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Distribution over pore radii in random and isotropic systems of polydisperse rods
with finite aspect ratios
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Excluded-volume arguments are applied toward modeling the pore-size distribution in systems of randomly
arranged cylindrical rods with finite and nonuniform aspect ratios. An explicit expression for the pore-size
distribution is obtained by way of an analogy to a hypothetical system of fully penetrable objects, through
a mapping that is designed to preserve the volume fraction occupied by the particle cores and the specific
surface area. Results are presented for the mean value and standard deviation of the pore radius as functions
of the rod aspect ratio, volume fraction, and polydispersity (degree of nonuniformity in the aspect ratios of the
particles).
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I. INTRODUCTION

Quantitative models for the pore-size distribution play a
central role in characterizing mobility [1], partitioning, and
diffusion [2–6] in gels, fiber networks, and related sterically
hindered environments. An early and influential result [7,8]
in this area examined the case of randomly arranged fibers
with lengths that were assumed to be very large relative to
their diameter (or width) and that occupied infinitesimally
small volume fractions. More recently, approaches have been
developed [9,10] that extend the applicability of this finding
to a wider range of volume fractions and that correctly
predict mean values for the pore radii that vanish when
the particle-occupied volume fraction approaches unity [11].
Recent works [12,13] have examined the case of rods of
zero width (line segments) and finite, uniform lengths as the
obstacles. Nevertheless, the approximations that fibers are of
uniform dimensions (that is, are “monodisperse”) and have
very large (effectively infinite) aspect ratios are still frequently
invoked. The present work describes a modeling framework
that aims to relax these assumptions.

We consider a system of randomly arranged and isotropi-
cally oriented cylindrical fibers, where the lengths and radii of
the particles follow a distribution function that we assume to be
known. The (impenetrable) particles that comprise this system
are then mapped onto a hypothetical, analogous system of fully
penetrable monodisperse (uniform-sized) rods in a fashion that
preserves (i) the volume fraction occupied by the cores of the
particles, and (ii) the specific surface area per unit volume [11].
This analogy allows us to treat the volume fraction and
specific surface area as the key microstructural variables and
permits the development of a simple excluded-volume model
that involves the mutually interpenetrable particles. Excluded-
volume arguments applied to the steric interaction between a
test sphere and the hypothetical, interpenetrable particles (that,
however, are not permitted to overlap the test sphere) lead
to an expression for the pore-size distribution function that
accounts for polydispersity in the distribution over radii and
lengths of the original system of impenetrable objects. It bears
noting that although our formalism may appear to be nominally

*apchatte@esf.edu

applicable to the full range of occupied volume fractions
0 � φ � 1, random systems of nonpenetrable particles exhibit
random close packing (or jamming) at volume fractions that
are smaller than unity and that depend upon the aspect ratio
of the particles [14–16]. This threshold acts as an upper
bound to the domain over which our results are applicable,
and is relevant also for earlier, classical models for the pore
size distribution. Our analysis follows lines similar to those
developed in Ref. [11] for mixtures of rods and disks, with
the present work focusing upon effects due to polydispersity
and those arising out of the finite aspect ratio of real rod-like
particles.

The specification of our model and our calculation of the
pore-size distribution are presented in Secs. II A and II B,
respectively, and our model for polydispersity is described in
Sec. II C. Sections III and IV present results for the mean
pore radius and standard deviation in the pore radii from
calculations performed using the formalism of Sec. II, and
concluding remarks, respectively.

