajectory enters and then leaves region II in
Fig. 5(a). The intervals of τc and νc at which this regime may
exist are quite narrow, so this scenario can hardly be easily
observed.

FIG. 5. (a) Characteristic plane with a nonmonotonic dependence
of the boundary between regions I and II on the inverse driving
force, γ . The crack evolution trajectory crosses the boundary between
domains I and II twice. (b) The V/VR dependence on γ corresponding
to the crack evolution trajectory shown in panel (a). The diagram has
been obtained with νc = 0.5 and k = 0.4.

V. SIMULATIONS

A. Rescaling

The analytic solution obtained above is asymptotically
exact. It is, however, only valid sufficiently close to the
bifurcation point [64]. For this reason, away from this point
we studied the problem numerically solving the system (17)
by the finite-element method.

For this purpose, the system (17) has been first rescaled
to make the variables dimensionless. This can be done by the
replacement: x → d1x1, y → d1y1, and η(x,y) → d2u(x1,y1)
with d1 = g/κVR and d2 = κVR/

√
gβ. The rescaled equations

(17) take the form

�1u + V

VR

× ∂u

∂x1
−

[
q1 − ν

3/2
c√

2(1 − γ )
× cos(ϕ/2)√

r1

]
u−u3

= 0,

V

VR

= γ

1 + q2(1 − γ )
∫ (

∂u
∂x1

)2
dx1dy1

, (36)

where �1 = ∂2/∂x2
1 + ∂2/∂y2

1 , r1 = (x2
1 + y2

1 )1/2 and the con-
trol dimensionless parameters q1 and q2 are expressed as
follows:

q1 = τcν
2
c

4
; q2 = (κVR)3

gβ	
.
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FIG. 6. Dimensionless crack velocity, V/VR , dependent on the
inverse driving force, γ = 1 − 	/G obtained by simulations. Dots
show the simulation results, while the solid line (a) is drawn to guide
the eye. The dashed line (b) shows Freund’s solution V/VR = γ . All
the images were obtained with νc = 0.31 and q2 = 0.9. Panel (a) is
obtained with τc = 1.9, (b) with τc = 1.01 and (c) with τc = 0.5.

Technical details of our simulations are given in Appendix B,
while their results are presented in the next section.

B. Results

The simulation results for νc = 0.31 and q2 = 0.9 are
summarized in the image. Figure 6(a) has been obtained with
τc = 1.9. It corresponds to the crack evolution trajectory being
almost entirely within the domain I, and only entering domain
II at a high value γ = γ0 ≈ 0.85 (cf. Fig. 3). At γ � γ0

the results coincide with the analytical solution V/VR = γ ,
exhibiting the Freund behavior. At γ > γ0 the solution is of
the non-Freund type.

Figure 6(b), obtained at τc = 0.5, shows the situation when
the crack evolution trajectory lies entirely within the domain II,
the crack tip being always dressed (cf. Fig. 4). In this case, the
solution V/VR(γ ) is everywhere of the non-Freund type. The

numerical process converges poorly for γ close to unity. For
this reason, we disregarded a few points in the close vicinity
of γ = 1.

Figure 5(c) shows the case of a nonmonotonic I-II boundary.
The solutions are of the non-Freund type at γ < γ01, and γ >

γ02, while Freund’s solution takes place at γ01 < γ < γ02. In
the simulated case, we obtained γ01 ≈ 0.52 and γ02 ≈ 0.85.

Figure 7 shows the distributions of the rescaled order
parameter, u = u(x1,y1), as a function of the dimensionless
coordinates x1 and y1. All four images have been taken from the
simulation with νc = 0.31, q2 = 0.9, and τc = 1.01 reported
in Fig. 6(c).

Figure 7(a) exhibits the case γ = 0 corresponding to a
motionless crack, Fig. 7(b) shows the case γ = 0.5 which is a
bit smaller, but close to γ01, at which the velocity, V/VR ,
exhibits an upward jump [Fig. 6(c)]. The order parameter
distribution after the jump (at γ = 0.52) is displayed in
Fig. 7(c). In this case, the height of the distribution is negligible
and not visible within the scale of the image. We were only
able to indicate it by an inhomogeneous color distribution.
Finally, Fig. 7(d) demonstrates the order parameter right after
the second jump (at γ � γ02 ≈ 0.85).

