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Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces
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We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in
Cassie’s wetting regime, when the surface is covered with identical and periodically distributed micropillars.
Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the
cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations.
The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary
model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is
obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of
pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars
tops in the block case and to the surface fraction for pillar concentrations 0.1–0.5 in the kink case. The contact
angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression
for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)]
in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate
at the meniscus contact line.
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I. INTRODUCTION

The creation of micropillars on solid surface can enhance
the hydrophobicity of the surface and also can decrease the
hysteresis of the contact angle (CA) when the surface is
in contact with liquids [1]. These properties arise when the
contact of the liquid with the solid surface takes place only
at the tops of the pillars. The conditions for the appearance
of this wetting regime, known as Cassie’s, composite, or fakir
state, and its wetting properties are studied intensively for
the case of identical and periodically distributed pillars [2].
However, the dependence of the advancing CA θa (ACA),
the receding CA θr (RCA), as well as their difference,
defined as the CA hysteresis (CAH), on the pillars shape
and size, the intrapillar distance, the orientation of the liquid
front with respect to the pillar structure, etc., are still not
sufficiently well elucidated. The most extensively studied
case is that of periodically distributed pillars of circular and
square cross-sections. Experimental [3–15] and numerical data
[13,14,16–22], in this case, point to certain universality of
the ACA, whose cosine is ≈ −1, while the value of the
RCA depends on the parameters of the rough surface. This
feature of the CAH is known as the asymmetry of the CAH.
Arguments are given [23] that the reason for the asymmetry of
the hysteresis is that the contact lines (CLs), corresponding to
the ACA and the RCA—the advancing contact line La (ACL)
and the receding contact line Lr (RCL), respectively—have
different activation energies. Nevertheless, this approach needs
more elaborate research, since numerical studies for chemical
defects [24,25] find that in some cases of randomly distributed
defects there is no asymmetry of the CAH.

It is not sufficiently clear whether and how the RCA can be
expressed as a function on the parameters of the liquid front
and the structure of the pillars. The Joanny and de Gennes
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model [26], as well as other theoretical studies [27,28], lead to
a linear dependence of the cos θr on the pillars surface fraction
p, i.e., the ratio between the contact area on the tops of the
pillars and the total projected area, while the experimental
data does not uniquely support this finding. Linear dependence
on p is obtained in the interval [0.05,0.15] [28] and also in
the interval [0.05,0.8] [4,9]; however, other experiments show
that for small p ∈ [0.02,0.08] [6] and for big variation of p ∈
[0.05,0.45] [7] and p ∈ [0.05,0.8] [29], a deviation from the
linear dependence is observed. Reyssat and Quéré [7] give an
explanation of the deviation from the linear dependence, using
the approach of Joanny and de Gennes, by taking into account
the influence of the energy, related to the CL corrugation, due
to the CL pining and depinning as a whole (i.e., block case;
see Ref. [14]). They obtained that

cos θr ∼ p ln (1/p), (1)

however, the exact determination of the proportionality coef-
ficient is still pending. In another approach [30], the RCA is
determined through the chemical heterogeneity approximation
of the problem [19], using the modified Cassie equation and
introducing the fraction λl of the pillars material along the CL
length. However, it is not easy to obtain the fraction λl , since
in order to do that, one needs to know a priori the shape of the
CL. In this case, when the three-phase CL is located on one row
of pillars, an approximation of the fraction λl through the line
fraction φ was suggested [10,14,16,31], where φ is defined as
the ratio of the pillar size to the cell size λ along the horizontal
line connecting pillars centers (i.e., φ = a/λ when the pillars
cross-section is a square of size a and φ = d/λ when the pillar
cross-section is a circle of diameter d). For systems, for which
it is assumed that the material of the pillars is homogeneous
and the liquid makes with it a unique equilibrium CA θeq, the
modified Cassie equation for the RCA θr takes the following
form:

