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Shear-stress fluctuations in self-assembled transient elastic networks
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Focusing on shear-stress fluctuations, we investigate numerically a simple generic model for self-assembled
transient networks formed by repulsive beads reversibly bridged by ideal springs. With �t being the sampling time
and t�(f ) ∼ 1/f the Maxwell relaxation time (set by the spring recombination frequency f ), the dimensionless
parameter �x = �t/t�(f ) is systematically scanned from the liquid limit (�x � 1) to the solid limit (�x � 1)
where the network topology is quenched and an ensemble average over m-independent configurations is required.
Generalizing previous work on permanent networks, it is shown that the shear-stress relaxation modulus G(t)
may be efficiently determined for all �x using the simple-average expression G(t) = μA − h(t) with μA = G(0)
characterizing the canonical-affine shear transformation of the system at t = 0 and h(t) the (rescaled) mean-square
displacement of the instantaneous shear stress as a function of time t . This relation is compared to the standard
expression G(t) = c̃(t) using the (rescaled) shear-stress autocorrelation function c̃(t). Lower bounds for the m

configurations required by both relations are given.
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I. INTRODUCTION

A. Background: Permanent networks

A central rheological property characterizing the linear
shear-stress response in isotropic amorphous solids and
glasses [1–3] and viscoelastic fluids [4–7] is the shear
relaxation modulus G(t) sketched in Fig. 1(a). Experimentally,
G(t) = δτ (t)/δγ may be obtained from the average stress
increment δτ (t) as a function of time t after a small step
strain δγ has been imposed at t = 0. As indicated by the
solid horizontal line in Fig. 1(a), G(t) yields the equilibrium
shear modulus Geq of the system in the long-time limit for
t � t�, with t� being the terminal stress relaxation time [5,7].
Focusing on permanent elastic networks above the percolation
threshold [4,8,9] with a finite shear modulus Geq, as sketched
in Fig. 1(b), it has been shown [10] that G(t) may be
determined conveniently in computer simulations using the
“simple average” expression

G(t) = μA − h(t) (1)

with μA = G(0) being the “affine shear elasticity” characteriz-
ing the canonical-affine shear transformation (Appendix A) of
the system at t = 0 [10–14] and h(t) = βV/2 〈(τ̂ (t) − τ̂ (0))2〉
the (rescaled) mean-square displacement (MSD) of the instan-
taneous shear stress τ̂ (t). Here β = 1/T stands for the inverse
temperature and V for the volume of the simulation box. See
Appendix B for the related definitions of the instantaneous
shear stress τ̂ and the instantaneous affine shear elasticity μ̂A.
Interestingly, the expectation value of Eq. (1) does not depend
on the sampling time �t even if much smaller times than
the terminal time t� are probed [10]. For sufficiently large
systems Eq. (1) can be demonstrated using the simple-average
transformation behavior [15,16] of μA and h(t) between the
NV γT ensemble at constant particle number N , volume V ,
shear strain γ , and temperature T and the conjugated NV τT

ensemble at an imposed average shear stress τ [10].
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Although the equilibrium shear modulus Geq may, in
principal, be determined from the long-time limit of Eq. (1),
most numerical studies [10–14,17–21] use instead the stress-
fluctuation formula Geq = GF with

GF ≡ μA − μF = (μA − μ̃F) + μ� (2)

and μF ≡ βV 〈δτ̂ 2〉 = μ̃F − μ� (3)

standing for the rescaled shear-stress fluctuations. We have
introduced here for later convenience the two terms μ̃F ≡
βV 〈τ̂ 2〉 and μ� ≡ βV 〈τ̂ 〉2. As sketched in Fig. 1(a), μF

corresponds to the (free) energy relaxed by nonaffine dis-
placements after an initial canonical-affine shear strain δγ

is imposed. Note that GF is a special case of the general
stress fluctuation relations for elastic moduli [17,22–24]. As
stressed elsewhere [10–12], being “fluctuations” (not “simple
averages”) [10,15], the expectation values of GF, μF, and μ�

may depend strongly on the sampling time �t (as often marked
below by indicating �t as additional argument) and converge
very slowly to their asymptotic static limit for �t � t�.
This behavior is not due to aging or equilibration problems
but simply caused by the finite time needed for the stress
fluctuations to explore the phase space [11]. Interestingly,
using Eq. (1) and assuming time-translational invariance it
can be shown that GF(�t) and G(t) are related by

GF(�t) = 2

�t2

∫ �t

0
(�t − t) G(t) dt, (4)

i.e., GF(�t) is a (weighted) average of G(t) [25,26]. It
converges thus more slowly to Geq but with a better statistics.
See Ref. [12] and Appendix F for details.

B. New focus: Transient self-assembled networks

We generalize here our previous work on solid bod-
ies [10,12] to viscoelastic liquids [4,6,7]. The first goal of the
present work is to introduce and to characterize numerically a
simple model for transient self-assembled networks [27–33].
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FIG. 1. Addressed problem: (a) Shear-stress relaxation modulus
G(t) after a tiny step strain δγ is imposed at t = 0 (bold lines).
(b) Permanent elastic network formed by beads connected by ideal
harmonic springs (thin solid lines) without recombinations (f = 0).
(c) Self-assembled transient elastic network created by reversibly
breaking and recombining springs with an attempt frequency f > 0
per spring subject to a Metropolis criterion. The spring s thus connects
the beads i and j on the left and the beads i and k on the right.

