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Ballistic behavior and trapping of self-driven particles in a Poiseuille flow
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We study the two- and three-dimensional dynamics of a Brownian self-driven particle at low Reynolds number
in a Poiseuille flow. A deterministic analysis is also performed and we find that under certain conditions the
swimmer becomes trapped, thus performing closed orbits as observed in related experiments. Further analysis
enables us to provide an analytic expression to achieve this trapping phenomenon. We then turn to Brownian
dynamics simulations, where we show the effect of a Poiseuille flow, self-propulsion, and confinement on the
diffusion of the swimmer in both two and three dimensions. It is found that for long times the mean-square
displacement (MSD) along the flow direction is always quadratic in time, whereas for shorter times (before the
particle reaches the walls) its MSD has also a quartic time behavior. It is also found that self-propelled particles
will spread less in a Poiseuille flow than passive ones under the same circumstances.
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I. INTRODUCTION

The study of micrometric and nanometric self-propelled
(active) particles has recently received much attention [1–8].
Many phenomena in nature involving the motion of micro-
organisms that self-propel have proved to be very relevant
[9–13]. Further, scientists have found self-propelled particles
useful elements of study in the field of active matter [14].
In addition, bioengineers are already mimicking propulsion
strategies of natural swimmers (micro-organisms) and building
self-propelled micromachines [15–18]. These microrobots
may be in charge of carrying specialized drugs to particular
regions inside our body, as well as detecting and diagnosing
diseases [19–21]. The latter applications are very relevant in
medicine since less intrusive treatment options may be very
close to becoming a reality.

Because some microrobots and micro-organisms are small
enough to be affected by thermal fluctuations, their motion will
follow random paths (Brownian motion) [3,22]. Moreover, the
net displacement of those Brownian microswimmers may also
be affected by external flows, like marine bacteria affected by
oceanic turbulence or natural and synthetic swimmers inside
the human body being subject to flowing bodily fluids [23,24].
Previous works have already studied the effect of moving
fluids on the diffusion of passive (not self-propelled) Brownian
spherical particles. For example, Foister and van de Ven [25]
found that a Brownian passive spherical particle, under the
effect of a shear flow, has a mean-square displacement (MSD)
along the flow direction proportional to the third power of time.
They even found that in the presence of an external extensional
flow, the MSD of the Brownian passive particle behaves
exponentially in time. Other nonlinear external velocity fields
such as the classical Poiseuille flow were also considered by
Foister and van de Ven [25].

The consequences of moving fluids on self-propelled
particles have also been analyzed. Jones et al. [26] calculated,
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for non-Brownian particles, the direction of swimming of
bottom-heavy micro-organisms immersed in shear flows.
Bearon and Pedley [27] worked with chemotactic bacteria
and found an advection-diffusion equation for the cell density
under the effect of a shear flow. More recently, ten Hagen
et al. [28] found, in a two-dimensional (2D) domain, the MSD
tensor of a spherical Brownian self-propelled particle in a shear
flow. They obtained that the MSD along the flow direction
behaves like ∼t3. A generalization of their work to the case
of a swimmer immersed in a general linear flow, in both two
and three dimensions, was made by Sandoval et al. [29,30].
Recently, Zöttl and Stark [31,32] performed theoretical studies
and elucidated the dynamics of a deterministic spherical and
elongated swimmer under a Poiseuille flow in two and three
dimensions. They concluded that the swimmer may perform
swinging and tumbling orbits. In addition, Costanzo et al. [33]
and Chilukuri et al. [34] computationally found the effect of a
Poiseuille flow on the transversal concentration of Brownian
swimmers inside a pipe. They found aggregation and upstream
swimming. An experimental confirmation of the works from
Zöttl [31,32], Costanzo et al. [33], and Chilukuri et al. [34]
was made by Rusconi et al. [35], who built a microfluidic
devise where a Poiseuille flow was imposed.

From the latter references, one can see that there is a
significative effort in understanding the behavior of self-
propelled micrometric particles under external flows. In this
paper we analyze the effect of a Poiseuille flow on the diffusion
of a Brownian self-propelled particle (swimmer) confined in
a channel (two dimensions) and a cylinder (three dimensions)
and elucidate the temporal scaling of its MSD along the flow
direction. The swimming particle is considered to be spherical
given that around 21% of living bacteria possess this form
[36] and that some artificial swimmers such as self-catalytic
colloidal spheres [5,8,37,38] and active droplets [39,40] also
have this geometry. We model the activity of the particle with
an assumed constant swimming velocity in its body frame
and consider that rotational and translational Brownian motion
affects our swimmer. Other rotational mechanisms such as run
and reverse [12] or run and tumble [3,41] are not taken into
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account. We start by setting up the problem in Sec. II and study
the deterministic dynamics of the swimmer in Sec. III. Here we
observe that the swimmer may follow closed paths; in other
words, the swimmer may become trapped. We thus provide
an analytical condition to observe this trapping phenomenon.
In Secs. IV and V we use Brownian dynamics simulations
to calculate the MSD of an active particle in a channel or
cylinder subject to a Poiseuille flow. A comparison among
two- and three-dimensional simulations is also performed. It
is concluded that the effect of a Poiseuille flow in a channel or
cylinder is to generate a long-term quadratic time dependence
of the MSD along the flow direction. From a frame moving
with a velocity equal to vm (with respect to the laboratory
frame), one can also observe a quartic time dependence of
the MSD along the flow direction for active particles. It is
found that the activity of the particle may screen this quartic
dependence even in the moving frame. We also report that
trapping is observed in three dimensions. Finally, we use a
dipole approximation model to incorporate wall hydrodynamic
effects (HEs). This model suggests that HEs do not seem to
affect the swimmer’s diffusion.