cos θr = φ cos θeq + (1 − φ). (2)
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The experimental data [6,10,16,32] show that the RCA is well
fitted by Eq. (2); however, this equation is derived under certain
assumptions for the RCLs, which are not supported completely
by the experimental data and the numerical simulations. For
example, in Refs. [7] (Fig. 4), [29] (Fig. 2), and [31] (Fig. 3)
it is assumed that the RCL is stuck only to the defect borders,
while the experimental data [15,32–34] and the numerical
simulations [19,20] find that the RCL passes also through
the inner part of the defects. Also in Ref. [19], through
numerical simulation the drop RCL was obtained (see Fig. 7(a)
in Ref. [19]), indicating a tendency of the drop to “ball up” in
those areas where it is not in contact with the solid surface,
which does not agree with the assumptions, from which Eq. (2)
follows. All of the above imply that a more precise study and
analysis of this relation is highly needed.

Equation (2) has a limited validity, since the assumptions
made for its derivation are not always fulfilled, since in reality
the CL is not always located on a single row of pillars. When
the CL has parts on several rows of pillars, it is possible a
kink type of CL-receding to occur [10,13,14]. It is shown that
in this case, for pillars of circular [13,14] and of square [10]
cross-section, the RCA is different from the angle predicted
by Eq. (2). A type of Eq. (1) dependence for p ∈ [0.02,0.08]
and linear dependence for p ∈ [0.08,0.24] of the RCA on p

are found experimentally and numerically (by the help of the
public software Surface Evolver [35]) in the case of pillars of
circular cross section [13,14]. On the other hand, a numerical
study of the RCA [16] on a drop’s CL for p = 0.44 in the case
of pillars of square cross section, forming square lattice, using
again the Surface Evolver [35], finds a value in agreement with
Eq. (2); however, one has to bear in mind that in this case the
drop’s CL is not located on a single row of pillars. Therefore, a
more precise study is needed on the influence of the kink-type
CL receding on the value of the RCA for different pillar cross
sections and concentrations p.

The main goal of this work is to obtain numerically the
shapes of the advancing and receding liquid meniscuses in
contact with solid surfaces, covered with identical and peri-
odically distributed micropillars in Cassie’s wetting regime,
when the respective CLs are located on one or several rows of
pillars of circular and square cross-sections. The dependence
of the CAH on the pillar surface concentration p and line
fraction φ will be obtained and analyzed in a broad interval of
these quantities.

II. PROBLEM DESCRIPTION

We study here the capillary rise at a vertical plate in a tank
of liquid (see Fig. 1), used quite often for the determination of
the static CA. The relation between the averaged macroscopic
CA 〈θ〉 and the averaged capillary rise height 〈h〉 of the
liquid meniscus is used for the determination of the CA
[20,24,25,36],

〈θ〉 = arcsin
(
1 − ρg〈h〉2/2γ

)
, (3)

where ρ is the difference of the densities of the liquid in the tank
and the ambient fluid, g is the gravity acceleration (in a study
of capillary rise the effect of gravitation cannot be ignored),
and γ is the surface tension of the liquid free surface �. More
specifically, we focus here on the meniscus-free surface �,

(a)

(b)

FIG. 1. Schematic drawing of (a) the considered model system
and (b) the heterogeneous surface of the plate in Cassie’s wetting
regime.

forming when a vertical hydrophobic microstructured rough
solid plate is partially immersed in a tank of liquid as illustrated
in Fig. 1. The plate surface is covered by micropillars, whose
cross-section is either a square or a circle. We use the
coordinate system, depicted in Fig. 1, where the �y axis is
horizontal and the �z axis is directed upwards. In this coordinate
system, the tops of the pillars lie in the plane {x = 0}. The
pillars form a square lattice with spatial period λ, such that
λ � lc, where lc is the capillary length, defined as usual
as lc = √

γ /ρg. For pillars with square cross-section, it is
assumed as customary, that the sides of the squares are parallel
to the vectors �l1, �l2 (�l1⊥ �l2), characterizing the square lattice.
Note that the liquid front is always perpendicular to the �z axis.