As sketched in Fig. 1(c), repulsive “harmonic spheres” [34,35]
are reversibly bridged by ideal springs. It is assumed that the
springs break and recombine locally with a Monte Carlo (MC)
hopping frequency f in a similar manner as in earlier work on
equilibrium polymer systems [36,37]. As sketched by the bold
dashed line in Fig. 1(a), these transient networks are shown to
be simple Maxwell fluids [7], i.e., the shear-stress relaxation
modulus decays exponentially,

G(t) ≈ G� exp(−x) with x ≡ t/t�(f ) for t/tA � 1, (5)

with tA being a local time scale characterizing the decay
of the initial affine displacements, t�(f ) ∼ 1/f the Maxwell
time, and G� the intermediate plateau modulus set by the
equilibrium shear modulus Geq for permanent springs (f = 0).
From the rheological point of view our model is very similar
to patchy colloids [31,32] or “vitrimers” [30], i.e., covalent
polymer networks that can rearrange their topology via a bond
shuffling mechanism. Rheologically similar self-assembled
transient networks may also be formed by hyperbranched
polymer chains with sticky end-groups [33] or microemulsions
bridged by telechelic polymers [27–29]. While mainly keeping
the sampling time �t constant, we systematically scan the
dimensionless attempt frequency �x ≡ �t/t�(f ) ∼ f from
the liquid state (�x � 1), where the network topology is
annealed, down to the solid limit (�x � 1), where the recom-
bination events become irrelevant and the particle permutation
symmetry is lifted [6]. Due to detailed balance this is done
while keeping unchanged all static properties related to pair
correlations. The �x dependence reported below for G(t) or
GF thus cannot be traced back to pair correlations as often
assumed for glass-forming systems [2,3]. By integration of
the general relation Eq. (4) for a Maxwell fluid, Eq. (5), one

expects in fact the shear-stress fluctuations to be given by

GF(�x) ≡ μA − μF(�x) = G� fDebye(�x) (6)

with fDebye(x) = 2[exp(−x) − 1 + x]/x2 being the Debye
function well known in polymer physics [5,7]. We shall
see that this important relation allows us to interpolate our
numerical data between the solid limit, where GF(�x) → G�

and μF(�x) → μA − G� for �x � 1, and the liquid limit,
where GF(�x) → 0 and μF(�x) → μA for �x � 1.

Using our simple model the second goal of this study is to
show that Eq. (1) holds not only for elastic solids (�x � 1)
but also, more generally, for viscoelastic bodies, i.e., for all
values of �x. We shall compare this relation to the widely
assumed expression [2,15,20,31,38,39]

G(t) = c̃(t) with c̃(t) ≡ βV 〈τ̂ (t)τ̂ (0)〉 (7)

which is the (rescaled) shear-stress autocorrelation function
(ACF). Although Eq. (7) is incorrect for general elastic
bodies [10,12–14], it may be justified under the condition

μA
!= c̃(t = 0) ≡ μ̃F. (8)

While this condition indeed holds on average for self-
assembled networks, it requires on the numerical side that
either �x � 1 or, equivalently, an ensemble-average over a
large number m of independent configurations. Being thus
both, in principle, acceptable means to determine G(t) for any
�x, this does, of course, not imply that Eq. (1) and Eq. (7)
have the same statistics. We shall thus attempt to characterize
the standard deviations of both relations and estimate lower
bounds for the number of configurations required.

C. Outline

Our numerical model is formulated in Sec. II where we
also address several technical questions. Our central numerical
findings are then discussed in Sec. III. Carefully stating the
subsequent time and ensemble averages performed, we present
in Sec. III A the pertinent static and quasistatic properties. The
MSD h(t) is described in Sec. III B where we test Eq. (1)
numerically by comparing it to the shear response modulus
G(t) obtained by applying explicitly a small step strain δγ .
For the available m = 100 configurations Eq. (7) is shown
in Sec. III C to be a poor approximation of G(t) for �x � 1.
The number of configurations required by, respectively, Eq. (1)
and Eq. (7) are estimated in Sec. III D. Section IV contains a
summary of the present work and an outline of open questions.
Less central issues are regrouped in the Appendix. Concepts
and definitions already stated elsewhere [10–14] are restated
in Appendix A and Appendix B. The theoretical derivations
of Eq. (2) and Eq. (1) can be found in Appendix C and
Appendix D. As they are not based on the transformation
behavior between conjugated ensembles used in our previous
work [10,13,14]), these direct demonstrations are relevant for
the (complex) liquid systems with vanishing equilibrium shear
modulus that the present study focuses on. Computational
results related to the sampling time �t are briefly discussed in
Appendix E and Appendix F.
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FIG. 2. Some technical details: (a) Model Hamiltonian with
the bold line indicating the purely repulsive interaction between
“harmonics spheres” [34] and the thin line the ideal spring between
connected beads, (b) distribution p(r) of spring lengths r showing a
maximum around the minimum of the spring potential at Rsp = 2 and
(c) distribution p(nsp) of the number of springs nsp being connected
to a bead showing a maximum at nsp ≈ 8. Only a negligible number
of beads is not connected (nsp = 0) or are dangling ends (nsp = 1).
In the current work nsp � 12 is imposed. The distributions shown in
panels (b) and (c) are identical for all attempt frequencies f due to
detailed balance.

II. ALGORITHM AND TECHNICAL DETAILS

As sketched in Fig. 1 we use a generic model for
self-assembled elastic networks in d = 2 dimensions where
beads are reversibly bridged by ideal springs. These springs
recombine locally with a Monte Carlo (MC) attempt frequency
f . Lennard-Jones (LJ) units are used throughout this work [15]
and the particle mass m, Boltzmann’s constant kB, and the
temperature T = 1/β are set to unity. Periodic simulation
boxes of constant volume V = Ld and linear box size L = 100
are used. A standard Euclidean metric with a shear strain γ = 0
can be assumed (square box) if not stated otherwise. Moreover,
the total number Nb of beads and the number Nsp of springs
are kept constant in the present work.

As shown by the bold solid line in Fig. 2(a), the particles
are modeled as “harmonic spheres” [34] interacting through
the purely repulsive potential

Ub(r) = Kb

2
(r − Rb)2 for r � Rb (9)

and Ub(r) = 0 elsewhere. The minimum of the shifted har-
monic potential is used as a cutoff to avoid truncation effects
and impulsive corrections for the determination of the affine
shear elasticity μA as described in Ref. [21]. The bead diameter
is arbitrarily set to unity, Rb = 1, and a rather stiff spring
constant Kb = 100 is used to make the beads very repulsive.
The simulation box contains Nb = 104 beads, i.e., the number
density ρ = Nb/V of the beads is set to unity. Due to the strong
repulsion and the high number density, the bead distribution is
always macroscopically homogeneous and the overall density
fluctuations are weak. This has been checked using snapshots,

FIG. 3. Snapshot of small square subvolume of linear length 10
containing 103 beads (disks) connected by 407 springs (straight lines).
The width of the spring lines is proportional to the energy of the spring
potential, Eq. (10). Short springs with r < Rsp = 2 repel the beads
(green lines), whereas longer springs (red lines) keep them together.

as in Fig. 3, and the standard radial pair correlation function
g(r) and its Fourier transform S(q) [15], as presented in Fig. 4.

