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Recent analyses of wetting in the semi-infinite two-dimensional Ising model, extended to include both a surface
coupling enhancement and a surface field, have shown that the wetting transition may be effectively first-order
and that surprisingly the surface susceptibility develops a divergence described by an anomalous exponent with
value γ eff

11 = 3
2 . We reproduce these results using an interfacial Hamiltonian model making a connection with

previous studies of two-dimensional wetting, and we show that they follow from the simple crossover scaling
of the singular contribution to the surface free-energy, which describes the change from apparent first-order to
continuous (critical) wetting due to interfacial tunneling. The crossover scaling functions are calculated explicitly
within both the strong-fluctuation and intermediate-fluctuation regimes, and they determine uniquely and more
generally the value of γ eff

11 , which is nonuniversal for the latter regime. The location and the rounding of a line of
pseudo-prewetting transitions occurring above the wetting temperature and off bulk coexistence, together with
the crossover scaling of the parallel correlation length, are also discussed in detail.

DOI: 10.1103/PhysRevE.93.062802

I. INTRODUCTION

Abraham’s exact solution of the semi-infinite planar Ising
model showed a wetting transition that was continuous and
strictly second-order, i.e., the surface specific-heat exponent
takes the value αs = 0 [1]. Subsequent studies based on
interfacial Hamiltonian models and also random-walk argu-
ments gave strong support that this is the general result for
two-dimensional (2D) wetting in systems with short-ranged
forces, and it describes a universality class, referred to
as the strong-fluctuation (SFL) regime [2–4]. In particular,
renormalization-group analyses of interfacial models show
that for systems with strictly short-ranged forces, the flow
is described by only two nontrivial fixed points describing a
bound phase (characterizing the SFL regime) and an unbound
phase, respectively [5,6]. While first-order wetting transitions
are possible in two dimensions, they require the presence of
sufficiently long-ranged intermolecular forces [7–9]. However,
very recently exact and numerical studies of the wetting
transition in the Ising model, but now including an additional
short-ranged field representing the enhancement of the surface
coupling constant, have shown that the wetting transition is
effectively first-order when the coupling constant is large [10].
This enhancement of the surface coupling, which acts in
addition to a surface field, is similar to the well-known
mechanism that drives wetting transitions first-order in mean-
field treatments of Ising and lattice-gas models [11]. What
is most surprising here is that it was observed that upon
approaching the wetting temperature, the surface susceptibility
and specific heat appear to diverge and are characterized
by an anomalous exponent equal to 3/2 before saturating
to a very large finite value. In this paper, we place these
results within the more general theory of 2D wetting based
on interfacial Hamiltonians, and we show that they are
consistent with a simple scaling theory for the crossover from

apparent first-order to critical wetting within both the SFL
and intermediate fluctuation scaling regimes—these are the
regimes in which the interface has to tunnel through a potential
barrier in order to unbind from the wall. We also discuss the
location and rounding of a line of pseudo-prewetting transi-
tions occurring above the wetting temperature, which serves
to emphasize the effective first-order nature of the wetting
transition.

II. SCALING AND FLUCTUATION REGIMES FOR 2D
CRITICAL WETTING

Background: The fluctuation theory of wetting transitions,
particularly those occurring in 2D systems, was successfully
developed several decades ago; see, for example, the excellent
and comprehensive review articles in Refs. [2–4]. Wetting
transitions refer to the change from partial wetting (finite
contact angle) to complete wetting (zero contact angle),
which occurs at a wetting temperature Tw. Viewed in the
grand-canonical ensemble, the wetting transition, occurring,
say, at a wall-gas interface, is associated with the change
from microscopic to macroscopic adsorption of liquid as
T → T −

w at bulk coexistence. The transition is therefore
equivalent to the unbinding of the liquid-gas interface, whose
thermal fluctuations are resisted by the surface tension σ .
The transition may be first-order or continuous (often termed
critical wetting), as identified from the vanishing of the
singular contribution to the wall-gas surface tension σsing ≡
σ (cos θ − 1) ∝ −(Tw − T )2−αs . Thus in standard Ehrenfest
classification, the value αs = 1 corresponds to first-order
wetting and is usually associated with the abrupt divergence
of the equilibrium adsorption (proportional to the wetting
film thickness 〈�〉) as T → T −