We assume here that the liquid meniscus wets the rough
solid surface in Cassie’s (or composite) regime [1]. In this
case the liquid is in contact only with part of pillars tops,
forming the liquid-solid contact area �ls ⊂ �(1) (the surface
�(1) is composed of all pillars tops). We obtain in this work the
static RCA and ACA in the same way as they are determined
in the experimental measurements in such systems, i.e., by
fixing the vertical position of the defect pattern on the plate
with respect to the liquid level far from the plate, after having
moved the plate upward and downward into the liquid pool
until CL depinning starts to occur.
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Full capillary model (FCM). The metastable meniscus
states are determined through minimization of the free energy
U of the system [37]

U = γ

∫

�

d� − γ

∫

�ls

cos θeq d� + ρg

∫

�

z d�, (4)

where � is the volume of the liquid in the pool.
Heterogeneous approximation model (HAM). In this case

the problem of obtaining solutions in Cassie’s wetting regime
reduces to the special case of finding the equilibrium state
of a liquid meniscus in contact with a vertical chemically
heterogeneous flat plate, consisting of two kinds of domains
�(1) and �(2) of different wettability with sharp borders
between them [19]. The domain �(1) is composed of the
surface of the pillars tops. The air, filling the crevices between
the micropillars, forms the domain �(2), which is characterized
by an equilibrium CA of 180◦. Thus, the equilibrium meniscus
states are determined by finding the minima of the following
expression of the free energy:

U = γ

∫

�

d� − γ

∫

�(1)

cos θeq d�+γ

∫

�(2)

d� + ρg

∫

�

z d�.

(5)
For the points of the CL, which are located on the borders
between the defects, the equilibrium CA has value between
θeq and 180◦ (for details, see Ref. [38]).

We obtain the equilibrium meniscus shapes numerically
in the interval y ∈ [0,ly], where the value of ly and the
periodic boundary conditions depend on the initial shape of the
meniscus and on the relative position of the liquid meniscus
and the pillars lattice. We employ a minimization algorithm to
obtain the metastable equilibrium meniscus. Several previous
studies, involving finding the metastable equilibrium meniscus
states with free energy Eq. (4) or Eq. (5), are obtained also
numerically using similar minimization algorithm. In many
of these, the public domain software Surface Evolver [35],
the Local Variations algorithm [39], and the Hybrid Energy-
Minimization method [40] are used. Most of these studies
concern the equilibrium shape of a drop, and some are devoted
to the Wilhelmy plate geometry; however, most of them
are employing the heterogeneous approximation [9,20,25,41].
Here, we employ the minimization algorithm, described in de-
tail in Refs. [41,42]. Since, as customary, we assume here that
the tank dimensions are much bigger than lc, which allows us to
apply the 3D minimization algorithm only in a part of the coor-
dinate space, close to the CL as in Ref. [25]. Similar to the study
in Ref. [25], we will use the method of matching, sufficiently
away from the plate, the numerical solution for the meniscus
shape with the analytical solution, available for meniscus with
symmetric in y—direction meniscus shape (i.e., the shape for
a liquid meniscus in contact with a homogeneous plate).

III. RESULTS

We present here results for water meniscus, studied
experimentally in Ref. [15] in contact with micropillars,
forming square lattice, where pillars cross-section is a circle
with diameter d = 18 μm and the equilibrium contact angle
of the liquid meniscus with the pillar’s material is θeq =

90◦, 98◦, 110◦. In addition to that, we also study the case when
the pillars cross-section is a square of size a = 18 μm.

A. The CL is located on a single horizontal row of pillars (block
depinning case)

In this case we obtain periodical solutions for the liquid
meniscus in the interval y ∈ [0,λ]. By the help of the numerical
method we obtain the equilibrium receding and advancing
shapes of the liquid meniscus (which are used to determine
the RCA and the ACA) for different values of the pillar
concentration p. We also simulate numerically immersing and
withdrawing plates to find the equilibrium meniscus shapes
with CLs situated between the RCL and the ACL.