Note that the distributions Figs. 7(b)–7(d) are stretched
in the backward direction with respect to the distribution
Fig. 7(a). This corresponds to our analytical predictions. On
the other hand, the distributions Fig. 7 considerably differ
from those displayed in Fig. 1 showing our analytic solution
(21). This is since the analytic solution obtained within the
branching theory is only valid in the vicinity of the bifurcation
point. The latter is represented by the line separating the
domains I and II in Figs. 3a, 4a, and 5(a). At a finite distance
from this line, the solution obtained within the theory of
branching yields a poor approximation.

VI. DISCUSSION

A. Results

We described the effect of the internal process zone
dynamics on the steady crack propagation related to the
dissipation following crystal lattice dynamic reconstruction.
The corresponding force is viscous and nonlinear. The latter is
due to the always-retarding reaction of the internal degree of
freedom, the order parameter, on the crack motion. We argue
that it gives rise to a non-Freund type of crack motion. In
particular, we predict a regime in which increasing the driving
force gives rise to an abrupt, jumplike variation of the crack
velocity.

1. Observed cases of nonclassical crack motion

Discontinuities in the V = V (G) dependence have been
observed in silicon [4,5] and limestone [6]. In the former case
simulations, indeed, show that the crack speed discontinuity is
accompanied by the formation of a local clathrate phase [5],
which is stable under a tensile stress [66], while experiments
[67] suggest that local dynamic amorphization might also play
a role in this phenomenon. Also, in the limestone case, one
can point to a phase transition, presumably responsible for the
speed jump [62]. In both materials the transitions behind the

063001-8



CRACK VELOCITY JUMPS ENGENDERED BY A . . . PHYSICAL REVIEW E 93, 063001 (2016)

FIG. 7. The order parameter distrubution u = u(x1,y1) obtained by our simulations with τc = 1.01, νc = 0.31, and q2 = 0.9 (that is, for
the case shown in Fig. 6(b). Panel (a) corresponds to the motionless crack, γ = 0, (b) to the case γ = 0.5 (before the first transition), (c) to
γ = 0.52 (after the first transition), and (d) to γ = 0.85 (after the second transition).

velocity jumps are first-order ones, while here we only focused
on the second-order LPTs.

2. Limitations of the theory and conditions of its application

With respect to the strain field, ε, the order parameters, η,
are divided by the solid symmetry into two unequal classes
with respect to the structure of the lowest-order invariant
built on their combination: (i) the ones admitting a bilinear
invariant (∼εη) in the solid free energy and (ii) those the
lowest order invariant is linear-squared (∼εη2). Note that the
order parameter is often a multicomponent one.

The former case is restricted to the order parameters
transforming as components of the tensors of the even rank
under the action of the solid symmetry group, the order
parameter equation containing the free term ∼ε. This case
refers to the so-called proper ferroelastics, the materials for
which the strain plays the role of the primary order parameter
[68]. Pseudo-elastic nitinol represents the example of this case
[69], as well as some other martensite-austenite transitions.
This class of materials is out of the scope of the present theory.

The present theory applies to materials admitting the free-
energy invariant ∼εη2 giving rise to the contribution ∼ηε

into the order parameter equation (11), where η represents the
primary, while ε is the secondary order parameter. The latter
class lacks the symmetry limitations of the ferroelastics and,
therefore, is much more numerous. From a theoretical point of
view, however, its description is more simple.

We described the nonlinear, viscous friction force acting
on the crack tip using the simplest-possible model assuming
a purely dilatant transformation, cf. the term ηεii in Eq. (11)
and a one-component order parameter. Its simplicity serves to
reveal physical mechanisms behind the velocity jumps phe-

nomenon. Accounting for the nondeviatoric terms is simple,
but cumbersome, while accounting for the multicomponet η

character is straightforward, but it is only reasonable to focus
on for the description of a specific material.

3. Second-order LPT versus the first-order one

Crack tip dynamics affected by a first-order LPT has been
briefly addressed in our recent publication [62] and will
be considered in detail in a forthcoming paper. Being very
complex, the description of the dynamics of the first-order
transition is based on some additional assumptions that are not
always satisfactorily justified. Therefore, the cases admitting a
rigorous mathematical treatment are of paramount importance,
providing such justifications and offering new insights. We
focused here on the second-order LPTs motivated by the fact
that since it is continuous, bifurcation theory techniques can be
applied [62], enabling us to obtain rigorous analytical results
at least in the vicinity of the bifurcation point. Our simulations
lend this additional support. They together represent a basis
on which a more complex first-order LPT dynamics [62] is
grounded.