II. MODEL

We consider a spherical self-propelled particle (swimmer)
of radius a inside a channel of cross section 2R, swimming
in a two-dimensional fluctuating environment at temperature
T . This particle is also subject to a Poiseuille flow of the
form U∞ = vm[1 − x2

2/R
2]i (see Fig. 1). Here vm is the

fluid’s velocity along the center of the channel. The swimmer
is free to rotate along the azimuthal direction θ and its
dynamics is described by its translational velocity ẋ(t) and
angular velocity �(t). Here x(t) = [x1(t),x2(t)] represents
the swimmer’s position, while the overdot stands for a time
derivative. In this model the walls are assumed to be specular
and do not affect the swimmer’s rotation. In Sec. VI we
include a model where hydrodynamic interactions among the
swimmer and walls are taken into account. Note that in the
rest of the paper the set {i,j,k} represent unit vectors. Thermal
forces in translation f and rotation g are modeled as zero-
mean random variables whose correlations, according to the

x2

a

R

l
Us(t)e(t)

θ

vm
x1

FIG. 1. Schematics of the studied problem.

fluctuation-dissipation theorem, are given by 〈fi(t)fj (t ′)〉 =
2kBT RUδij δ(t − t ′) and 〈gi(t)gj (t ′)〉 = 2kBT R�δij δ(t − t ′),
respectively, where 〈·〉 represents ensemble averaging [42].

At low Reynolds number, the balance of forces and torques
on the particle leads to

RU (ẋ − Us − U∞) = f, R�(� − �∞) = g, (1)

where �∞ is the angular velocity of the particle induced by the
Poiseuille flow, Us = Us(t)e(t) is the swimming velocity along
the director vector, e(t) = [cos θ (t), sin θ (t)] (with the origin
at the center of the particle), and Us(t) is the instantaneous
magnitude of the swimming velocity. In the rest of the paper
and for simplicity, we assume a constant swimming velocity
Us(t) = U= const. In Eq. (1), RU = RU I and R� = R�I are
the viscous resistance coefficients (RU = 6πηa and R� =
8πηa3 in a Newtonian fluid of viscosity η) and I is the unit
tensor. Similarly, the director vector e follows the dynamics
[43]

ė(t) = �(t)×e(t). (2)

Thus, from Eq. (1), in combination with Eq. (2), together
with the dimensionless variables x̃1 = x1/l (here l is a
characteristic length of the Poiseuille profile; see Fig. 1), x̃2 =
x2/l, t̃ = (vm/l)t , ε = l/R, ud = U/vm, f̃ = f/RUvm, and
g̃ = (l/R�vm)g, we get the dynamics of the microswimmer

˙̃x1(t̃) = 1 − ε2x̃2
2 (t̃) + ud cos θ (̃t) + f̃1(t̃), (3)

˙̃x2(t̃) = ud sin θ (t̃) + f̃2(t̃), (4)

θ̇ (t̃) = ε2x̃2(t̃) + g̃(t̃). (5)

Note that one degree of rotation has already been observed
in experiments with spherical platinum-silica Janus particles
in a solution of water and H2O2 [44]. Moreover, it is often
the case that a two-dimensional model gives qualitative results
similar to those of a fully three-dimensional problem [30]. This
observation will be corroborated in Sec. V, where the present
model is extended to three dimensions.

III. TRAPPING

In addition to Zöttl and Stark’s contribution [31], we have
found that under certain circumstances, a spherical swimmer
in a Poiseuille flow may become trapped, that is, it may
perform closed paths (see Fig. 3) due to an interplay between
self-propulsion and the imposed external flow. A similar
trapping phenomenon has been experimentally reported for
a self-propelled ellipsoidal particle in a Poiseuille flow [35]
but no further analytical analysis was performed. In order
to find analytical conditions where trapping occurs, we use
Eqs. (3)–(5) and neglect the stochastic forces, namely,

˙̃x1 = 1 − ε2x̃2
2 + ud cos(θ ), (6)

˙̃x2 = ud sin(θ ), (7)

θ̇ = ε2x̃2. (8)

In general, Eqs. (6)–(8) admit an analytical solution by using
the Jacobi elliptic functions. However, with that general
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solution, one cannot determine the necessary condition to
observe trapping. By analyzing the latter system under small
oscillations, using the fact that trapping has been computation-
ally observed for ud < 0 (although trapping for ud > 0 is also
possible), and combining Eqs. (7) and (8), one gets

θ (t̃) = θ0 cos(
√

|ud |εt̃), (9)

where the initial conditions x̃2(0) = 0 and θ (0) = θ0 were
employed. Additionally, by dividing Eqs. (7) and (8) and
integrating that result, one gets

x̃2(θ )2 = −2
|ud |
ε2

[cos(θ0) − cos(θ )]. (10)

This equation is then substituted into Eq. (6), which gives

˙̃x1 = 1 + 2|ud | cos(θ0) − 3|ud | cos[θ0 cos(
√

|ud |εt̃)], (11)

where we additionally used the result from Eq. (9). Finally,
using Taylor’s series about t̃ = 0 for cos[θ0 cos(

√|ud |εt̃)] and
integrating Eq. (11) with respect to time gives

x̃1 − x10 = (1 + 2|ud | cos(θ0) − 3|ud |)t̃

+3

4
|ud |θ2

0 t̃ + 3
√|ud |θ2

0

8ε
sin(2

√
|ud |εt̃), (12)

where x̃1(0) = x10. The last step is to notice that if trapping
occurs, the x̃1 coordinate should be bounded, which is achieved
if the ratio ud is such that

u∗
d = − 1

3 − 2 cos(θ0) − 3
4θ2

0

. (13)

This equation is precisely the condition to observe trap-
ping for a given small initial angle θ0. With this result
and Eq. (12), one gets that the extrema for the coordinate
x̃1 are −3