The obtained solutions, determining the RCA, are shown
in Fig. 2 in a neighborhood of the CL, for a system with
θeq = 98◦, where the pillars cross-section is circle and the
pillar concentration is p = 0.28 as in Fig. 5 in Ref. [15] and
Fig. 2 in Ref. [34]. In Fig. 2(a) the solution of the full model is
presented and in Fig. 2(b) for comparison the solution of the
heterogeneous approximation model is shown. The shapes of
the two meniscus solutions are identical in a neighborhood of
the CL and are also quite similar to the shape, shown in Ref
[15] (see Fig. 5 there), found for the same values of pillars
diameter d and concentration p, but slightly different values
of CA θeq and surface tension γ . One can see from Fig. 2,
that the RCLs, found in the frameworks of the two models,
pass through the same row of pillars (of the same height) and
therefore one gets the same values of the RCA in both models.
The value of the RCA, obtained through Eq. (3), is 119.2◦,
which is very close to the value found using Eq. (2), 119.08◦.

Our numerical studies of the equilibrium meniscus shapes
and the RCLs for pillar line fractions φ ∈ [0.22,0.95] (or
surface concentrations p ∈ [0.05,0.9] for square and p ∈
[0.04,0.7] for circular pillar cross section) indicate that the
RCA is well approximated by the relation Eq. (2) for both
pillars of circular and square cross sections. Note that one
has φ = √

p, in the case of pillars of square cross section;
φ = 2

√
p/π , in the case of circular pillar cross section; note

also that for p > π/4 the circles overlap and the pattern
topology changes. However, for concentrations p � 0.1, the
heterogeneous approximation model is no longer applicable,
since during the minimization process a self-intersection of the
CL occurs. Within the limits of its applicability the obtained so-
lutions of the RCA are the same as the results of the full model.

The occurrence of self-intersection of the CL is an indica-
tion that for small pillar concentration the receding meniscus
surface is not well approximated by a flat surface in the area
between the pillars, though the mean curvature of the meniscus
is small in the regions between the pillars (more precisely,
the surface curvatures in this area in y and z directions are
big but of opposite signs). This explanation is supported by
the simulation results. We present our results for the meniscus
shape, found by employing the full capillary model, in Fig. 3 in
a neighborhood of the RCL at pillar concentration p = 0.05.
The meniscus shape and, respectively, the CL, are strongly
corrugated at p = 0.05 for the chosen values of the parameters.
Only one period in the horizontal (y direction) is shown so that
the bending of the liquid interface is clearly visible. One can
observe the presence of a noticeable “bridge” in the z direction
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(a)

(b)

FIG. 2. Meniscus solutions, used to determine the RCA, are
shown in a neighborhood of the CL, at pillar concentration p = 0.28
and θeq = 98◦, when the pillars cross-section is a circle: (a) solution
of the full model; (b) solution of the heterogeneous approximation
model.

between the two neighbor posts, due to the significant value of
the curvature in this direction.

This effect persists also at higher pillar concentrations, see,
e.g., the meniscus shape shown in Fig. 2 at p = 0.28; however,
the effect is weaker and is observable only in the close vicinity
of the pillars, where the CL is located. Similar behavior of the
meniscus, before the depinning of the CL from the pillars, is
observed in Refs. [34,43].

We would like to point out here that the equilibrium
meniscus states depend also on the relative position in the
vertical direction of the pillar lattice (or, respectively, of the
plate) with respect to the liquid level far from the plate, which
can be characterized by the height of the centers of the pillar
tops. Due to that, the RCA can be determined also by averaging
of the averaged heights of the RCLs (i.e., the CL of the highest

(a)

(b)

FIG. 3. Meniscus solutions, obtained by employing the full
capillary model, are shown in a neighborhood of the RCL, at pillar
concentration p = 0.05 and θeq = 98◦ when the pillars cross-section
is (a) circle and (b) square.

averaged height at fixed lattice position) over all different
lattice positions [20]. Therefore, one needs to determine the
CLs with the highest averaged heights at different relative
positions of the pillar lattice with respect to the liquid. Our
numerical results show that for concentrations p ∈ [0.05,0.7],
in the case of circular pillar tops, all such RCLs have parts,
which are inner for the pillar tops [as seen in Fig. 2(a)]. In
this case, when the pillar cross-section is square, we find that
the respective RCLs (found at different plate positions) have
different locations on the pillar’s top—see Fig. 4, where several
equilibrium RCLs are presented of the meniscus solutions at
pillar concentration p = 0.25. They are obtained by employing
the heterogeneous approximation model and are presented in
the reference system of the rough plate, where one period of the
lattice is shown. Among these, only the CL, which is adhering
to the vertical side of the square defect (bold line), is stable
with respect to small variations of the lattice vertical position.