w . In three dimensions, the
transition is also associated with a prewetting line of thin-thick
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transitions extending above Tw and off coexistence, which
terminates at a prewetting critical point. For critical wetting the
exponent αs < 1, and we need to introduce additional critical
exponents for the film thickness, 〈�〉 ∝ (Tw − T )−βs , and
parallel correlation length, ξ‖ ∝ (Tw − T )−ν‖ , which diverge
continuously upon approaching the transition. In the near
vicinity of the transition, the free-energy shows scaling σsing =
t2−αs W (ht−
s ), where t ∝ (Tw − T ) and h (measuring the
bulk ordering field or deviation from liquid-gas coexistence)
are the two relevant scaling fields for critical wetting. Here
W (x) is a scaling function, 
s is the surface gap exponent, and
we have suppressed metric factors for the moment. As is well
known, the scaling of the free energy is a powerful constraint
on the critical singularities. For example, it follows that the ex-
ponents satisfy standard relations such as the Rushbrooke-like
equality 2 − αs = 2ν‖ − 2βs . With the additional assumption
of hyperscaling, which in two dimensions implies 2 − αs = ν‖,
the gap exponent follows as 
s = 3ν‖/2 leaving just one
exponent undetermined. Random-walk arguments go further,
and for short-ranged forces they determine uniquely the values
of the critical singularities at critical wetting in terms of the
interfacial wandering exponent for a free interface [2]. For pure
systems with thermal disorder, this determines αs = 0, βs = 1,
and ν‖ = 2 (and hence 
s = 3) in keeping with Abraham’s
exact Ising model results. More recently, studies of fluid
adsorption in other geometries, in particular wedge filling,
have revealed a number of unexpected geometry-invariant
properties of wetting [12] whose microscopic origins have
been illuminated by very powerful field theoretic formulations
of phase separation [13]. Finally, we note that scaling theories
pertinent to first-order wetting transitions have also been
developed and used in particular to analyze the critical
singularities associated with the line tension [14,15]. We shall
return to this later.

These remarks are completely supported by analyses
of wetting based on interfacial Hamiltonians, which have
been used extensively and very successfully to determine
the specific values of the critical exponents and their more
general dependence on the range of the intermolecular forces
present [16]. In two dimensions, the energy cost of an
interfacial configuration can be described by the mesoscopic
continuum model

H [�] =
∫

dx

[
�

2

(
dl

dx

)2

+ V (�)

]
, (1)

where �(x) is a collective coordinate representing the local
height of the liquid-gas interface above the wall. Here � is the
stiffness coefficient, equivalent to the tension σ for isotropic
fluid interfaces, while V (�) is the binding potential, which
models the direct interaction of the interface with the wall
arising from intermolecular forces. The binding potential V (�)
can be thought of as describing the underlying bare or mean-
field wetting transition that would occur if the stiffness were
infinite and interfacial fluctuation effects are suppressed. To
account for fluctuations, it is necessary to evaluate the partition
function for the model (1). In two dimensions, the scaling
properties of the interfacial roughness are insensitive to the
choice of microscopic cutoff, which is reflected by a universal
(not depending on microscopic details) relation between the
roughness and the parallel correlation length. With an “infinite

momentum” cutoff, the evaluation of the partition function Z

is then particularly straightforward since it is equivalent to a
path integral, and we can immediately write [17,18]

Z(�,�′; L) =
∑

n

ψ∗
n (�)ψn(�′)e−βEnL, (2)

where β = 1/kBT , L is the lateral extent of the systems,
while �,�′ are the end-point interfacial heights. Here ψn and
En are the eigenfunctions and eigenvalues of the continuum
transfer matrix, which takes the form of the Schrödinger-like
equation [19]

− 1

2β2�
ψ ′′

n (�) + V (�)ψn(�) = Enψn(�). (3)

In the thermodynamic limit (L → ∞) of an infinitely long
wall, the ground state identifies the singular contribution to
the wall-gas surface tension σsing = E0, and the probability
distribution for the interface position follows as P (�) =
|ψ0(�)|2. Similarly, the parallel correlation length describing
the decay of the height-height correlation function along the
wall is determined within the transfer-matrix formulation as
ξ‖ = kBT /(E1 − E0).