The bonding of two beads is described by

Usp(r) = Ksp

2
(r − Rsp)2 (10)

with Rsp = 2 and Ksp = 10 as shown by the thin line in
Fig. 2(a). Note that the minimum Rsp of the bonding potential
is much larger than the bead diameter Rb. There is thus
no repulsion between two beads at r ≈ Rsp and no sudden

FIG. 4. Pair correlations for several attempt frequencies f . Inset:
Radial pair correlation distribution function g(r) with r being the
distance between two beads [2]. Main panel: Total coherent structure
function S(q) with q being the length of the wave vector.
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acceleration is felt (on average) if a bond is broken. As seen
in Fig. 2(b), the probability distribution p(r) of springs of
length r has a sharp maximum at Rsp and the number of
springs with r < 1 or r > 3 is negligible. Our box contains a
constant number Nsp = 4Nb of springs, i.e., on average a bead
is connected by nsp = 8 springs. This corresponds roughly to
the maximum of the distribution p(nsp) of the number nsp of
springs connected to a given bead presented in Fig. 2(c). Since
there is no direct interaction (repulsion) between the springs,
the maximum number of springs connected to a bead is limited
to nsp = 12 [40].

As sketched in Fig. 1(c), the network is reorganized by
attempting with a frequency f local hopping moves for each
spring. This is done by choosing first randomly a spring
s connecting two beads i and j . If the spring length r is
smaller than a cut-off radius rc = 5, then the connection to
one bead is broken, say, bead j , and we attempt to reconnect
the spring to a randomly chosen monomer k (different from
i or j ) taken randomly from a neighbor list of beads with
distance r < rc from the pivot monomer i and having fewer
than nsp = 12 springs attached [41]. Using the energy change
due to the different lengths of the suggested and the original
spring state, the move is accepted subjected to a standard
Metropolis acceptance criterion [15,42]. The parameter rc is
chosen sufficiently small to reduce the neighbor list and to yield
a reasonable, but not too small, acceptance rate A ≈ 0.1 (found
to be identical for all f ). The computational load required by
the reorganization of the network topology becomes negligible
below an attempt frequency f = 0.01.

In addition to the MC moves, changing the connectivity
matrix of the network standard velocity-Verlet molecular
dynamics (MD) [15] is used to move the beads through
the phase space. The temperature T = 1 is imposed using a
Langevin thermostat of friction constant ζ = 1. This allows us
to suppress long-range hydrodynamic modes otherwise rele-
vant for two-dimensional systems. A velocity-Verlet time step
δtMD = 10−2 is used. Every time step δtMD a certain number
of springs corresponding to the frequency f is considered
for an MC hopping move. We start by equilibrating m = 100
independent configurations at f = 1. The frequency is then
decreased with steps f = 1,0.3,0.1,0.03,0.01, . . . ,10−7 and,
finally, f = 0. At each step the configurations are tempered
over a time interval ttemp = 104 and then sampled over
ttraj = 105. Due to detailed balance changing f does not change
the standard static properties, such as described by the pair
correlation functions g(r) and S(q) (Fig. 4) or the energy per
bead e or the normal pressure P shown in Table I. As we have
checked, one could have also considered a much more rapid
quench without changing these static properties. As seen from
Fig. 3, we obtain homogeneous and isotropic elastic networks
well above the percolation threshold [4,8]. This is consistent
with the large values GF ≈ 18 for small f in Table I.

III. COMPUTATIONAL RESULTS

A. Static and quasistatic properties

We begin the description of our transient networks by
discussing the static and quasistatic properties presented in
Fig. 5. For every attempt frequency f we sample m = 100

TABLE I. Some properties as a function of the attempt frequency
f : �x ≡ �t/t�(f ) with �t = 105 and t�(f ) = 16/f , excess energy
per bead e, average normal pressure P , affine shear elasticity μA,
contributions μ̃F and μ� to the shear-stress fluctuation μF = μ̃F − μ�

and GF = μA − μF. All data are averaged over m = 100 configu-
rations. Error bars (for values >0.1) are indicated for the last three
columns.

f �x e P μA μ̃F μ� GF

1.0 6250 2.442 1.73 33.1 33 ≈0 ≈0
0.1 625 2.442 1.73 33.1 33(0.1) ≈0 ≈0
0.01 62.5 2.442 1.72 33.1 33(0.3) 0.5(0.1) 0.5(0.3)
E-03 6.25 2.443 1.73 33.1 36(1.1) 5(0.7) 2.9(0.8)
E-04 0.625 2.442 1.73 33.2 32(1.9) 13(1.9) 13.6(0.4)
E-05 0.0625 2.441 1.74 33.2 29(1.8) 14(1.8) 17.4(0.1)
E-06 6.25E-03 2.443 1.73 33.3 35(2.7) 20(2.7) 17.8
E-07 6.25E-04 2.442 1.73 33.2 32(2.5) 18(2.5) 17.9
0 0 2.440 1.74 33.1 32(2.3) 17(2.3) 17.9

configurations over a fixed sampling time �t = ttraj = 105.
For each trajectory we store every δtMD = 0.01 instantaneous
properties such as the normal pressure P̂ , the shear stress τ̂ , or
the affine shear elasticity μ̂A as defined in Appendix B. Using
these instantaneous values â we then sample the time averages
â and â2 over the �t/δtMD entries for each configuration.
Using these time averages we obtain for each configuration an
observable ô and compute its first moment o = 〈ô〉 over the m

configurations. (The second moment 〈ô2〉 will be considered
in Sec. III D.) The following properties:

ô = P̂ ⇒ o = P, (11)

ô = τ̂ ⇒ o = τ, (12)

FIG. 5. Various “static” and “quasistatic” properties vs. �x(f ) ≡
�t/t�(f ) with �t = 105 and t�(f ) = 16/f . The data indicated for the
smallest �x correspond to f = 0. The prediction Eq. (6) is indicated
by the solid and the dash-dotted lines. Note that μ̃F ≈ μA and
μ� ≈ GF for all �x.
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ô = μ̂A ⇒ o = μA, (13)