Our numerical results show that every horizontal row of
defects, whose centers are at height between the height of
the RCL and −lc

√
2, is in contact with only one metastable

equilibrium state. In the case of pillars with circular cross
section, where the equilibrium CLs located a few periods λ

below the RCL, also have parts that are inner for the pillars
tops, similar to the RCL. The equilibrium CLs of smaller
average heights are in contact only with the upper border of the
circular defects. In the case of pillars of square cross section,
all equilibrium CLs, except for a part of the CL of the highest
averaged height, are in contact with the upper border of the
square. The ACA is determined through the height of the CL,
located closest to the limiting height −lc

√
2. For the ACL one

has

〈h(ACL)〉 − lc
√

2 < λ . (6)
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FIG. 4. Set of RCLs at different vertical positions of the pillar
lattice with respect to the liquid level far from the plate at pillar
concentration p = 0.25 and θeq = 98◦ in the case, when the pillar’s
cross section is a square.

The ACA has a value close to 180◦, and when the period λ is
decreasing it approaches fast 180◦.

For the system under study, there exists a relation between
the averaged CA 〈θ〉 and the averaged CL height 〈h〉, and
there is also a relation between the averaged CL height 〈h〉 and
the vertical component of the capillary force, exerted by the
liquid on the solid plate [20]. When the CL of the equilibrium
liquid meniscus is in contact with only one horizontal row of
pillars, every equilibrium meniscus state with CA 〈θ〉 generates
on the plate a capillary force, smaller than or equal to the
capillary force in the only equilibrium state with CL Ls of
the same system; however, in contact with a heterogeneous
plate, whose surface consists of alternating vertical stripes of
widths a and λ − a (where a = d) with equilibrium CAs θeq

and 180◦, respectively, and line fraction along the y direction
of φ = a/λ and 1 − φ. Thus, one has

〈θ〉 � θC , (7)

where θC is Cassie’s angle for the system in contact with
the heterogeneous plate, whose surface consists of alternating
vertical stripes:

cos θC = φ cos θeq − (1 − φ) . (8)

Thus from Eqs. (7) and (3) it follows that the average height
of the RCL is smaller than or equal to the average height of
the CL Ls . In addition to that, note that when the minimization
algorithm is started with an initial meniscus, whose CL is
a straight horizontal line, passing through the centers of
the circular or square pillars’ tops, during the minimization
process the CL will try naturally to approach the CL Ls . When
the initial CL lies outside the defect, it has the tendency to
move in the direction toward the only equilibrium state of the
homogeneous state with CA 180◦, i.e., its height approaches

the limit −lc
√

2. These two features imply that at every
horizontal row of pillars with center height between Ls and
−lc

√
2 there is one equilibrium CL. Therefore, the RCL for

the considered system is always located either on the row of
pillars, where the CL Ls is positioned, or on the first row
below Ls . When λ � 1, one finds that the RCA ≈ θC . In
the case of pillars with a square cross section, the RCL can
actually coincide with the CL Ls . This is illustrated in Fig. 4,
where the equilibrium CL is presented by the dash-dotted line,
since in this case this CL obviously satisfies the conditions
for equilibrium, when the liquid is in contact with the solid
surface of alternating vertical stripes and where the square is
a part of such stripe and has the appropriate height.

B. Triple line with a kink

We find numerically also the equilibrium shapes of the
liquid meniscus, corresponding to the RCA and the ACA, for
a broad interval of values of the pillars surface concentration
p, when the triple line is located on more than one row of
pillars, so that a kink appears.