The analysis of 2D wetting transitions using this transfer-
matrix approach has already been done in a great deal of
detail by Kroll and Lipowsky [19]. Suppose the bare wetting
transition is continuous as described by the binding potential
V (�) = a�−p + b�−q + h�, where q > p and the coefficient
a is considered negative at low temperatures. Provided that
b > 0, the condition a = 0 (and h = 0) represents the mean-
field critical wetting phase boundary [20]. Solution of the
Schrödinger equation shows that the critical wetting transition
falls into several fluctuation regimes with the SFL regime,
representative of short-ranged wetting holding for p > 2. For
p < 2, we need only note that the transition still occurs at the
mean-field phase boundary a = 0, although critical exponents
are nonclassical if q > 2. However, in the SFL regime the
wetting temperature is lowered below its mean-field value
since the interface is able to tunnel away from the potential
well in V (�) even though a < 0. Calculation shows that the
singular part to the free-energy exhibits the anticipated scaling
behavior [2–4]

σsing = t2W (h|t |−3) (4)

identifying the universal values of the critical exponents
αs = 0 and 
s = 3, as quoted above. Implicit here is the
fact that the scaling function W (x) is different below and
above the wetting temperature, and we have replaced t with
|t | in the argument for convenience. The scaling of the free
energy determines that the film thickness 〈�〉 ∝ ∂σsing

∂h
and

correlation length ξ 2
‖ ∝ ∂2σsing

∂h2 must diverge as 〈�〉 ∝ t−1 and
ξ‖ ∝ t−2 as T → T −

w at bulk coexistence. These also follow
from direct calculation. Indeed, the interfacial model (1)
goes further and recovers precisely the scaling properties
of energy density and magnetization correlation functions
known from the exact solution of the Ising model [21,22].
Above the wetting temperature that the scaling of σsing also
identifies, the correct singular behavior σsing ∝ h2−αco

s , where
αco

s = 4/3 determines the singular contribution to the wall-gas
surface tension at the complete wetting transition occurring
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as h → 0 [23,24]. Finally, we mention that the case of
binding potentials that decay as an inverse square (i.e., p = 2),
referred to as the intermediate-fluctuation (IFL) regime, is
marginal and the critical behavior subdivides into three further
categories [9].

In a related article, Zia, Lipowsky, and Kroll [7] also
discussed what happens if the binding potential V (�) has a form
pertaining to a mean-field first-order wetting transition. Sup-
pose that, at bulk coexistence, the potential has a long-ranged
repulsive tail V (�) = a�−p (with a > 0), which competes with
a short-ranged attraction close to the wall. They showed that
if p > 2, the transition is continuous and belongs to the SFL
regime universality class of short-ranged critical wetting. In
this regime, fluctuation effects always cause the interface to
tunnel through the potential barrier in V (�) when T is suffi-
ciently close to Tw. For p < 2, the transition is first-order (αs =
1) and the adsorption diverges discontinuously at the wetting
temperature. The latter follows from (3) since at Tw there
is a zero-energy bound-state wave function that determines
that the probability distribution decays (ignoring unimportant
constant factors) as P (�) ∝ exp(−�1− p

2 ). Explicit results for
p = 1 confirm this for a restricted solid-on-solid model [8].
The case p = 2 is marginal but displays first-order wetting
with αs = 1 for a > 3/8β2� corresponding to subregime C
of the IFL regime [9]. In this case, a zero-energy bound-state
wave function also exists at Tw and determines that the

probability distribution decays as P (�) ∝ �1−
√

1+8β2�a . This
algebraic decay means, rather unusually, that not all moments
of the distribution exist at Tw [9]. Thus, for example, for
1/β2� > a > 3/8β2� the adsorption diverges continuously
as T → Tw even though the transition is strictly first-order. For
3/8β2� > a > −1/β2�, the wetting transition is continuous
with nonuniversal exponents (subregime B); we shall return
to this shortly. Note that the parallel correlation length for all
2D first-order wetting transitions also diverges continuously
with a universal power law ξ‖ ∼ t−1 independent of p. This is
equivalent to the statement of hyperscaling, which also holds
in the SFL regime, since near Tw the next wave function
above the ground state lies at the bottom of the scattering
spectrum (E1 = 0) and hence σsing = −kBT /ξ‖. This scenario
is subtly different from first-order wetting in three dimensions
where ξ‖, as defined through the decay of the height-height
correlation function, remains finite as T → T −

w . However, a
continuously diverging parallel correlation length, very similar
to that occurring in two dimensions, can still be identified
for 3D first-order wetting by considering the three-phase
region near a liquid droplet or alternatively by approaching
the wetting temperature Tw from above along the prewetting
line [14,15].