The above results are, however, not only important for
theoretical reasons. Indeed, many transitions in nature are
of the second order or of the so-called first order close to
the second [70]. In the latter case they can be treated in a
very similar way [71,72] and the most important results of the
present analysis apply directly.

4. Where the local phase transition takes place

We relate the LPT to the phase diagram in the coordinates
(T ,p), where p is the hydrostatic pressure. We have shown
that LPT depends on the actual phase diagram position of the
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solid (typically fixed by p = 0 and the temperature, T ) with
respect to the phase transition line, Tc = Tc(p). We predict that
the LPT at the crack tip can only take place on one side of the
phase transition line determined by the sign of the striction
constant A. The latter is directly related to the slope of the
transition line, dTc/dp. If dTc/dp > 0, then the LPT only
takes place below the transition line, while it is above the
transition line for dTc/dp < 0 [58,62]. For the sake of brevity,
in this paper we only presented the calculations for the latter
case. All the results, however, apply also to the former case,
up to numeric factors.

5. Regimes of concerted crack-zone propagation

We, further, predict four regimes of crack propagation.
The first regime takes place if the actual solid position in

the phase diagram is far from the phase transition line, and the
motionless crack exhibits no transformational PZ. In this case
the zone only emerges at a high crack speed. At smaller speeds
the propagation is described by the classical Freund law (9)
and only exhibits nonclassical behavior after the zone shows
up. It should be mentioned that in practice this may take place
at a crack speed difficult to access experimentally.

The second regime occurs if the actual state is below the
transition line in the phase diagram. Then the LPT exists for a
motionless as well as for a propagating crack. In this case, the
crack propagation is everywhere of a non-Freund type.

If the actual state is below the phase transition line (as in
the latter case), but the line of the phase transition in the plane
(γ,τc) is nonmonotonic, then a flickering behavior takes place,
which is the third regime. The transformation zone already
exists at the tip of the motionless crack and persists unless
the crack speed exceeds a certain value. Then it vanishes to
reappear once more at a high velocity.

The zone’s vanishing and emergence taking place within the
first and the third scenarios are accompanied by an alteration
of the motion regime. This takes place in a jumplike way
in the case of a first-order phase transition but continuously
in the second-order case. The latter continuous change is,
however, rather abrupt, looking pretty much like jumps in
our simulations. It is this regime that presumably takes place
during the dynamic fracture of silicon and limestone [4–6].

A fourth regime is also possible, in which no zone exists
at the motionless tip but emerges at a small crack speed, and
again disappears at a larger one and finally reappears at a high
speed. This regime, however, is only possible within a narrow
temperature interval.

B. Effect of the zone on the crack motion

To show a noticeable experimental effect, the two following
conditions should be fulfilled.

1. Region of the zone’s existence

First, the LPT phenomenon should take place in a wide-
enough part of the phase diagram. Here we briefly recite the
results of this phase diagram analysis discussed in details in
our papers [58,62].

The absolute value of �T∗ = T∗ − Tc depends on the
striction constant, A (related to the slope of the phase

transition). The latter can have any value and sign. One
observes, however, that the transition line slope exhibits a
typical order of magnitude: dTc/dp ∼ 1 to 10 K / kbar [70].
Combined with other typical parameters of solids entering
the result (19) one finds that the typical value of �T∗ is from
∼100 to ∼1000 K [58,62]. Taking into account that the melting
temperature of solids typically falls in this same interval, one
concludes that the region of existence of the transformational
PZ covers a considerable part of the phase diagram or even the
whole phase diagram on one side of the corresponding phase
transition line [58,62]. From these estimates for the typical
values of �T∗, one concludes that the transformational PZ
should be expected in a wide part of the solid phase diagram.

We did not find papers reporting a transformation PZ and
�T∗ values for materials exhibiting a second-order local phase
transition. It should be noted, however, that the estimates
for �T∗ given above are valid not only for second-order
transitions [58] but also for the first-order ones, as shown in
Ref. [62]. For this reason, below we point out several materials
exhibiting first-order local phase transformations for which
such information is available.

It should be mentioned that the width �T∗ ≈ 300 K of
the region of existence of the transformational PZ has been,
indeed, observed during the glass transition at the tip of a
propagating crack in NiTi [73]. Other papers have not revealed
the whole region of existence. Some of them, however, report
an observation of an LPT at a considerable “distance” from
the bulk phase transition: over 200 K in Ni-Al [74].