ô = βV τ̂ 2 ⇒ o = μ̃F, (14)

ô = βV τ̂
2 ⇒ o = μ�, (15)

ô = βV (τ̂ 2 − τ̂
2
) ⇒ o = μF = μ̃F − μ�, (16)

ô = μ̂A − βV (τ̂ 2 − τ̂
2
) ⇒ o = GF = μA − μF, (17)

are presented in Fig. 5 using log-linear coordinates. The
vertical axis has the dimension energy per volume. The
horizontal axis has been made dimensionless using �x ≡
�t/t�(f ) with t�(f ) = 16/f as shown below in Sec. III B. (See
Appendix E for the scaling with sampling time �t at fixed f .)
In the “solid limit” (�x � 1) only a few spring recombinations
can occur and the networks thus behave as solid bodies, while
in the “liquid limit” (�x � 1) the particles may freely change
their neighbors.

As may be seen from Table I or Fig. 5, the pressure P ,
the shear stress τ , the affine shear elasticity μA, and the
contribution μ̃F to the shear-stress fluctuation μF do not
depend on �x, i.e., the same values P ≈ 1.7, τ ≈ 0, and
μA ≈ μ̃F ≈ 33.2 have been obtained for all f . The expectation
values of these truly “static” properties cannot depend on �t

or on f since time and ensemble averages do “commute” [10],
i.e., can be exchanged as

〈â〉 = 〈â〉 with â = P̂ ,τ̂ ,μ̂A or βV τ̂ 2, (18)

and since the thermodynamic ensemble average 〈. . .〉 does
not depend on �t or f . Although P , τ , μA, and μ̃F are
all �x independent, this does not imply that they have the
same statistics. The “simple averages” P , τ , and μA have been
obtained with a high precision while the “fluctuation” μ̃F is
rather noisy [10,15].

A qualitatively different behavior is observed for the
observables μ�(�x), μF(�x), and GF(�x) also represented
in Fig. 5. Please note that Eq. (18) does not hold for
these properties as may be seen for μ�(�x) = 〈s2〉 � 0 with
s = √

βV τ̂ . Obviously, this differs from 〈s〉2 ∼ τ 2, which
vanishes due to symmetry for all �x for a sufficiently large
ensemble. Ergodicity implies s → 〈s〉 for large �x and all
�x effects become thus irrelevant. As seen from Fig. 5, this
implies μ�(�x) → βV τ 2 = 0 for �x � 1. Similarly, one
observes GF(�x) = μA − μF(�x) → 0 and thus μF(�x) →
μA, as expected for liquids [11,12]. The quasistatic properties
become also constant for �x � 1 where GF(�x) → Geq(f =
0) ≈ 18 and μF(�x) → μF(f = 0) ≈ 15. Interestingly, the
transition between both limits around �x ≈ 1 is rather broad,
corresponding to several orders of magnitude. Our data are
nicely fitted over the full range of �x by the expected behavior
Eq. (6) for a Maxwell fluid as indicated by the thin solid
line for GF(�x) ≈ μ�(�x) and by the dash-dotted line for
μF(�x) = μA − GF(�x). We note that fDebye(x) → 1 for
x → 0 and fDebye(x) → 2/x for x � 1. This implies that
GF(�x) decays as 2G�/�x in the liquid limit as shown by
the dotted line.

Let us finally consider the scaling of the two contributions
μ̃F and μ�(�x) to the shear-stress fluctuation μF(�x). As seen
from Fig. 5, we have μ̃F ≈ μA in agreement with Eq. (8) and

in addition

μ�(�x) ≈ GF(�x) (19)

for all �x. As already stressed, the expectation value of
μ̃F(�x) does not depend on �x. This must especially hold
for large �x where the average shear stress s ≡ √

βV τ̂ must
vanish for each configuration and, hence, μ�(�x) = 〈s2〉 ≈ 0.
Since the stress-fluctuation estimate GF for the shear modulus,
Eq. (2), must also vanish in the liquid limit, this implies
0 ≈ μA − μ̃F for �x � 1. Since μ̃F does not depend on �x,
this demonstrates Eq. (8) and, using Eq. (2), this implies, in
turn, Eq. (19). Please note that Eq. (8) and Eq. (19) do not hold
for an arbitrary elastic body as shown, e.g., in Ref. [10]. In
fact, they do not necessarily hold even for one configuration
of our ensemble if �x � 1. As we shall see in Sec. III D, they
only apply for �x � 1 or for an average over a large number
m of configurations for �x � 1.

B. Shear-stress mean-square displacement

The shear-stress MSD h(t) is presented in Fig. 6 for a broad
range of attempt frequencies f . The data have been computed
using

h(t) ≡ βV

2
〈[τ̂ (t + t0) − τ̂ (t0)]2〉, (20)

where the horizontal bar stands for the gliding average over
t0 [15] for each configuration using a fixed time window
�t = 105 and 〈. . .〉 for the ensemble average over m =
100 configurations. Time and ensemble averages commute,
Eq. (18), i.e., the expectation value of the MSD does not depend
explicitly on the sampling time as emphasized in Ref. [10]. Let

FIG. 6. Shear-stress MSD h(t) shown for different frequencies
f . Main panel: The MSD increases as h(t) ∼ t2 for small times
t � tA (thin solid line), shows an intermediate plateau with h(t) ≈
μF(f = 0) for tA � t � t�(f ) (bold solid line) and approaches μA