III. APPARENT FIRST-ORDER BEHAVIOR IN THE SFL
AND IFL REGIMES

One issue that has not been addressed concerns the size
of the asymptotic critical region in either the SFL regime or
subregime B of the IFL regime when the interface has to tunnel
through the potential barrier in V (�). Let us consider the SFL
regime first. For systems with short-ranged forces and in zero
bulk field, h = 0, this can be modeled by the very simple

potential

V (�) = −U�(R − �) + cδ(� − R) (5)

together with the usual hard-wall repulsion for � < 0. Here
�(x) is the Heaviside step function. With c  1 this potential
models the competition between short-ranged attraction (of
depth U > 0) and large but also short-ranged repulsion similar
to that arising in the Ising model studies, where the surface
enhancement term competes with a surface field. We empha-
size that precisely the same crossover scaling described below
emerges if we use a square-shoulder repulsion in place of the δ

function. This choice of local binding potential is the simplest
one that incorporates a short-ranged attraction and a repulsive
potential barrier. It therefore has the same qualitative features
as binding potentials describing first-order wetting constructed
from more microscopic continuum models [20]. Here the
coefficient c is regarded simply as an adjustable parameter in
order to tune the size of the critical region, but, more generally,
it will increase exponentially with the size and width of the
potential barrier. Without loss of generality, we work in units
where R = 1 and also set 2β2� = 1 for simplicity. Rather
than vary the temperature, we equivalently decrease the depth
of the attractive short-ranged contribution until the interface
unbinds from the wall. Elementary solution of the Schrödinger
equation for the potential (4) determines that the ground-state
wave function behaves as ψ0(�) ∝ sin(

√
U + E0�) for � < R

and ψ0(�) ∝ e−√|E0|� for � > R. The δ-function contribution
to the potential necessitates that ψ ′

0(R−) − ψ ′
0(R+) = cψ0(R)

and continuity of the wave function immediately gives

−
√

−E0 −
√

U + E0 cot
√

U + E0 = c. (6)

Therefore, the wetting transition occurs when U = Uw, where
−√

Uw cot
√

Uw = c. For large c  1, the latter condition
simplifies to Uw ≈ c2π2/(1 + c)2. Writing U ≡ Uw + t , it
follows that if t and c−1 are small, then the equation for the
ground-state energy simplifies to

√
−E0 ≈ c2

2π2
(E0 + t), (7)

and the solution of this quadratic equation determines that the
singular part to the free-energy (recall that σsing = E0) behaves
like

σsing = −tGi

(
1 −

√
1 + t

tGi

)2

. (8)

Here we have introduced a thermal Ginzburg scaling field
tGi = π4/c4, which measures the size of the asymptotic critical
regime [25]. For t/tGi � 1, the free energy vanishes as
σsing ≈ −t2/4tGi consistent with the universal critical behavior
characterizing the SFL regime (αs = 0). However, for t/tGi

 1, which is outside the critical regime, the surface free
energy vanishes as σsing ≈ −t in accord with the expectations
of a first-order phase transition. The expression (8) has a form
consistent with phenomenological theories of crossover scal-
ing σsing = −tAcr(t/tGi) with the scaling function behaving as
Acr(x) → 1 as x → ∞ and Acr(x) ∼ x/4 as x → 0. Similar
crossover scaling has been used for interfacial delocalization
transitions in three dimensions [26]. Two derivatives of σsing

with respect to t determine that the surface specific heat or
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equivalently the surface susceptibility behaves as

χ11 ∝ 1

tGi
(
1 + t

tGi

)3/2 , (9)

which outside the critical regime, t
tGi

 1, shows the same

apparent power law χ11 ∝ t−γ eff
11 with γ eff

11 = 3/2 seen in the
Ising model studies [10].