The width (∼100 to ∼1000 K) of the phase diagram region
of the LPT existence considerably exceeds the typical width
(∼1 to ∼10 K) of the hysteresis zone [70]. One concludes
that in most cases LPTs should be expected outside of the
hysteresis. This, however, implies that the zone only emerges
when the crack is loaded and vanishes upon unloading, making
it difficult to be detected.

2. Quantitative estimate of the zone effect

Second, let us see how strong the PZ impact is. This can be
quantified by estimating the ratio between the jump of the crack
velocity and the Rayleigh speed. Making use of the expressions
(10), one can define the difference, �V , between the velocity
of the dressed and undressed cracks as �V/VR = κη2V/G.
To make numerical estimates, let us define its value at G = 2	

and V = VR/2, quantifying the PZ intensity:

�V/VR ∼ κη2VRE

4K2
IC

. (37)

We only address here second-order phase transitions. It is a
common opinion that the effect of the second-order transition
is small, since it is always proportional to ηm with m > 0.
This is, however, only true in the close vicinity of the PT
or bifurcation point, where η is small. Upon its emerging,
the order parameter rapidly increases, achieving its saturation
in about 10 to 100 K. Since it is matched or even exceeds by
�T∗, one concludes that it is the saturated η value that typically
enters (37).
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In ferroelectrics the saturated order parameter value may be
estimated in terms of the elementary charge, e, and the crystal
lattice parameter, b, as η ∼ e/b2. Assuming e = 4.8 × 10−10

CGSE, b ∼ 1 nm, VR ∼ 105 cm / s, E ∼ 1012 erg cm−3, and
KIC ∼ 108 erg cm−5/2 typical for inorganic solids one finds
that at κ � 10−9 s the intensity �V/VR � 0.1.

The kinetic factor κ can take the value of κ ∼ 10−7 s
as in the case of AgNa(NO2)2, κ ∼ 10−11 s as in KNO3 or
NaNO2, κ ∼ 10−12 s as in the Rochelle Salt, triglycine sulfate,
and KD2PO4 down to κ ∼ 10−13 s as in BaTiO3, PbTiO3,
Pb(Tix,Zi1−x)O3, and SrTiO3 [21].

One concludes that in the case of order-disorder transitions
with κ � 10−9 s the effect of the LPT on the crack tip dynamics
is strong. The crack velocity discontinuity taking place within
the scenario shown in Fig. 5 in such cases is considerable.

One should, further, keep in mind that most of the inorganic
solids exhibit several phase transitions, some of them at low
and others at high temperatures. One concludes that the crack
tip PZ may be expected to contain several, rather than a
single phase. In such a case, both phases will contribute to
the friction force �	, enhancing the zone effect. Indeed, two
PZ phases, an amorphous and a martensite one, have been
detected as coexisting at the tip of a propagating crack in
NiTi [75].

VII. SUMMARY

To summarize, we present the dynamics of a transforma-
tional process zone at the tip of a steadily propagating crack.
We derived a viscouslike configurational force exerted on
the tip and resisting the motion of the crack. Its origin is
due to the energy dissipation in the course of the evolution
of the internal degrees of freedom responsible for the local
phase transition. This enabled us to include into Freund’s
equation of crack propagation a component taking into account
the transformational process zone. By solving this equation
together with the one describing the order parameter dynamics,
we predicted the region in the phase diagram in which the zone
exists, as well as three regimes of crack propagation, depending
on the actual position of the solid in the phase diagram. The first
of them takes place if the solid is outside the zone existence
region. In this case, the crack tip is undressed up to very
high values of the driving force, which are hardly accessible
experimentally. The crack exhibits here the dynamics predicted
by Freund’s equation. The second regime corresponds to the
solid always staying within the region of the zone existence.
In this case, the zone is always present, and the crack behavior
considerably deviates from the predictions of linear elasticity
fracture mechanics. In the third regime the solid leaves and
enters the region of the zone existence. In this case the
crack motion changes its character between the Freund and
non-Freund types, exhibiting jumps during the transitions
between them.
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APPENDIX A: ANALYSIS OF THE EQUATION
OF MOTION

1. Concise form of the equation of motion

The equation of motion has the most concise form admitting
analysis if one writes it down in terms of the dimensionless
parameters

τ = α/α∗ ≡ (T − Tc)/(T∗ − Tc), (A1)

ν = V∗/VR, (A2)

and the dimensionless velocity

ω = V/V∗. (A3)

These parameters differ from the ones already introduced
above [(30) and (32)] since they depend on KI rather than
on its threshold value KIC .