√|ud |θ2
0 /8ε � x̃1 � 3

√|ud |θ2
0 /8ε, at times t̃1 =

3π/4
√|ud |ε and t̃2 = π/4

√|ud |ε, respectively. Equation (13)
is plotted in Fig. 2 and compared with numerical values for
ud where trapping occurs (red circles). Note that the angle is
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FIG. 2. Theoretical condition for ud [Eq. (13)] in order to observe
trapping (blue dashed line) and valid for small initial angles θ0. The
numerical values for ud where trapping occurs are shown as red
circles.
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FIG. 3. A self-driven particle in a Poiseuille flow will develop
closed orbits for ud = u∗

d and swinging and tumbling trajectories for
ud = u∗

d ± δ with δ > 0 as shown in the insets.

measured in radians; thus from the figure, our approximation
remains valid for around θ0 < 34◦. Figure 3 shows that for
a small variation δ > 0 from u∗

d , the swimmer will perform
swinging and tumbling trajectories, as found in previous works
[31]. Furthermore, by applying the change of variables X =
8εx̃1/3θ2

0

√|ud |, Y = −εx̃2/θ0
√|ud |, and s = √|ud |εt̃ and

substituting Eq. (9) into the system (6)–(8), one gets that the
parametric equations for the closed orbit are X(s) = sin(2s)
and Y (s) = sin(s); thus one may also represent the closed
curve as

Y 4 − Y 2 + 1
4X2 = 0. (14)

IV. MEAN-SQUARE DISPLACEMENT IN
TWO DIMENSIONS

What is the effect of an external Poiseuille flow on the
diffusive behavior of noninteracting active Brownian particles?
This is a question that has been partially addressed by
Foister and van de Ven [25]. They performed a theoretical
work exploring the consequences of a Poiseuille flow on the
diffusion of passive Brownian particles. They obtained that
the MSD along the flow direction (from a frame moving with
a velocity equal to vm with respect to the laboratory frame)
behaves as ∼t4. We will also concentrate on the MSD, but of
noninteracting active Brownian particles.

Due to the coupling between the stochastic rotational
dynamics [Eq. (5)] and the space coordinate x2, an explicit
analytic probability distribution function (PDF) for the angular
coordinate seems difficult to obtain. For this reason, we solve
the system (3)–(5) numerically. Let us explore the effect of
a Poiseuille flow and confinement (neglecting hydrodynamic
interactions between the particle and walls) on the diffusion
of the swimmer. For this analysis, the translational Péclet
number, defined as PeU = vml/DB (DB is the translational dif-
fusion coefficient DB = kBT /RU ). was fixed to PeU = 47 600
(similar to some reported experimental values [35]), while the
rotational Péclet number Pe� = vm/lD� (D� is the rotational
diffusion coefficient D� = kBT /R�) was fixed to Pe� = 6.1.
Other simulations for different Péclet numbers are reported in
Appendix B. Finally, the dimensionless velocity was selected
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FIG. 4. Effect of a Poiseuille flow and confinement on the MSD
of a swimmer moving in two dimensions and for the radii of
three different channels, namely, ε = {0,0.125,1}. (a) The MSD
component along the axial direction x1. (b) The MSD component
along the transversal direction x2. In (a) and (b) the black dashed
lines are theoretical results corresponding to Eqs. (A1) and (A2).
(c) The PDF for the orientational coordinate showing the effect of
a Poiseuille flow and confinement on its standard deviation. Clearly,
the standard deviation of the angular PDF grows as ε → 1.

to be ud = 0.1, whereas the initial position and orientation
were x̃1(0) = x̃2(0) = 0 and θ0 = π/4, respectively. For all
the reported averages in this work, 10 000 realizations were
used. The results are shown in Figs. 4(a) and 4(b), where the
MSD for the x̃1 and x̃2 coordinates as a function of time and
for the radii of three different channels (fixed l̃ or, equivalently,
fixed vm), namely, ε = {0,0.125,1}, is plotted. The case ε = 0
(R → ∞), which corresponds to an unbounded domain, where
the parabolic profile becomes a plane one, can be analytically

solved. Taking the limit ε → 0 to Eqs. (3)–(5) yields

˙̃x1(t̃) = 1 + ud cos θ (t̃) + f̃1(t̃), (15)

˙̃x2(t̃) = ud sin θ (t̃) + f̃2(t̃), (16)

θ̇(t̃) = g̃(t̃). (17)

Since the angular coordinate is decoupled from the trans-
lational coordinate, it obeys a simple Smoluchowski equation
whose PDF is

P (θ,t̃ |θ1,t̃1) = e−Pe�(θ−θ1)2/4τ

√
4πτ/Pe�

,

P (θ1,t̃1) = e−Pe�(θ1−θ0)2/4t̃1√
4πt̃1/Pe�

,

(18)

where τ = t̃ − t̃1, P (θ,t̃ |θ1,t̃1) is the conditional PDF, θ1

is the angular coordinate at time t̃1 < t̃ , and P (θ1,t̃1) is
the unconditional PDF with an initial condition θ0(0) = θ0.
With Eq. (18), the swimmer’s orientation correlations can be
evaluated. They are defined as [45]

〈ek(t̃)el(t̃1)〉 =
∫

dθ

∫
dθ1ek(t̃)el(t̃1)G(θ,t̃ ; θ1,t̃1), (19)

where G(θ,t̃ ; θ1,t̃1) = P (θ,t̃ |θ1,t̃1)P (θ1,t̃1) is the joint proba-
bility distribution. By directly solving Eq. (19), the orientation
correlations are finally obtained, namely,

〈e1(t̃)e1(t̃1)〉 = e−τ/Pe�

2
[1 + cos(2θ0)e−4̃t1/Pe�], (20)