(dashed line) for even larger times t � t�(f ). Inset: Comparison of
y(x) = (μA − h(t))/G� with x = t/t�(f ), t�(f ) = 16/f , and G� =
Geq(f = 0) with the shear-stress response modulus G(t)/G� for f =
0.01 and f = 10−6 obtained from the shear-stress increment 〈δτ̂ (t)〉
after applying a step-strain increment δγ = 0.01 at t = 0.
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us focus first on the main panel of Fig. 6 where the unscaled
h(t) is presented using double-logarithmic coordinates. Three
dynamical regimes can be distinguished corresponding to
the time windows (i) t � tA, (ii) tA � t � t�(f ), and (iii)
t�(f ) � t . The MSD does not depend on the attempt frequency
f in the first two regimes, i.e., the reorganization of the
spring network is still irrelevant. The two indicated solid
lines form a lower envelope for h(t) for f → 0. The MSD
increases as h(t) ∼ t2 in the first regime [43] and shows an
intermediate plateau with h(t) ≈ μF(f = 0) in the second.
Following Refs. [10,14], the value of the crossover time
tA ≈ 0.12 is fixed by matching the asymptotics as indicated by
the vertical dash-dotted line. The second regime is consistent
with the equilibrium modulus of the quenched network
Geq(f = 0) = GF(f = 0) ≈ μA − h(t) ≈ 18 for tA � t �
t�(f ). The spring recombinations become relevant for times
of order t�(f ). Depending on f , the MSD h(t) increases
now further approaching from below the long-time limit
h(t) → μF(f > 0) = μA and the f dependence thus drops
out again.

We have yet to verify the scaling of the network relaxation
time t�(f ) which characterizes the crossover from the second to
the third regimes. This is done in the inset of Fig. 6 where h(t)
is replotted using a half-logarithmic representation. The axes
are made dimensionless by plotting y(x) = (μA − h(t))/G�

as a function of the reduced time x ≡ t/t�(f ) where we set
G� ≡ Geq(f = 0) for the intermediate plateau modulus and
t�(f ) ≡ 16/f for the network relaxation time. This rescaling
leads to a perfect collapse of the data for x � xA(f ) ≡
tA/t�(f ), especially for the f -dependent regime seen in the
main panel. Moreover, the reduced MSD is seen to decay
exponentially as y(x) = exp(−x) for x � xA(f ) (dash-dotted
line). The prefactor 16 for t�(f ) has been introduced for
convenience. For not-too-small attempt frequencies f � 10−4,
the exponential decay and the scaling of the relaxation time
t�(f ) may also be checked by plotting the unscaled μA − h(t)
vs. t using a linear-logarithmic representation (not shown).

Due to the uncorrelated recombinations of the springs a
Maxwell fluid relaxation is expected for our simple model.
The observed exponential decay, Eq. (5), thus confirms
Eq. (1). This is also demonstrated by the comparison with
the directly computed relaxation moduli for the two attempt
frequencies f = 0.01 and f = 10−6 corresponding, respec-
tively, to the liquid limit (�x = 62.5 � 1) and the solid limit
(�x = 0.00625 � 1). As in our recent studies on permanent
elastic networks [10,12–14], the relaxation modulus has been
computed from the shear-stress increment 〈δτ̂ (t)〉 with δτ̂ (t) ≡
τ̂ (t) − τ̂ (0−) measured after a step-strain δγ = 0.01 has been
applied at t = 0. This was done by applying a canonical-affine
shear transformation (Appendix A) and by averaging over m =
100 independent configurations. The perfect data collapse for
all times confirms Eq. (1).

C. Shear-stress autocorrelation function

Instead of using the MSD h(t) the response modulus is
generally estimated in computational studies using the shear-
stress ACF c̃(t) ≡ βV 〈τ̂ (t + t0)τ̂ (t0)〉 presented in Fig. 7. Time
and ensemble averages do again commute and the expectation
value does thus not depend on f or �t . As suggested in

FIG. 7. Rescaled shear-stress ACF c̃(t)/G� vs. dimensionless
time x = t/t�(f ) for a broad range of f . Also indicated are the
similarly rescaled relaxation moduli G(t) obtained for f = 0.01 and
f = 10−6 by applying a step strain δγ = 0.01. The scaling clearly
fails for small f (small �x).

Ref. [10], one can, instead of using the MSD h(t) and Eq. (1)
equivalently, determine the relaxation modulus using

G(t) = μA − μ̃F + c̃(t). (21)

This is justified under the condition that the measured values
for μA and μ̃F for each f are taken. Due to the exact identity [5]

h(t) = c̃(0) − c̃(t) = μ̃F − c̃(t) (22)

this yields precisely the same results (not shown) as already
presented in the inset of Fig. 6. Please note that for a general
solid body, μA − μ̃F may differ markedly from zero and cannot
be neglected in general [10]. Although the expectation value
of this difference (obtained for asymptotically large m or �x)
does vanish for any liquid (Fig. 5), the difference found for
m = 100 configurations is apparently not small enough. This
explains the bad scaling for small f shown in Fig. 7 where
c̃(t)/G� is traced as a function of x = t/t� as in the inset of
Fig. 6. The approximation Eq. (7) thus does not have the same
status as the fundamental relation Eq. (1).

D. Minimal number of configurations required

Using the m-independent configurations for each f we have
computed the standard deviations δo ≡ (〈ô2〉 − 〈ô〉2)1/2 and
error bars δo/

√
m associated with the average properties 〈ô〉

discussed above. Let us first summarize the standard deviations
δμA, δμ̃F, and δGF associated to μA, μ̃F, and GF = μA − μF.
The corresponding error bars are traced in Fig. 8. As one
expects assuming an increasing number ∝ �x of independent
networks probed by each configuration, all properties decay
as 1/

√
�x (dashed lines) in the liquid limit (�x � 1). Note

that δμA and δμ̃F become constant for �x � 1 where each
configuration only probes one network topology. As indicated
by the bold horizontal line [44],

δμ̃F ≈
√

2Geq(f = 0) for �x � 1. (23)
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FIG. 8. Error bars δo/
√

m for o = μA, μ̃F, and GF = μA − μF

as a function of �x = �t/t�(f ). The error bars for μA are several
orders of magnitude smaller than those for μ̃F. The deviations from
μA − μ̃F = 0 observed in Fig. 7 for small f are thus due to the
fluctuations of μ̃F.

Interestingly, δGF reveals a qualitatively different non-
monotonous behavior with a clear maximum at the transition
at �x ≈ 1 between the liquid and the solid limit. While δGF ≈
δμ̃F for �x � 1, δGF becomes several orders of magnitude
smaller than δμ̃F for �x � 1 and even becomes similar to
δμA for very small �x. More details on the fluctuations of
static properties (especially on their scaling with system size)
will be given elsewhere.