For later use, let us list the relations among the KI -
dependent parameters ω (A3), ν (32), and τ (A1) and the
KIC-dependent ones νc and τc:

τ = τc(1 − γ )2/3; ν = νc

(1 − γ )1/3
; ω = V

VR

(1 − γ )1/3

νc

.

(A4)
In terms of ω and τ the configurational force �	 can be

rewritten in the following form:

�	 = κVc

αc

β

{
J (ω,τ ), 1 − ω2 − τ > 0

0 1 − ω2 − τ � 0
, (A5)

where the dimensionless function J has the form:

J (ω,τ ) = ω(1 − ω2 − τ )S(ω). (A6)

The integral expression S = S(ω) (27) has been evaluated
numerically. Using the FindFit routine of MATHEMATICA [65],
the function J (ω,τ ) has been further fitted to the following
polynomial:

J (ω,τ ) ≈ c1ω − c3ω
3 (A7)

with

c1 ≈ 4.85 − 5.57τ + 0.73τ 2; c3 ≈ 4.49 − 0.36τ. (A8)

The numerical results along with the fitting are shown in Fig. 8.

FIG. 8. The function J obtained by the numerical integration
(points) and its fitting by Eq. (A7) (solid lines).
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The function J (ω,τ ) exhibits a nonlinear dependence on the
dimensionless velocity ω as shown in Fig. 8. At a small crack
velocity, ω, one finds �	 ∼ ω, that is, the configurational
resistance force behaves as a viscous friction force. At high
velocities, however, �	 dramatically changes its behavior. In
particular, as soon as the velocity achieves a value at which the
order parameter η vanishes, the PZ disappears and the friction
force becomes zero.

In terms of the KI -dependent parameters ω, k (33), ν, and
τ equation of the crack motion can be written in the simple
form

γ − ω × ν = kω ×
{
c1 − c3ω

2, 1 − ω2 − τ > 0

0, 1 − ω2 − τ � 0
. (A9)

This is a nonlinear, piecewise smooth equation describing
steady crack propagation. Its solution yields the dimensionless
velocity, ω, of the joint crack-PZ propagation. A detailed
analysis of this equation is in the next section.

2. Analytical approach

For 1 − ω2 − τ < 0, the equation of motion (A9) is linear,
with the solution ω = γ /ν yielding

V/VR = γ, (A10)

which is equivalent to the solution (9) of Freund’s
equation (7).

In the opposite case, 1 − ω2 − τ > 0, (A9) is a cubic
equation. Among its three solutions we are looking for a
positive one, approaching zero as γ → 0. This behavior is
only exhibited by the solution

ω = (i
√

3 − 1)(kc1 + ν)

22/3Q
− (1 + i

√
3)Q

6 × 21/3kc3
(A11)

with Q={3kc3[81γ 2c2
3k

2−12kc3(kc1−ν)3]
1/2−27γ c2

3k
2}1/3

.
Here c1,3 = c1,3(τ ) are given by (A8). Though expressed in
terms of complex numbers, it is not difficult to see that the
solution (A11) is real.

The PZ emerges or disappears as soon as τ = τ∗ holds,
where τ∗ obeys the equation:

1 − ω2 − τ∗ = 0, (A12)

provided ω is one of the solutions (A10) or (A11) of the
equation of motion (A9).

a. Dressing condition

If the crack is initially undressed, then the equation defining
the line in the characteristic plane on which the PZ emerges is
obtained by substituting the “undressed” solution ω = γ /ν

into (A12), yielding τ∗ = 1 − (γ /ν)2 for the equation of
emergence line (34).

b. The undressing condition

If the speed of the initially dressed crack is increased, then
the transition to the undressed state takes place already at
τ < 1 − (γ /ν)2.

Figure 9 shows the graphical solution of the equation of
motion (A9), the right-hand part of it being indicated by (a). A
few positions of the left-hand part, corresponding to different

FIG. 9. Graphical solution of the equation of motion (A9). Line
(a) shows the piecewise smooth right-hand side of the equation of
motion: c1ω − c3ω

3 for 1 − ω2 − τ < 0 and 0 in the opposite case.
Lines (b), (c), and (d) show the left-hand side of the equation of motion
for different γ . Dots indicate the solution actually taking place. The
case of an initially dressed crack corresponds to γ increasing from
zero. For small γ one finds a single point of intersection of the
lines (a) and (b) corresponding to the non-Freund solution. Line
(c) corresponds to the transition from the non-Freund to the Freund
solution at the intersection of line (c) with the abscissa. For larger γ ,
shown by line (d), of the three possible solutions of (A9), only the
one lying on the abscissa takes place.