1. The CL is located on two horizontal consecutive rows of pillars

We assume here that the meniscus CL is periodic along the
y axis with period ly = 2nλ and along this interval it is in
contact with total of 2n pillars. The first n pillars are located
on one row and the next n pillars are located on the next lower
row of pillars. We note that in the case of pillars of circular
cross section, the pillars’ concentration p < 0.25 and n  1
is studied in detail in Refs. [13,14]. A part of the meniscus
solution of the full model for n = 10 (also exhibiting strong
corrugation) in a neighborhood of the triple line kink that we
obtained is shown in Fig. 5. The solution is obtained at pillars
concentration p = 0.28—the case considered experimentally
in Ref. [34]. One can see that there is a good agreement of the
numerically obtained meniscus shape with the one observed by
scanning electron microscopy, presented in Fig. 2 in Ref. [34].
We find that the value of the RCA does not change when the
CL is located on more than eight consecutive pillars tops on the
same row. Our numerical results indicate that the values of the
RCA and the ACA, found in the frameworks of the full model
and the heterogeneous approximation model, do not differ.
However, the application of heterogeneous approximation
model is restricted to pillar concentrations p > 0.2. In a
neighborhood of the triple line kink, the curvature of the
liquid interface, in the area between the neighboring pillars,
is more pronounced than in the block depinning case. This
can be clearly observed by comparing the meniscus solution
for the RCA, shown in Fig. 6 at p = 0.05, with the meniscus
solution for the RCA in the block depinning case at the same
concentration, displayed in Fig. 4(b).

The effective adhesion, defined as 1 + cos θr (see
Ref. [14]), of the obtained meniscus solutions for θeq = 98◦,
is shown in Fig. 7 (solid circles) as function of the surface
concentration p in the interval [0.05,0.65] for pillars with
circular cross-section. Our numerical results show that the
same dependence also holds for pillars with square cross
section. One can see that the results for the effective adhesion
are fitted in the interval [0.1,0.5] very well by a linear function
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(a)

(b)

FIG. 5. (a) Part of the liquid meniscus in a neighborhood of the
triple line kink at p = 0.28 and θeq = 98◦ in the case of pillars with
circular cross section. (b) Enlarged image of the meniscus in Fig. 5(a)
where the kink occurs.

FIG. 6. Meniscus solution, for the RCA, obtained by employing
the FCM at pillar concentration p = 0.05 and θeq = 98◦, when pillars
cross section is a square.

FIG. 7. The effective adhesion 1 + cos θr of the obtained menis-
cus solutions as function of the pillar surface concentration p for
pillars with circular cross section when the CL has a kink for θeq = 90◦

(triangles), θeq = 98◦ (circles), and θeq = 110◦ (squares): the solid
symbols are the results for the case in Sec. III B 1. (horizontal pillar
lattice); the empty symbols are results for the case considered in
Sec. III B 2. (rotated pillar lattice). The stars are the numerical results
from Ref. [14]. The dashed lines are the respective fits by Eq. (9).

of p:

1 + cos θr = (
1 + cos θeq

)
(0.1 + p), (9)

shown by the dashed line in Fig. 7. For lower concentrations
p < 0.1 and for higher concentrations p > 0.5 the effective
adhesion deviates from the linear dependence and approaches
fast 0 and 1 + cos θeq, respectively. These results are in a good
agreement with the numerical results, found in Ref. [14] for
concentrations p in the interval [0.02, 0.24] and θeq = 90◦
(shown in Fig. 7 by solid stars) in the case of pillars of circular
cross section. Our numerical calculations, performed also for
θeq = 90◦ and θeq = 110◦ (shown in Fig. 7 by solid triangles
and solid squares, respectively) indicate that Eq. (9) (shown
by the dashed lines in Fig. 7) holds in the interval [0.1, 0.5]
for other values of the equilibrium CA.