〈e2(t̃)e2(t̃1)〉 = e−τ/Pe�

2
[1 − cos(2θ0)e−4̃t1/Pe�], (21)

〈e1(t̃)e2(t̃1)〉 = e−τ/Pe�

2
[sin(2θ0)e−4̃t1/Pe�]. (22)

We then use Eqs. (15)–(17) together with the latter correlations
to find the components of the MSD tensor. The full expressions
of these components are given in Appendix A, whereas their
long-time expressions are

〈
x̃2

1 (t̃)
〉 = t̃2 +

(
u2

dPe� + 2

PeU

)
t̃ + 2udPe� cos(θ0)t̃ , (23)

〈
x̃2

2 (t̃)
〉 =

(
2

PeU

+ u2
dPe�

)
t̃ , (24)

〈x̃1(t)x̃2(t)〉 = udPe� sin(θ0)t̃ . (25)

Note that the case ε = 0 contains a quadratic scaling with
respect to time [see Eq. (23)]. Equations (A1) and (A2) are
then plotted as black dashed lines in Figs. 4(a) and 4(b)
and represent an upper bound limit for the MSD components
obtained numerically. Numerical results for ε �= 0 (meaning
that the magnitude of vm, hence the value of l, was kept
constant while varying R) are also shown in Fig. 4(a). The inset
of this figure shows that the space covered by the swimmer
along the axial direction increases as the channel’s width
increases. This is so since for small ε the particle will be
dragged along the flow direction by an almost uniform flow;
however, when ε increases there will be regions (near the walls)
where the particle is barely dragged by the external flow. For
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long times, Fig. 4(a) shows that the swimmer’s displacement
always becomes quadratic. Finally, Fig. 4(a) also indicates that
for very short times (t̃ � 10−5) the MSD behaves linearly in
time; in fact, it can be shown that for this regime the MSD
along the flow direction is (see Appendix A)〈

x̃2
1 (t̃)

〉 = 2t̃

PeU

+ ud cos2(θ0)t̃2 + O(t̃3). (26)

Figure 4(b) shows the confinement effect along the transversal
direction. We see that its MSD starts linearly in time, then it
goes to a quadratic behavior, and finally for unconfined parti-
cles it reaches for long times a linear dependence again. For
confined particles its MSD reaches a constant value. Confine-
ment and the presence of a Poiseuille flow also influence the
angular probability distribution function. We see in Fig. 4(c)
that the standard deviation of the angular PDF grows as ε → 1.
In particular, we show this effect for t̃ = 300. A proof of
kurtosis and skewness indicates that this PDF for short times
is not Gaussian, whereas for long times it acquires a Gaussian
behavior. We also performed an analysis from a moving frame
(X1,X2) displaced with a velocity vm, that is, X1 = x1 − vmt

and X2 = x2. Note that this analysis was made for small
enough times in such a way that the particle does not reach the
walls. We plot in Fig. 5 the MSD along the flow direction with
respect to this new frame. Clearly, a quartic dependence of
the MSD is also present in self-propelled Brownian particles.
Note that this scaling cannot be seen in the laboratory frame
where the quadratic behavior screens the quartic one. The
black dashed line corresponds to the result given by Foister
and van de Ven [25] for a passive Brownian particle (ud = 0),
namely, 〈X̃2

1〉 = 2̃t/PeT + 7ε2̃t4/3 Pe2
T . We also see that as

activity increases, the quartic behavior will disappear.
We now turn to the effect of self-propulsion and the

presence of a Poiseuille flow on the swimmer’s diffusion,
what happens to the net displacement of a swimmer that
increases its propulsion while immersed in the same Poiseuille
flow. For this analysis we kept ε = 1, PeU = 47 600, and
Pe� = 6.1, which physically means that both the diameter of
the channel (in two dimensions) or tube (in three dimensions)
and the magnitude of vm were kept constant. We varied the
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FIG. 5. The MSD along the flow direction with respect to a
moving frame (X1,X2) displaced with a velocity vm, that is, X1 =
x1 − vmt and X2 = x2. In this frame the quartic time dependence can
be appreciated.

ud
ud
ud
ud

~ t

~ t2

x 22
t

ud
ud

P
t̃

t̃

θ

∼ t̃

ε = 0

t̃ = 300

u d

ud
ud
u d~ t

~ t2 ~ t2

t

x 12
t

x 12
t

(a)

(b)

(c)

FIG. 6. Effect of a Poiseuille flow and self-propulsion on the
MSD of a swimmer moving in two dimensions and confined in a
channel. (a) The MSD component along the axial direction. (b) The
MSD component along the transversal direction. (c) The PDF for
the orientational coordinate showing the effect of self-propulsion
on its standard deviation. For longer times this PDF becomes
Gaussian.

dimensionless velocity ud , as ud = {0,0.01,0.1,0.3}, meaning
that the particle swims faster as ud increases. The measure
of its average net displacement in time was calculated with
the particle’s MSD along the axial and transversal directions.
For the MSD along the flow direction, Fig. 6(a) shows that
the swimmer reaches longer distances as ud decreases, in
other words, a death (passive) Brownian particle will spread
better. This is because an active particle may perform upstream
swimming or may even become trapped as shown in Sec. III,
thus retarding the displacement along the flow direction.
Thermal fluctuations will eventually break the closed loops
and the particle will continue moving towards the imposed
direction by the flow. The inset of Fig. 6(a) shows that its MSD
starts linearly in time [characterized by Eq. (26)] but that it
reaches a quadratic dependence as t̃ → ∞. Figure 6(b) shows
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that as self-propulsion increases, the transversal coordinate
reaches its steady state faster, that is, self-propulsion causes
the particles to reach the walls in a shorter time compared
to passive ones. Self-propulsion also affects the angular PDF
since for this case (ε = 1) rotation and translation are fully
coupled. Figure 6(c) shows the angular probability distribution
functions for the cases ud = {0.01,0.3} and for t̃ = 300. This
figure indicates that as ud decreases the standard deviation of
the angular PDF increases. It was also observed from a kurtosis
and skewness test that only for long times, the orientational
PDF becomes Gaussian. For comparison purposes, we show in
the same figure (black dashed line) the PDF for the case when
there is no coupling between the angular and translational
dynamics.