γ , are shown by the straight lines (b), (c), and (d). We analyze
the case with an initially dressed crack starting from γ = 0,
followed by its gradual increase. In the position shown by (b)
(A9) has a single solution (shown by a dot). It is the nonlinear
solution (A11) of the cubic equation (A9) corresponding to
the dressed crack.

As soon as γ increases in such a way that the corresponding
line takes the position (c), the second solution emerges, while
for the position (d) one finds three solutions. Two of them are
the solutions of the cubic equation, while the third is the one
given by Eq. (A10). It corresponds to an undressed crack.

In the situation with several solutions, one needs a criterion
with which to choose, which one takes place. We here use the
following criterion: the solution that survives must correspond
to the smallest resistance for the crack propagation. According
to this criterion, one concludes that for both (c) and (d) the
surviving solution is (A10). Therefore, the transition from the
dressed to the undressed state takes place under the conditions
corresponding to the parameters indicated by (c) in Fig. 9.

Let us now find the condition controlling this bifurcation.
The surviving solution satisfies both γ − ων = 0 and c1(τ ) −
c3(τ )ω2 = 0 [(c) in Fig. 9] yielding γ = ν[c1(τ )/c3(τ )]1/2.
The latter represents the equation for the undressing line.
One observes that the function [c1(τ )/c3(τ )]1/2 can be very
accurately approximated by the expression 1.034(1 − τ )1/2,
as shown in Fig. 10.

Passing now to the KIC-dependent coordinates with (A4),
one finds the undressing condition (35).
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FIG. 10. Approximation of [c1(τ )/c3(τ )]1/2 (dots) by 1.034(1 −
τ )1/2 (solid line).

APPENDIX B: SIMULATIONS, THE TECHNICAL DETAILS

We used the software COMSOL 4B for the simulations. The
equations have been simulated in the half-plane y � 0. A
semielliptic domain has been defined by trial and error, such
that the solution vanishes well before the domain boundaries.
The no-flux boundary condition has been set at the boundary
y = 0 and the Dirichlet condition u = 0 at the rest of its
boundary. A straightforward simulation of the static equation
(36) with such boundary conditions, however, only returns the
trivial solution.

To avoid this we introduced a pseudodynamic equation:

∂u

∂tps
= �u + V

VR

∂u

∂x
−

[
q1 − ν

3/2
c√

2(1 − γ )

cos(ϕ)√
r

]
u − u3

(B1)

instead of the first equation (36). Here tps is the pseudotime.
A stable solution of the static equation (36) represents a fixed
point of the dynamic one. As the initial condition, we used
a smoothed step function, only differing from zero in some
vicinity of the point (0,0). The integral equation has been
defined using the Model Coupling option of COMSOL.

FIG. 11. The illustration of the convergence of the calculations
with the pseudotime. It shows the dependence of the amplitude,
umax, of the dimensionless order parameter, u, on the pseudotime
for different q1 values. Filled diamonds: q1 = 0.3; empty diamonds:
0.32; filled squares: 0.34; filled hexagons: 0.36; up-triangles: 0.38;
down-triangles: 0.39; empty squares: 0.41. Note that in the case of
q1 = 0.39 (down-triangles) the umax(t) dependence still exhibits a
slope and for satisfactory convergence, a longer process was used
(not shown).

The dynamic system has been solved using the direct
MUMPS solver with BDF time stepping. The convergence
of the solution to its fixed point has been controlled by the
behavior of the umax, the maximum value of the function
u(x,y). By trials we found that 700 pseudotime steps ensure a
good convergence, though sometimes it has been necessary to
bring the process up to 3000 steps. Figure 11 shows an example
of such a convergence study for a number of simulations
in which all parameters except q1 were fixed, while q1 was
varied.

One can see that, far from the bifurcation point, convergence
takes place well before 700 pseudotime steps are done. As
can be expected, the situation differs close to the bifurca-
tion (q1 = 0.38 and 0.39 corresponding to up-triangles and
down-triangles in Fig. 11). Even here, 700 pseudotime steps
guarantee a rather reliable convergence.
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