Figure 9 presents the standard deviations δ[μA − h(t)] and
δc̃(t) associated with Eq. (1) and Eq. (7). δc̃(t) is apparently

FIG. 9. Standard deviations δ[μA − h(t)] (filled symbols) and
δc̃(t) (open symbols) for several attempt frequencies f as indicated.
While δc̃(t) becomes similar to this bound for �x � 1, δ[μA − h(t)]
is orders of magnitude smaller in the same limit. The thin horizontal
lines indicate δGF(f ) for f = 0 (bottom), f = 10−5, f = 0.01, and
10−3 (top); δ[μA − h(t)] is seen to approach this limit for t → �t .

time independent. One verifies that

δc̃(t) ≈ δ(μA − μ̃F) ≈ δμ̃F, (24)

i.e., the noise is set by the fluctuations of the neglected
term μA − μ̃F. (As known from Fig. 8, δμA is negligible.)
The limit Eq. (23) for δμ̃F is thus also an upper bound
for δc̃(t) (bold horizontal line). The time dependence of
δ[μA − h(t)] is more intricate (filled symbols). One (slightly
trivial) reason for this is that gliding averages are used,
Eq. (20), which reduce more efficiently the fluctuations for
short times and higher frequencies (where more statistically
independent networks are probed). We thus observe that
δ(μA − h(t)) ≈ δh(t) increases monotonously with time. It
becomes similar to δGF(f ) for t → �t as indicated by thin
horizontal lines. We emphasize that δ[μA − h(t)] is several
orders of magnitude smaller than δc̃(t) for most times t and
attempt frequencies f . Both fluctuations become similar only
for large times t ≈ �t in the liquid limit above �x ≈ 1.

The goal is now to characterize roughly the lower bound
mmin of configurations required for a given �x for both
methods Eq. (1) and Eq. (7). Let us suppose that the relaxation
modulus G(t) is needed with a fixed precision δG, say, δG = 1.
As explained above, the problem with Eq. (7) is that μ̃F is a
strongly fluctuating quantity. Using Eq. (24), this leads to the
criterion

m � mmin = (δμ̃F/δG)2 for Eq. (7). (25)

According to the upper limit [Eq. (23)] this corresponds to a
minimal number of mmin = 2(Geq/δG)2 ≈ 650 configurations
in the solid limit which exceeds by nearly an order of
magnitude the number of configurations we have been able
to simulate. This is consistent with the bad scaling found
in this limit in Fig. 7. As shown in Fig. 9, δ[μA − h(t)] is
monotonously increasing with time approaching δGF(f ) from
below. Replacing the detailed time dependence by this upper
limit yields the simple, albeit rather conservative, criterion

m � mmin = (δGF/δG)2 for Eq. (1). (26)

Both criteria are identical in the liquid limit where δμ̃F ≈ δGF.
However, Eq. (26) corresponds to a pronounced maximum at
�x ≈ 1 and decreases then by several orders of magnitude if
we enter further into the solid limit. Note that the bound mmin

implied by Eq. (26) remains everywhere below m = 100. This
is consistent with the excellent statistics observed in Fig. 6 for
all f .

IV. CONCLUSION

A. Summary

The present study had two main goals. One was to introduce
a simple generic model for self-assembled elastic networks
(Sec. II) and to characterize it numerically (Sec. III). In this
model repulsive beads are reversibly bridged by ideal springs
which recombine locally with an MC attempt frequency f

(Fig. 1). By construction our transient networks are Maxwell
fluids [7] with a longest relaxation time t�(f ) ∼ 1/f and
an intermediate plateau modulus G� given by the equilib-
rium shear modulus Geq for quenched network topologies
(f = 0). By varying the dimensionless attempt frequency
�x = �t/t�, one may thus scan continuously between the
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FIG. 10. GF(�t) for subtrajectories of length �t � ttraj as a
function of �x ≡ �t/t�(f ) ∼ �t for different f . The data scales
for �t � 1. The existence of an additional time scale is visible for
small �t � 1. The thin solid line indicates Eq. (6).

liquid limit (�x � 1) and the solid limit (�x � 1). This was
done by varying the attempt frequency f (Figs. 4–8) and, more
briefly, by changing the sampling time �t (Figs. 10 and 11).
Due to detailed balance all static properties related to particle
pair correlations (Fig. 4) are kept constant. This differs for
the quasistatic properties μ�(�x), μF(�x), and GF(�x) due
to the finite time needed for stress fluctuations to explore the
phase space (Fig. 5). The �x dependence of these properties
are perfectly described by the prediction Eq. (6) made for
Maxwell fluids.

FIG. 11. Comparison of G(t) = μA − h(t) and GF(�t) ≡ μA −
μF(�t) for one example in the liquid limit (f = 0.01, �x = 62.5).
Confirming Eq. (4), GF(�t) is equivalent to the weighted integral over
G(t) indicated by the dotted line. Note that G(t ≈ �t) ≈ GF(�t) in
the three time regimes where the response modulus has a plateau
(shoulder). GF(�t) is delayed with respect to G(t) due to the strong
weight of small times to the integral Eq. (F1). The thin solid line
indicates Eq. (6).

The second goal of this work was to use this deliberately
simple model to verify (Fig. 6) the simple-average relation
Eq. (1) recently proposed for the computational determination
of the shear-stress relaxation modulus G(t) [10]. An alternative
derivation of Eq. (1) was given (Appendix D) which does
not rely on the steepest-descend assumption implicit to the
Lebowitz-Percus-Verlet transformation between conjugated
ensembles [15,16] used in our previous work [10,12–14]. The
formula Eq. (1) has been compared (Fig. 7) with the generally
assumed Eq. (7) using only the shear-stress autocorrelation
function c̃(t). While, from the theoretical point of view,
the latter relation is applicable for liquids since Eq. (8)
holds on average (Fig. 5), it imposes severe restrictions
on computational studies due to the large fluctuations of
μ̃F (Fig. 8). This implies that at least mmin ≈ 2(Geq/δG)2

independent configurations are needed for �x � 1. In contrast
to this, Eq. (1) provides an approximation-free alternative with
a much better statistics in the solid limit (Fig. 9).