V. MEAN-SQUARE DISPLACEMENT IN
THREE DIMENSIONS

We generalize our study by simulating a Brownian swim-
mer moving in three dimensions and inside a cylinder (with
specular walls that do not influence the swimmer’s rotation)
of radius R. This swimmer has a fully rotational freedom, that
is, in a spherical coordinate system, it can rotate along the
azimuthal ϕ and polar θ directions. For this 3D situation we
define x(t) = [x1(t),x2(t),x3(t)] and e(t) = [e1(t),e2(t),e3(t)],
with e1(t) = sin θ (t) cos ϕ(t), e2(t) = sin θ (t) sin ϕ(t), and
e3(t) = cos θ (t), and we assume that the particle is subject to a
Poiseuille flow of the form u∞ = vm[1 − x2

1/R2 − x2
2/R

2]k.

By nondimensionalizing Eqs. (1) and (2) in the same way as
in the 2D case, the dynamics of a self-driven particle in three
dimensions is dictated by

˙̃x1(t̃) = ude1(t̃) + f̃1(t̃), (27)

˙̃x2(t̃) = ude2(t̃) + f̃2(t̃), (28)

˙̃x3(t̃) = [
1 − ε2x̃2

1 (t̃) − ε2x̃2
2 (t̃)

] + ude3(t̃) + f̃3(t̃), (29)

ė(t̃) = �̃(t̃)×e(t̃), (30)

where in this case the swimmer’s angular velocity is given by

�̃(t̃) = ε2[x̃1(t̃)j−x̃2(t̃)i] + g̃(t̃). (31)

Note that Eqs. (27)–(30) represent a 6 × 6 coupled system.
We solve the latter system numerically. Let us start with
the effect of a Poiseuille flow and confinement (neglecting
hydrodynamic interactions between the swimmer and walls)
on the swimmer’s diffusion. For the simulations we consider
PeU = 47 600, Pe� = 6.1, and ud = 0.1, whereas the initial
position and orientations are x̃1(0) = x̃2(0) = x̃3(0) = 0, θ0 =
π/4, and ϕ0 = 0. The results are shown in Fig. 7, where
the MSD (solid lines) for the x2 (transversal axis) and x3

(longitudinal axis) coordinates is plotted as a function of
time. Three different cylinder diameters were chosen, namely,
ε = {0.001,0.125,1}. The value ε = 0.001 corresponds to a
nearly unbounded domain where the Poiseuille flow is almost
a uniform flow. In the same figure, we superpose (dashed lines)
our previous 2D results. We observe that the behavior of the
swimmer in a 3D situation is practically the same as in two

2 D 3 Dt

x 22
t

~ t

~ t2

~ t~ t

x 22
t

∼ t̃

t̃

∼ t̃2

2 D 3 D

~ t

~ t2

~ t2

t

x 32
t

~ t2

t

x 32
t

t̃

(a)

(b)

FIG. 7. Effect of a Poiseuille flow and confinement on the MSD
of a swimmer moving in three dimensions and for the radii of
three different channels, namely, ε = {0,0.125,1}. (a) The MSD
component along the axial direction x3. (b) The MSD component
along the transversal direction x2. The MSD for a swimmer displaced
in two dimensions is also plotted for comparison purposes.

dimensions. It can also be seen that in a 2D environment, a
swimmer reaches longer distances, since in three dimensions
the particle possesses two more degrees of freedom. The inset
of Fig. 7(a) shows that for longer times the MSD along the
flow direction scales as ∼t̃2. This MSD also presents a quartic
scaling (before the particle reaches the walls) that can only
be seen in the same moving frame as in the 2D case. Finally,
Fig. 7(b) shows the confinement effect along the transversal
direction. In that figure, our previous 2D results are also
superposed (dashed lines). Once again and for a given time,
the particle reaches longer distances in two dimensions than
in three dimensions. For both cases, the confinement effect on
the MSD along the transversal direction is the same.

The effect of self-propulsion and the presence of a
Poiseuille flow on the swimmer’s diffusion in three dimensions
is also studied. For this analysis we kept ε = 1, PeU = 47 600,
and Pe� = 6.1 and varied the dimensionless velocity as
ud = {0,0.01,0.1,0.3}; in other words, we kept the same
cylinder and the same flow rate of the Poiseuille flow, but
we varied the swimmer’s velocity. Figure 8(a) shows the
MSD along the flow direction. In accord with the 2D model
(superposed in the same figure as dashed lines), one can see
that the swimmer reaches longer distances as ud decreases
and that as self-propulsion increases the transversal coordinate
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x
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FIG. 8. Effect of a Poiseuille flow and self-propulsion on the
MSD of a swimmer moving in three dimensions and confined
in a cylinder. (a) The MSD component along the axial direction.
(b) The MSD component along the transversal direction. The MSD for
a swimmer displaced in two dimensions is also plotted for comparison
purposes.

reaches its steady state faster [see Fig. 8(b)]. With the latter
comparison, one corroborates that for the present system, a
two-dimensional model gives qualitative results very similar
to those for a fully three-dimensional one. Finally, we show
that trapping of a swimmer moving in three dimensions
and subject to a Poiseuille flow is also possible. The main
question here is whether we can find a trapping condition
for this scenario similar to Eq. (13). Our imposed flow is
of the form u∞ = vm[1 − x2