The present analysis can be generalized by considering
tunneling through a potential barrier in the IFL regime. This
can be modeled by simply adding a long-ranged term a�−2

for � > R to the potential V (�) shown in (5). Recall that
for a > 3/4 the wetting transition is first-order while for
3/4 > a > −1/4 (and recall we have set 2β2� = 1) it is
continuous. This subregime B is characterized by strongly
nonuniversal critical exponents with, for example, 2 − αs =
2/

√
1 + 4a from which all other exponents follow using

hyperscaling, etc. [9]. Setting a = 0 recovers the results for
the SFL regime described above. For completion, we note
that for a < −1/4 the interface is bound to the wall with
the condition a = −1/4 defining a line of wetting transition
(subregime A of the IFL regime [9]). These wetting transitions,
which display essential singularities, are no longer induced by
variation of the short-ranged field U , and crossover scaling
cannot be considered. Within subregime B, the presence
of the δ-function repulsion at � = R does not affect the
asymptotic critical singularities, but once again it significantly
reduces the size of the asymptotic regime. In this case, the
wetting transition occurs when −√

Uw cot
√

Uw = c − 1
2 (1 −√

1 + 4a), and writing U = Uw + t , it is straightforward to
show that for small t and small c−1 the ground-state energy
E0 satisfies an equation similar to (7) but with the left-hand
side replaced with −E0 raised to the power (

√
1 + 4a)/2.

In this way, we can see that the crossover from first-order
behavior σsing ≈ −t occurring for t/tGi  1 to the asymptotic
criticality σsing = −tGi(t/tGi)2−αs , with αs < 1, is described
by the implicit equation (up to an unimportant multiplicative
constant)

(
−σsing

tGi

) 1
2−αs = σsing + t

tGi
, (10)

which recovers trivially (8) when we set αs = 0. This now
shows the role played by the exponent αs in determining
the crossover from apparent first order to critical wetting in
two dimensions. In particular for fixed t , and in the limit
tGi → 0, this has the expansion σsing = −t + O(t

1
2−αs ), where

the coefficient of the singular correction term depends on tGi.
With αs = 0 this is the same expansion of the free energy,
σsing = −t + O(

√
t), found in the Ising model calculations in

the strong surface coupling limit; see, in particular, Eqs. (15)
and (17) of [10]. As noted by these authors, it is the presence
of the nonanalytic correction to the pure first-order singularity,
σsing = −t , that determines the apparent divergence of the
surface susceptibility and specific heat. It follows that, more
generally, the value of the exponent γ eff

11 characterizing the
apparent divergence of χ11 satisfies the exponent relation

(
2 − γ eff

11

)
(2 − αs) = 1. (11)

Thus in subregime B of the IFL regime, for t/tGi  1,
the surface susceptibility would have a different apparent
divergence χ11 ∝ t−γ eff

11 with a nonuniversal exponent

γ eff
11 = 2 −

√
1

4
+ 2β2a�, (12)

and we have reinstated the dependence on the stiffness
coefficient � for completion. This recovers the Ising model
result on setting a = 0 corresponding to strictly short-ranged
interactions. Note that as a is increased toward the boundary
with subregime C, the value of γ eff

11 approaches unity. This
means that exactly at the B/C regime border, the apparent
divergence of χ11, occurring for t/tGi  1, is almost indis-
tinguishable from the asymptotic divergence χ11 ∝ 1/t(ln t)2

occurring as t → 0 [9]. While the analysis described here
applies only to systems with thermal interfacial wandering,
the exponent relation (11) is strongly suggestive that the same
anomalous 3/2 power-law divergence would be observed for
apparent first-order wetting even in systems in which the
interfacial unbinding is driven by quenched random-bond
impurities since then the transition is also strictly second-order
(αs = 0) [2,4,27].