2. The CL is located on several nonhorizontal rows of pillars

The CL can be located on pillars tops belonging to several
different rows when the pillars lattice vectors �l1, �l2, defining
its orientation, are not parallel to the �y, �z axes. Here, we
demonstrate this for pillars with circular cross section, when
the square lattice of pillars is rotated at angle ϕ around the
origin, such that tan ϕ = 1/m, leading to a defect lattice,
characterized by vectors �l1 = (m,1); �l2 = (−1,m). Then along
the y axis, one has lattice with period ly = λ

√
m2 + 1. By the

help of the numerical algorithm we obtain the receding and the
advancing equilibrium shapes of the liquid meniscus within
the heterogeneous approximation model for two rotations of
the lattice, characterized by m = 2,3 and pillar concentrations
p ∈ [0.15,0.55]. The obtained RCLs at pillar concentration
p = 0.25 and θeq = 98◦ are shown in Fig. 8 for two rotations
of the pillar lattice: m = 2ϕ = tan−1(1/2) (ϕ ≈ 26.6◦) in (a)
and m = 3 ϕ = tan−1(1/3) (ϕ ≈ 18.4◦) in (b).
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(a)

(b)

FIG. 8. CLs of the highest averaged height (RCLs), when p =
0.25 and θeq = 98◦, along the y axis in the case of a rotated with
respect to the liquid level pillar lattice at: (a) ϕ ≈ 26.6◦(m = 2) and
(b) ϕ ≈ 18.4◦ (m = 3).

The obtained results for the RCA when the lattice is rotated
at ϕ = tan−1(1/3) are shown in Fig. 7 for θeq = 90◦, 98◦, 110◦
with open triangles, circles, and squares, respectively. One
can see that at fixed concentration p, the effective adhesion
1 + cos θr has values, which are approximately by 0.03 lower
than its values for the case, considered in Sec. III B 1. We
find that the RCA for the case m = 2 is between the values
of the RCA for m = 3 and of the RCA, when the CL with a
kink is located on two consecutive rows (the case studied in

Sec. III B 1). Based on these results, for pillars with circular
cross section, one can conclude that, when the triple line has a
kink, the RCA depends weakly on the orientation of the pillar
lattice with respect to the liquid level far from the plate. This
conclusion is checked for θeq ∈ [90◦, 110◦]. One finds also that
in this case (i.e., triple line with a kink), the ACA is close to
180◦.

IV. CONCLUSION

The CAH was studied for a liquid in contact with ultrahy-
drophobic pillar surfaces (characterized by θeq ∈ [90◦, 110◦])
in Cassie’s wetting regime. The meniscus shapes were found
both by the full capillary model and by the heterogeneous
approximation model for a broad interval of values of pillar
concentration p for micropillars of both square and circular
shapes of the pillars cross section. One can clearly observe
the curving of the liquid interface in the vicinity of the CL
in the framework of the full capillary model. The limits of
applicability of the heterogeneous approximation model were
determined. It was found that the CLs and, respectively, the
apparent CAs can effectively be determined by both methods
for not very small pillar concentrations; however, for smaller
pillar concentrations, a “bridge” forms in the direction of the
liquid front between two neighboring posts, which can only
be obtained in the framework of the full capillary model. This
clearly indicates that the heterogeneous approximation model
is inapplicable at these concentrations.

Our numerical results show that in both cases, square and
circular cross sections of the pillars, one finds the same values
of the RCA and ACA for a broad interval of pillars surface
concentrations p or line fractions φ, whereas the type of the
concentration (surface p or line φ) one should use in the
description of the results depends on whether the CL has a
kink or not. More precisely, in the case of a CL with a kink
the effective adhesion is a linear function of the pillar surface
concentration p in the interval (0.1 − 0.5). For lower p < 0.1
and higher p > 0.5 concentrations the effective adhesion
deviates from the linear dependence and approaches fast 0 and
1 + coseq, respectively. In the case of CL without a kink (block
case) the effective adhesion is a linear function of the pillar line
fraction φ in the whole interval of considered fractions. The
coefficient of proportionality in both linear functions depends
on the equilibrium CA. In all considered cases the ACA is
always close to 180◦.

For pillars of circular cross section, the RCA depends
weakly on the orientation of the liquid front with respect to the
pillars lattice (i.e., when the CL has a kink), while the case of
pillars of square cross section is more complex.

The performed study and the conclusions drawn contribute
to a better understanding of the mechanism of wetting
of rough solid surfaces and can help the design of new
superhydrophobic surfaces.
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