B. Outlook

The present study has focused on the variation of the
attempt frequency f while keeping fixed other parameters
such as the volume V , the bead density ρ, the spring density
ρsp, or the temperature T . It should be particularly rewarding
to systematically investigate system-size effects. While most
properties discussed here, such as μA, μ̃F, h(t), or c̃(t), are
defined such that their expectation values, i.e., their first
moments over the ensemble of independent configurations,
should not depend explicitly on V , this is less obvious for
their respective standard deviations. As stated by the criterion
Eq. (25), we expect a strong lack of self-averaging [15,42]
for δμ̃F, i.e., the approximation Eq. (7) should not improve
with increasing system size, while strong self-averaging is
expected for Eq. (1) in the low-�x limit. As already stated
in the Introduction, our transient networks are rheologically
similar to the Maxwell fluids formed by patchy colloids [31,32]
or by “vitrimers” [30]. Interestingly, these physical gels can
be reworked (just as silica glasses) to any shape by tuning
gradually the system temperature T which is the central
experimental control parameter. Since our model potentials are
rather stiff (Fig. 2), changing slightly T will not alter much the
local static structure, i.e., μA and Geq should remain essentially
constant. However, by assuming the MC attempt frequency
f of our transient networks to be thermally activated, i.e.,
f (T ) ∼ exp(−B/T ), as for patchy colloids [31], this should
imply a strong Arrhenius behavior for the Maxwell relaxation
time t�(f ) and the shear viscocity

η ≈ G� t�(f ) ∼ 1/f ∼ exp(B/T ). (27)

Our networks should thus behave as “strong glasses” [2].
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APPENDIX A: CANONICAL-AFFINE SHEAR
TRANSFORMATION

Let us apply an infinitesimal shear strain increment γ →
γ + δγ to a periodic simulation box at constant box volume
V at a reference shear strain γ . (For simplicity, all particles
are in the principal box [15].) The positions ri and the
velocities vi [45] of all particles i are assumed to follow
the “macroscopic” constraint in a both affine [18,19] and
canonical [46] manner according to

ri,x → ri,x + δγ ri,y , vi,x → vi,x − δγ vi,y (A1)

with |δγ | � 1. All other coordinates and velocities remain
unchanged by the transformation as well as the network
of springs connecting the particles. The negative sign for
the velocities assures that the transform is “canonical” [45]
and that, hence, Liouville’s theorem is obeyed [14,46]. The
transformation Eq. (A1) is used in Sec. III B to test our key
relation Eq. (1).

APPENDIX B: SHEAR STRESS AND AFFINE SHEAR
ELASTICITY

Let Ĥ(σ,γ ) denote the system Hamiltonian of a given state
σ at an imposed shear strain γ of the simulation box. The
state σ of the system specifies the positions and velocities of
the particles and the connectivity matrix of the ideal springs
connecting them. The two configurations shown in Fig. 1(c)
thus correspond to two different states. The instantaneous
shear stress τ̂ and the instantaneous affine shear elasticity μ̂A

are defined by functional derivatives of the Hamiltonian with
respect to the transform Eq. (A1) [11,13],

τ̂ (σ,γ ) ≡ δĤ(σ,γ )

δγ
and (B1)

μ̂A(σ,γ ) ≡ δ2Ĥ(σ,γ )

δγ 2
= δτ̂ (σ,γ )

δγ
. (B2)

For the differences of energy and shear stress caused by the
transform this implies

δĤ/V ≡ [Ĥ(σ,γ + δγ ) − Ĥ(σ,γ )]/V

≈ τ̂ (σ,γ ) δγ + 1
2 μ̂A(σ,γ ) δγ 2, (B3)

δτ̂ ≡ τ̂ (σ,γ + δγ ) − τ̂ (σ,γ )

≈ μ̂A(σ,γ ) δγ. (B4)

With Ĥid(σ,γ ) and Ĥex(σ,γ ) being the standard kinetic
and the (conservative) excess interaction contributions to
the Hamiltonian Ĥ(σ,γ ) = Ĥid(σ,γ ) + Ĥex(σ,γ ), this implies
similar relations for the corresponding contributions τ̂id and
τ̂ex to τ̂ = τ̂id + τ̂ex and for the contributions μ̂A,id and
μ̂A,ex to μ̂A = μ̂A,id + μ̂A,ex. For the ideal contributions this
yields [13,14,45]

τ̂id(σ,γ ) = − 1

V

N∑
i=1

vi,xvi,y and (B5)

μ̂A,id(σ,γ ) = 1

V

N∑
i=1

v2
i,y (B6)

where the minus sign for the shear stress is due to the minus
sign in Eq. (A1). In this study we focus on pairwise additive
excess energies Ĥex = ∑

l u(rl) with u(r) being a pair potential
and where the running index l labels the interaction between
two particles i < j . Straightforward application of the chain
rule [11] shows that

τ̂ex(σ,γ ) = 1

V

∑
l

rlu
′(rl) nl,xnl,y and (B7)

μ̂A,ex(σ,γ ) = 1

V

∑
l

[
r2
l u′′(rl) − rlu

′(rl)
]
n2

l,xn
2
l,y

+ 1

V

∑
l

rlu
′(rl) n2

l,y (B8)

with rl being the distance between the beads and nl = rl/rl

the normalized distance vector. Note that Eq. (B7) is identical
to the off-diagonal term of the standard Kirkwood stress
tensor [15].