Returning to the case of short-ranged forces pertinent to the
SFL regime, we note that the expression (8) also determines the
apparent and asymptotic divergences of the parallel correlation
length. First note that the first excited state is bound to
the wall (E1 < 0) for t > tNT but lies at the bottom of the
scattering spectrum (E1 = 0) for t < tNT. Here tNT is the
location of a nonthermodynamic singularity at which ξ‖ has a
discontinuity in its derivative with respect to t similar to that
reported in [28]. For large c  1, this occurs at tNT ≈ 3π2 far
from the wetting transition and the crossover scaling region.
This means that for t < tNT, the same hyperscaling or rather
hyperuniversal relation ξ‖ = kBT /|σsing| applies equally inside
(t/tGi � 1) and outside (t/tGi  1) the asymptotic critical
regime. Thus implies that the correlation length shows a
crossover between two different power laws: ξ‖ ∝ t−1 valid
for t/tGi  1, characteristic of 2D first-order wetting, to
ξ‖ ∝ tGit

−2 for t/tGi � 1 describing the asymptotic criticality
of the SFL regime (2D second-order wetting).

IV. ROUNDED PREWETTING TRANSITIONS FOR T > Tw

Further insight into the crossover scaling behavior in the
SFL regime can be seen off bulk coexistence by adding a term
h� or h(� − R) to (5). In this case for small t , c−1, and h, the
ground-state energy is determined from the solution of

−h
1
3

Ai′
( − E0h

2
3
)

Ai
( − E0h

2
3
) ≈ c2

2π2
(E0 + t), (13)

which, for t > 0, recovers (7) when h = 0+. Here Ai(x) is
the Airy function, which determines the decay of the wave
function for � > R [23,24]. It follows that the singular part of
the free energy scales as

σsing = tWcr

(
h

|t | 3
2

; t/tGi

)
, (14)

which is the more general result involving a crossover scaling
function of two variables and applies both above and below the
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wetting temperature. In the asymptotic critical regime t/tGi �
1, the scaling function Wcr(x; y) → yW (xy− 3

2 ) so that σsing =
− t2

tGi
W (ht

3
2

Gi/|t |3). This is precisely the same scaling shown
in (4) but now including a dependence on tGi (which determines
the size of the asymptotic critical regime) appearing via metric
factors. It follows that upon approaching the wetting transi-
tion T → T −

w at bulk coexistence, the adsorption ultimately
diverges as 〈�〉 ∝ √

tGit
−1, while for the parallel correlation

length we recover the expression ξ‖ ∝ tGit
−2 quoted above.

These are the standard critical singularities for the SFL regime,
but now they reveal the dependence of the critical amplitudes
on tGi. In particular, the amplitude for the divergence of the
adsorption vanishes as tGi → 0, which is equivalent to the
adsorption jumping from a microscopic to a macroscopic
value. Note that the factors of tGi in σsing, 〈�〉, and ξ‖ are
all consistent with the relation σsing ∝ −Aσ 〈�〉2/ξ 2

‖ , where,
within the SFL regime, A = 8 is a universal critical amplitude
independent of tGi. This is reminiscent of the “bending energy”
contribution to the free-energy in the heuristic scaling theory
wetting transitions [16], and it leads directly to the Rushbrooke
equality 2 − αs = 2ν‖ − 2βs discussed earlier.

The crossover scaling of σsing shown in (14) depends on the
scaling variable h|t |− 3

2 , which is different from that appearing
in (4) characteristic of the SFL regime. However, this power-
law dependence is in complete agreement with the predictions
of the phenomenological scaling theory of first-order wetting
developed by Indekeu and Robledo [14,15]. Indeed, setting
αs = 1 determines ν‖ = 1 (from hyperscaling) and hence

s = 3/2 (from 
s = 3ν‖/2), all of which are consistent
with the behavior found for σsing and ξ‖ for t/tGi  1. Note
also that above the wetting temperature, and for |t |/tGi  1,
we may approximate σsing ≈ tWcr(h|t |− 3

2 ; −∞). The value
3/2 of the crossover (or equivalently the Indekeu-Robledo
first-order) gap exponent now determines that in the limit
h → 0 we recover the correct complete wetting singularity
σsing ∝ h

2
3 , the amplitude of which must not depend on t .

Thus the crossover scaling from (14) provides a consistent link
between previous scaling theories of continuous and first-order
wetting.