1/R2 − x2
2/R

2]k, hence it has
azimuthal symmetry and thus along each plane ϕ = const,
the condition given by Eq. (13) should also hold in three
dimensions. We thus follow that condition and impose it in

our 3D numerical simulations. We choose θ0 = 15◦, hence
we get from Eq. (13) that u∗

d = −0.983 532. We also selected
different azimuthal angles, namely, ϕ = {0◦,45◦,90◦,135◦}.
Thus, by solving Eqs. (27)–(30) in the absence of noise, under
the latter conditions, we obtained the closed orbits shown in
Fig. 9(a). After that, very small thermal fluctuations were
systematically added and their effect on the closed orbits
can be appreciated in Figs. 9(b)–9(d). The translational and
rotational Péclet numbers PeU and Pe�, respectively, used in
Figs. 9(b)–9(d) were both of order ∼105, ∼104, and ∼103,
respectively. One can see that as the thermal noise increases,
the particle no longer develops closed paths. From several
simulations we observed that for longer times the swimmers
will eventually leave its trapping region.

VI. HYDRODYNAMIC INTERACTIONS
WITH WALLS

To take into account HEs between walls and swimmer and
see their possible consequences on the particle’s diffusion,
we concentrate on a two-dimensional scenario (see Fig. 1)
and model our active particle following the force dipole
approximation [46]. This far-field theory provides the induced
translational and angular velocities on the swimmer due to
the presence of walls. The anisotropy of the translational
diffusion coefficient due to the walls was also considered,
but the rotational diffusion coefficient was kept constant
in this simple model. In this sense, the translational dif-
fusion coefficients parallel and perpendicular to the walls
read [47]

D‖ = DB

[
1 − 9

16

(
a

x2 + R
+ a

x2 − R

)]
,

D⊥ = DB

[
1 + 9

8

(
a

x2 + R
+ a

x2 − R

)]
.

Within this approach, the dynamics of the Brownian swimmer
in dimensionless form is

˙̃x1 = 1 − ε2x̃2
2 + ud cos θ +

√
2

Pe‖
Wx̃1

− 3p̃

64π
sin θ cos θ

[
1

(1 + εx̃2)2
− 1

(1 − εx̃2)2

]
, (32)

(a) (b) (c) (d)

FIG. 9. Three-dimensional closed orbits and effect of thermal fluctuations on the trapping phenomenon. (a) Three possible orbits of a
swimmer for an initial angle θ0 = 15◦ and for several azimuthal angles, namely, ϕ = {0◦,45◦,90◦,135◦}. Thermal fluctuations are added that
correspond to translational and rotational Péclet numbers (b) {PeU ,Pe�} ∼ 105, (c) {PeU ,Pe�} ∼ 104, and (d) {PeU ,Pe�} ∼ 103.
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FIG. 10. (a) Comparison among the MSD of pullers p+ and
pushers p−, both subject to hydrodynamic wall effects, and a
swimmer with only specular boundary conditions p0. (b) Difference
between the MSD along the flow direction in the absence of HEs
〈x̃2

1 (t̃)〉 and the MSD in the presence of HEs for pushers 〈x̃2
1 (t̃)〉+ and

pullers 〈x̃2
1 (t̃)〉−.

˙̃x2 = ud sin θ +
√

2

Pe⊥
Wx̃2

− 3p̃

64π
(3 sin2 θ − 1)

[
1

(1 + εx̃2)2
− 1

(1 − εx̃2)2

]
,

(33)

θ̇ = ε2x̃2 +
√

2

PeR

Wθ

− 3p̃

64π
sin θ cos θ

[
1

(1 − εx̃2)3
+ 1

(1 + εx̃2)3

]
, (34)

where we define p̃ = p/vmR2η, Pe‖ = vml/D‖, and Pe⊥ =
vml/D⊥. Here Wx̃1 , Wx̃2 , and Wθ are independent white noise
processes. In our simulations we chose the dipole strength p,
equal to p = 0.8 pN μm for pushers and p = −0.8 pN μm
for pullers [46]. We allowed the swimmer to approach the
walls no more than L/l = 0.1, in accord with experimental
studies [46]. Figures 10(a) and 10(b) show results for the case
ε = 0.1, PeU = 119, ud = 1, θ0 = π/4, and Pe� = 6.1 for
10 000 realizations and for particles initially at the origin. The
symbols p+, p−, and p0 indicate, respectively, that in the
simulation a pusher, puller, and swimmer without HEs were
considered. Figure 10(a) shows that HEs for both pushers and
pullers do not seem to influence the behavior of the MSD. We

additionally subtracted the MSD along the flow direction in the
absence of HEs 〈x̃2

1 (t̃)〉, with the MSD in the presence of HEs
for pushers 〈x̃2

1 (t̃)〉+ and pullers 〈x̃2
1 (t̃)〉−. This result is shown

in Fig. 10(b). One can see that such a difference oscillates
around zero, hence it seems that within this model HEs do not
play an important role. Probably, HE interactions could affect
the swimmer’s diffusion only if the radius of the channel is a
few times the size of the swimmer [31].