APPENDIX C: SHEAR-STRESS FLUCTUATION FORMULA

The stress-fluctuation formula Eq. (2) may be demon-
strated elegantly [11,14] using the Lebowitz-Percus-Verlet
transformations between conjugated ensembles [16] applied
to the NV γT and NV τT ensembles. However, due to
the steepest-descend approximation implict to this approach,
which requires βV Geq � 1, this approach cannot be used for
transient networks since Geq(f > 0) = 0. We give here a more
general demonstration of Eq. (2). The average equilibrium
shear stress at a strain γ is given by

τ (γ ) =
∑

σ

τ̂ (σ,γ ) peq(σ,γ ), (C1)

where the sum runs over all accessible states σ . The shear stress
τ̂ (σ,γ ) of the state is given by Eq. (B1) and the normalized
equilibrium distribution peq(σ,γ ) by

peq(σ,γ ) = e−βĤ(σ,γ )/
∑

σ

e−βĤ(σ,γ ). (C2)

The task is now to compute the difference τ (γ + δγ ) − τ (γ )
of the equilibrium shear stresses after and before the transform
Eq. (A1). Using that

exp[−βĤ(σ,γ + δγ )] ≈ exp[−βĤ(σ,γ )] (1 − βδĤ) (C3)

with δĤ being given by Eq. (B3), one shows that to leading or-
der the equilibrium distribution after the shear transformation
may be expressed as

peq(σ,γ + δγ )

peq(σ,γ )
≈ 1 − βδĤ + β〈δĤ〉. (C4)

Using in addition Eq. (B4), it is then readily seen that

τ (γ + δγ ) − τ (γ )

≈ 〈μ̂A〉δγ − β[〈τ̂ (σ,γ )δĤ〉 − 〈τ̂ (σ,γ )〉〈δĤ〉] (C5)

to leading order. Since according to Eq. (B3) we have δĤ ≈
V τ̂ (σ,γ ) δγ , this leads to linear order in δγ to

τ (γ + δγ ) − τ (γ )

δγ
≈ μA − μ̃F + μ�.
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We have thus confirmed Eq. (2) by only taking advantage of
δγ being arbitrarily small. This shows that Eq. (2) may also be
used for liquids (Geq = 0) or for systems where βV Geq � 1.
In the latter cases μA and μF simply become, respectively,
identical or similar.

APPENDIX D: SHEAR-STRESS RELAXATION

Following Ref. [5] we present now an alternative demon-
stration of Eq. (1) which does not require a finite equilibrium
shear modulus. The time-dependent average shear stress τ (t)
for t > 0 is given by

τ (t) =
∑

σ

τ̂ (σ,γ + δγ ) p(t,σ ) (D1)

with p(t,σ ) being the time-dependent probability distribution
of the state σ . We have p(t = 0,σ ) = peq(σ,γ ) directly after
the transformation at t = 0 and p(t,σ ) → peq(σ,γ + δγ ) for
large times t � t�. Consistently with Eq. (C4), it is useful here
to expand the old equilibrium distribution in terms of the new
one,

peq(σ,γ ) ≈ peq(σ,γ + δγ )[1 + βδĤ − β〈δĤ〉]. (D2)

The time-dependent probability distribution is given by the
general time evolution equation [5],

p(t,σ ) =
∑
σ ′

G(σ,σ ′; t − t ′) p(t ′ = 0,σ ′) for t > 0, (D3)

with G(σ,σ ′; t − t ′) being an unspecified propagator of the
system at γ + δγ . We note that a correlation function may be
written as [5]

〈A(t)B(t ′)〉 =
∑
σ,σ ′

A(σ )G(σ,σ ′; t − t ′)B(σ ′)p(σ ′,t ′). (D4)

Inserting Eq. (D3) into Eq. (D1) and using Eq. (D2) this leads
to

τ (t) ≈ 〈τ̂ 〉 + β(〈τ̂ (t)δĤ(t ′ = 0)〉 − 〈τ̂ 〉〈δĤ〉),
where all averages are computed using the final equilibrium
distribution peq(σ,γ + δγ ). Substracting the reference shear
stress before the transform τ (t = 0−) = τ (γ ) on both sides of
the equation leads to

τ (t) − τ (t = 0−)

δγ
≈ τ (γ + δγ ) − τ (γ )

δγ

+βV (〈τ̂ (t)τ̂ (0)〉 − 〈τ̂ 〉2) (D5)

to leading order. Taking, finally, δγ → 0 and defining the
ACF c(t) ≡ c̃(t) − μ�, this is equivalent to G(t) = Geq + c(t)
in agreement with Ref. [12]. Additionally, taking advantage of
the exact identity h(t) = c̃(0) − c̃(t) = c(0) − c(t) [5] relating

the shear-stress ACF with the shear-stress MSD, this implies
in turn Eq. (1).

APPENDIX E: SCALING WITH SAMPLING TIME �t

The dimensionless variable �x = �t/t� has been changed
in the main text only as a function of the attempt frequency
f while the sampling time �t was kept constant for clarity.
The scaling also holds if �t is varied at a constant terminal
time t� as was done for permanent networks [10]. As shown
in Fig. 10 for the stress-fluctuation formula GF, this assumes
that both �t and t�(f ) are sufficiently large. The time average
over a sampling time �t = ttraj = 105 is replaced by averages
over (independent) subintervals of length �t � ttraj. Note that
the largest values of �x indicated in Fig. 10 for each f

correspond to the data given in Fig. 5. As expected, all data
points collapse on a master curve (thin solid line) as long as �x

remains sufficiently large. The data for small �x, where the
scaling fails, correspond to �t � 1. This merely shows that
the additional time scale tA (Fig. 6) becomes relevant. Since
μF vanishes for small �t , this leads to the limit GF → μA

indicated by the dashed line.

APPENDIX F: COMPARISON OF G(t) AND GF(�t)

Assuming y(t) to be an arbitrary well-behaved function of
t , let us consider the linear functional

P�t [y(t)] ≡ 2

�t2

∫ �t

0
dt (�t − t) y(t) (F1)

motivated by Eq. (4). Note that contributions at the lower
boundary of the integral have a strong weight due to the factor
(�t − t) and that for a constant function

y(t) = c we have P�t [c] = c, (F2)

i.e., the �t dependence drops out. This holds to leading order if
y(t) ≈ c only for large t or for a finite t-window if this window
is sufficiently large. Assuming time translational invariance,
the shear stress fluctuation μF(�t) is quite generally given by
μF(�t) = P�t [h(t)] [12,25]. Since μA is constant, Eq. (F2)
and Eq. (1) imply

GF(�t) ≡ μA − μF(�t) = P�t [G(t)], (F3)

in agreement with Eq. (4). According to Eq. (F2), GF(�t)
should become similar to G(t ≈ �t) in the three time windows
t � tA, tA � t � t�(f ), and t�(f ) � t , where h(t) and G(t)
become approximatively constant (Fig. 6). This is consistent
with the data presented in Fig. 11 for f = 0.01. Note that
specifically GF(�t) ≈ μA for �t � tA, in agreement with
Fig. 10.
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