More explicitly, above the wetting transition and for
|t |/tGi  1, which is away from the immediate vicinity of
Tw, the approximate solution of (13) can be determined from
a simple expansion of the Airy function around its first zero.
In this way, it follows that the singular part to the free energy
behaves as

σsing ≈ 1

2

(
λh

2
3 + |t | −

√
(λh

2
3 − |t |)2 + 8ht

1
2

Gi

)
, (15)

where here λ ≈ 2.338 is the negative of the first zero of the
Airy function. If we could set tGi = 0, which corresponds of
course to an artificial infinite potential barrier, then σsing =
min(|t |,λh

2
3 ). This determines a line of first-order phase

transition extending away from bulk coexistence located at
|t | = λh

2
3 . For small tGi, these transitions are rounded on a

scale set by h
1
2 t

1
4

Gi. Taking the derivative of σsing with respect to
h determines that 〈�〉 ≈ 0 for |t | < λh

2
3 while 〈�〉 ≈ h− 1

3 for
t > λh

2
3 . The sharp increase in the film thickness, therefore,

corresponds simply to a line of pseudo-prewetting transitions.
This line meets the bulk coexistence axis tangentially, and
the power-law dependence on h is in precise accord with
the standard thermodynamic prediction for its location based
on the Clapeyron equation [20]. Sitting at a given point
along this line, the parallel correlation length scales as
ξ‖ = t−1�̃(t/tGi), which follows from (14) and also direct
calculation of the spectral gap E1 − E0. For |t |/tGi  1,
this reduces to ξ‖ = |t |−1(|t |/tGi)

1
4 , which is very large if tGi

is small. This length scale determines the rounding of the
prewetting phase transition equivalent to the characteristic size
of the domains of the thick and thin prewetting states, which are
in pseudo-phase-coexistence. By moving along the prewetting
line away from the wetting temperature, the length scale ξ‖,
and hence the size of the domains simply decreases, indicating
that the thin-thick transition is eventually smoothed away by
fluctuations, i.e., no prewetting critical point is encountered.
On the other hand, moving toward the wetting transition
while remaining along the pseudo-prewetting line, the parallel
correlation length eventually crosses over to ξ‖ ∝ 1/|t |. This
is not indicative of any pseudo-thin-thick phase coexistence
but rather the usual thermal wandering of the unbinding
interface when Tw is approaching along the thermodynamic
path h ∝ |t | 3

2 . The above remarks are all consistent with the
general theory of the rounding of first-order phase transitions
in pseudo-one-dimensional systems [29].

V. CONCLUSIONS

In this paper, we have shown that recent Ising’s model
studies that show apparent first-order wetting transitions
are consistent with analysis of an interfacial Hamiltonian
model, which also allows us to consider the properties of the
transition in the presence of marginal long-ranged forces and
occurring off bulk coexistence. Our study has revealed that
the singular contribution to the surface free energy shows a
simple crossover scaling due to the tunneling of the interface
through a potential barrier, which generalizes the standard
scaling theory of critical wetting linking it consistently
with scaling predictions for first-order wetting. The form
of the scaling function is explicitly calculated above and
below the wetting transition and illustrates the rounding of
a pseudo-first-order phase transition in this low-dimensional
system. The crossover scaling occurring below Tw, which is
determined within both the SFL and IFL regimes, allows us to
trace the value 3/2 of the anomalous exponent γ eff

11 highlighted
in the Ising model studies directly to the strict second-order
nature of the critical wetting transition, i.e., that αs = 0. It
would be interesting to test the predicted nonuniversality of
γ eff

11 in the IFL by adding a long-ranged external field to the
Ising model, i.e., decaying as the inverse cube from the distance
to the wall. Even for systems with short-ranged forces, our
predictions for the location of a pseudo-prewetting line above
the wetting temperature can also be tested in numerical studies
of the Ising model with a strong surface coupling enhancement
similar to that described in [10]. Finally, we mention that
similar apparent first-order behavior and crossover scaling
should also occur in two dimensions for the interfacial
delocalization transition near defect lines in the bulk if these
too are now modified to include enhanced couplings [4,30].
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Scenarios involving apparent first-order interfacial unbinding
or delocalization in three dimensions are more challenging.
However, similar behavior may occur at wedge-filling transi-
tions where fluctuation effects are enhanced compared to wet-
ting, and interfacial tunneling through a potential barrier can
occur [31,32].
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