VII. CONCLUSION

In summary, we have studied the effect of a Poiseuille flow
on both a deterministic and a Brownian swimmer. It was found
(theoretically and numerically) that a deterministic swimmer
can perform closed orbits due to hydrodynamic forces and
torques; in other words, a microsystem where a swimming
particle is subject to a Poiseuille flow, under certain values for
the ratio of swimming velocity and velocity of the Poiseuille
flow at the center of the channel or tube, can be used as a
trap. This observation could be validated by the experimental
community. It was found that the combination of a Poiseuille
flow and the presence of walls leads to a long-time quadratic
time behavior of the MSD along the flow direction, but that this
system also has a quartic time dependence before the swimmer
reaches the walls. We also concluded that an active Brownian
particle in a channel or tube, subject to a Poiseuille flow, travels
shorter distances compared to passive Brownian particles
since an active particle may perform upstream swimming
or even may become trapped for a while, thus retarding the
displacement along the flow direction. It was observed that a
two-dimensional model of the problem gave qualitative results
very similar to a more sophisticated three-dimensional study.
Finally, the inclusion of hydrodynamic effects between walls
and swimmer by means of a force dipole model suggested that
walls do not seem to affect the particle’s diffusion, at least for
situations when the channel’s radius is larger than a few times
the size of the swimmer.

ACKNOWLEDGMENT

M.S. thanks Consejo Nacional de Ciencia y Tecnologia for
support through Grant No. CB 2014/237848.

APPENDIX A: THE MSD FOR ε = 0 IN
TWO DIMENSIONS

In this appendix we provide the whole components of the
MSD tensor for the case ε = 0. These components are obtained
by using Eqs. (15)–(17) together with the correlations (20)–
(22). The MSD component along the flow direction is

〈[x̃1(t̃) − x̃10]2〉

= t̃2 +
(

u2
dPe� + 2

PeU

)
t̃

+2udPe� cos(θ0)(1 − e−t̃/Pe�)t̃ − u2
dPe2

�

+u2
dPe2

� cos(2θ0)

(
1

4
+ e−4t̃ /Pe�

12
− e−t̃ /Pe�

3

)
+u2

dPe2
�e−t̃/Pe� (A1)
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FIG. 11. The MSD along the flow direction for two different
Péclet numbers, namely, PeU ∼ 100 and PeU ∼ 1000. Solid lines
correspond to numerical simulations, while dashed lines correspond
to the theoretical equation (A1).

while for the transversal direction we get

〈[x̃2(t̃) − x̃20]2〉

=
(

u2
dPe� + 2

PeU

)
t̃ − u2

dPe2
� − u2

dPe2
� cos(2θ0)

×
(

1

4
+ e−4t̃/Pe�

12
− e−t̃/Pe�

3

)
+ u2

dPe2
�e−t̃/Pe� . (A2)

In addition, the cross-correlation component is

〈[x̃1(t̃) − x̃10][x̃2(t̃) − x̃20]〉

= udPe� sin(θ0)(1 − e−t̃/Pe�)t̃

+u2
dPe2

� cos(θ0) sin(θ0)

(
1

2
+ e−4t̃/Pe�

6
− 2e−t̃ /Pe�

3

)
.

(A3)

APPENDIX B: SIMULATIONS FOR OTHER
PÉCLET NUMBERS

In this Appendix we provide a plot (see Fig. 11) for the
MSD along the flow direction with the parameters ε = 0.1,
ud = 1, and θ0 = π/4 for 10 000 realizations, for particles
initially at the origin and for two different Péclet numbers, that
is, PeU ∼ 100 and PeU ∼ 1000. One can see that its MSD will
always follow a (long-time) quadratic time dependence. Their
corresponding theoretical MSD expressions [Eq. (A1)] for ε =
0 are also plotted in red and blue dashed lines. For short times,
theory coincides with the simulations, but for longer times
the MSD from the simulations is smaller than the theoretical
case.
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[31] A. Zöttl and H. Stark, Phys. Rev. Lett. 108, 218104 (2012).
[32] A. Zöttl and H. Stark, Eur. Phys. J. E 36, 1 (2013).
[33] A. Costanzo, R. Di Leonardo, G. Ruocco, and L. Angelani, J.

Phys.: Condens. Matter 24, 065101 (2012).
[34] S. Chilukuri, C. H. Collins, and P. T. Underhill, J. Phys.:

Condens. Matter 26, 115101 (2014).

062602-9

http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1146/annurev.fl.24.010192.001525
http://dx.doi.org/10.1146/annurev.fl.24.010192.001525
http://dx.doi.org/10.1146/annurev.fl.24.010192.001525
http://dx.doi.org/10.1146/annurev.fl.24.010192.001525
http://dx.doi.org/10.1017/S0022112007007847
http://dx.doi.org/10.1017/S0022112007007847
http://dx.doi.org/10.1017/S0022112007007847
http://dx.doi.org/10.1017/S0022112007007847
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1140/epje/i2008-10446-8
http://dx.doi.org/10.1140/epje/i2008-10446-8
http://dx.doi.org/10.1140/epje/i2008-10446-8
http://dx.doi.org/10.1140/epje/i2008-10446-8
http://dx.doi.org/10.1093/jac/48.1.7
http://dx.doi.org/10.1093/jac/48.1.7
http://dx.doi.org/10.1093/jac/48.1.7
http://dx.doi.org/10.1093/jac/48.1.7
http://dx.doi.org/10.1016/S0142-9612(03)00083-8
http://dx.doi.org/10.1016/S0142-9612(03)00083-8
http://dx.doi.org/10.1016/S0142-9612(03)00083-8
http://dx.doi.org/10.1016/S0142-9612(03)00083-8
http://dx.doi.org/10.1016/j.bej.2009.11.014
http://dx.doi.org/10.1016/j.bej.2009.11.014
http://dx.doi.org/10.1016/j.bej.2009.11.014
http://dx.doi.org/10.1016/j.bej.2009.11.014
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1177/0278364909341658
http://dx.doi.org/10.1177/0278364909341658
http://dx.doi.org/10.1177/0278364909341658
http://dx.doi.org/10.1177/0278364909341658
http://dx.doi.org/10.1007/s10544-011-9594-7
http://dx.doi.org/10.1007/s10544-011-9594-7
http://dx.doi.org/10.1007/s10544-011-9594-7
http://dx.doi.org/10.1007/s10544-011-9594-7
http://dx.doi.org/10.1021/nn506200x
http://dx.doi.org/10.1021/nn506200x
http://dx.doi.org/10.1021/nn506200x
http://dx.doi.org/10.1021/nn506200x
http://dx.doi.org/10.1038/srep09744
http://dx.doi.org/10.1038/srep09744
http://dx.doi.org/10.1038/srep09744
http://dx.doi.org/10.1038/srep09744
http://dx.doi.org/10.1038/scientificamerican0509-72
http://dx.doi.org/10.1038/scientificamerican0509-72
http://dx.doi.org/10.1038/scientificamerican0509-72
http://dx.doi.org/10.1038/scientificamerican0509-72
http://dx.doi.org/10.1002/anie.200600060
http://dx.doi.org/10.1002/anie.200600060
http://dx.doi.org/10.1002/anie.200600060
http://dx.doi.org/10.1002/anie.200600060
http://dx.doi.org/10.1021/nn100669h
http://dx.doi.org/10.1021/nn100669h
http://dx.doi.org/10.1021/nn100669h
http://dx.doi.org/10.1021/nn100669h
http://dx.doi.org/10.1073/pnas.0807305105
http://dx.doi.org/10.1073/pnas.0807305105
http://dx.doi.org/10.1073/pnas.0807305105
http://dx.doi.org/10.1073/pnas.0807305105
http://dx.doi.org/10.1016/j.mib.2015.03.003
http://dx.doi.org/10.1016/j.mib.2015.03.003
http://dx.doi.org/10.1016/j.mib.2015.03.003
http://dx.doi.org/10.1016/j.mib.2015.03.003
http://dx.doi.org/10.1021/nn3028997
http://dx.doi.org/10.1021/nn3028997
http://dx.doi.org/10.1021/nn3028997
http://dx.doi.org/10.1021/nn3028997
http://dx.doi.org/10.1017/S0022112080002042
http://dx.doi.org/10.1017/S0022112080002042
http://dx.doi.org/10.1017/S0022112080002042
http://dx.doi.org/10.1017/S0022112080002042
http://dx.doi.org/10.1017/S002211209400306X
http://dx.doi.org/10.1017/S002211209400306X
http://dx.doi.org/10.1017/S002211209400306X
http://dx.doi.org/10.1017/S002211209400306X
http://dx.doi.org/10.1006/bulm.2000.0178
http://dx.doi.org/10.1006/bulm.2000.0178
http://dx.doi.org/10.1006/bulm.2000.0178
http://dx.doi.org/10.1006/bulm.2000.0178
http://dx.doi.org/10.1103/PhysRevE.84.031105
http://dx.doi.org/10.1103/PhysRevE.84.031105
http://dx.doi.org/10.1103/PhysRevE.84.031105
http://dx.doi.org/10.1103/PhysRevE.84.031105
http://dx.doi.org/10.1017/jfm.2013.651
http://dx.doi.org/10.1017/jfm.2013.651
http://dx.doi.org/10.1017/jfm.2013.651
http://dx.doi.org/10.1017/jfm.2013.651
http://dx.doi.org/10.1007/s10867-015-9401-4
http://dx.doi.org/10.1007/s10867-015-9401-4
http://dx.doi.org/10.1007/s10867-015-9401-4
http://dx.doi.org/10.1007/s10867-015-9401-4
http://dx.doi.org/10.1103/PhysRevLett.108.218104
http://dx.doi.org/10.1103/PhysRevLett.108.218104
http://dx.doi.org/10.1103/PhysRevLett.108.218104
http://dx.doi.org/10.1103/PhysRevLett.108.218104
http://dx.doi.org/10.1140/epje/i2013-13001-8
http://dx.doi.org/10.1140/epje/i2013-13001-8
http://dx.doi.org/10.1140/epje/i2013-13001-8
http://dx.doi.org/10.1140/epje/i2013-13001-8
http://dx.doi.org/10.1088/0953-8984/24/6/065101
http://dx.doi.org/10.1088/0953-8984/24/6/065101
http://dx.doi.org/10.1088/0953-8984/24/6/065101
http://dx.doi.org/10.1088/0953-8984/24/6/065101
http://dx.doi.org/10.1088/0953-8984/26/11/115101
http://dx.doi.org/10.1088/0953-8984/26/11/115101
http://dx.doi.org/10.1088/0953-8984/26/11/115101
http://dx.doi.org/10.1088/0953-8984/26/11/115101


LEONARDO APAZA AND MARIO SANDOVAL PHYSICAL REVIEW E 93, 062602 (2016)

[35] R. Rusconi, J. S. Guasto, and R. Stocker, Nat. Phys. 10, 212
(2014).

[36] K. D. Young, Microbiol. Mol. Biol. Rev. 70, 660 (2006).
[37] R. Golestanian, T. B. Liverpool, and A. Ajdari, New J. Phys. 9,

126 (2007).
[38] J. F. Brady, J. Fluid Mech. 667, 216 (2010).
[39] S. Thutupalli, R. Seemann, and S. Herminghaus, New J. Phys.

13, 073021 (2011).
[40] M. Schmitt and H. Stark, Europhys. Lett. 101, 44008 (2013).
[41] H. C. Berg, E. coli in Motion (Springer, New York, 2004).
[42] M. Doi and S. Edwards, The Theory of Polymer Dynamics

(Clarendon, Oxford, 1999).

[43] W. Coffey, Y. Kalmikov, and Y. Valdron, The Langevin Equa-
tion: With Applications in Physics, Chemistry and Electrical
Engineering (World Scientific, Hackensack, 1996).

[44] X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li,
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