II. DISTRIBUTION OVER PORE SIZES IN A RANDOM
ARRAY OF POLYDISPERSE RODS

A. Specification of the model system

We consider a system of isotropically oriented and ran-
domly distributed, impenetrable, cylindrical rods, with radii
and lengths denoted by the symbols R and L, respectively.
The dimensions of the individual particles are described
by the probability distribution function ψ(R,L), which is
normalized such that

∫ ∞
0 dRdLψ(R,L) = 1, and moments

over this distribution are denoted using the notation 〈RnLm〉 =∫ ∞
0 dRdLRnLmψ(R,L). The volume fraction occupied by the

cores of the rods, denoted φ, satisfies φ = πρ〈R2L〉, where
ρ represents the overall number density of rods regardless
of their length or radius. The pore-size distribution [denoted
f (r)] is defined such that f (r)dr equals the probability that
a randomly chosen point located in the void space (that is,
outside the impenetrable particle cores) is located at a distance
within the range (r,r + dr) from the surface of the nearest rod.
We next consider a mapping of this system of polydisperse,
impenetrable particles onto a hypothetical analogous system
of fully mutually penetrable cylinders that are assumed to
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have uniform (monodisperse) dimensions and to be oriented
isotropically. The number densities, radii, and lengths that
characterize the fully penetrable particles are denoted ρ0,R0,
and L0, respectively. A nondimensionalized density for the
system of penetrable particles is introduced according to η =
πρ0R

2
0L0. The penetrable particles comprising the analogous,

dual system are assumed to be located and oriented in a fully
uncorrelated, random fashion.

The probability that a test sphere with radius denoted r

and centered at a randomly chosen point anywhere within the
system of penetrable particles does not overlap any of the
(mutually interpenetrable) rods equals [17]

K(r) = e−ρ0ν, (1)

where ν denotes the orientationally averaged excluded volume
between the test sphere and any of the penetrable rods and is
given by [18,19]

ν = πR0
2L0 + 4πr3

3
+ 2πR0r(L0 + R0)

+πr2(πR0 + L0). (2)

The pore-size distribution for the penetrable particle system
is determined next from K(r) and Eqs. (1) and (2). Following
upon this step, the dimensions of the penetrable (subscript
“0”) particles will be related to those of the impenetrable
(unsubscripted) particles by requiring that (i) the occupied
volume fraction, and (ii) the surface area per unit volume, be
equal for both the subscripted and unsubscripted systems. This
(admittedly heuristic) formalism will lead to a closed form for
the pore-size distribution that accounts for polydispersity and
finite rod-length effects from a viewpoint that treats the volume
fraction and specific surface area as the key microstructural
descriptors.

B. Determination of the pore-size distribution

Examination of the probability for no overlaps for the case
of a test sphere of zero radius (r → 0) using Eqs. (1) and (2)
reveals that the volume fraction (denoted φ) that is occupied
by the cores of the penetrable particles (and thereby forbidden
to the test sphere) is

K(r → 0) = 1 − φ = e−πρ0R0
2L0 , (3)

which may also be written as

η = − ln(1 − φ) = πρ0R
2
0L0. (4)

Restriction of the choice location for the center of the
test sphere to points that are within the free volume (thereby
excluding the space that is actually occupied by the cores of
the particles) requires modification of our result for K(r) in
Eq. (1) by a factor of 1(1 − φ):

K0(r) = K(r)

(1 − φ)
= e−ρ0ν+η. (5)

Equations (2) and (5) yield

K0(r) = e−A(r), (6)

where

A(r) = η

[
4

3

(
r

R0

)2(
r

L0

)
+ 2

(
1 + R0

L0

)(
r

R0

)

+
(

πR0

L0
+ 1

)(
r

R0

)2]
. (7)

The pore-size distribution function,f (r), is ascertained
from Eqs. (6) and (7) as follows:

f (r) = −∂K0(r)

∂r
=

(
∂A

∂r

)
e−A(r), (8)

where the function A(r) is given by Eq. (7) and f (r) satisfies
the normalization relation:

∫ ∞
0 drf (r) = 1. In our next step

that completes the mapping, we relate the quantities η,R0, and
L0 that characterize the penetrable particles to the variables
that pertain to the impenetrable cylinders (which have been
assumed to be polydisperse).

Equations (7) and (8) show that the specific surface area
per unit volume for the system of penetrable particles is given
by [17,20]

s0 = (1 − φ) Lt
r→0

f (r) =
(

2

R0

)
η(1 − φ)

(
1 + R0

L0

)
, (9)

where φ represents the volume fraction occupied by the
cores of the penetrable particles and is to be equated to the
corresponding core-occupied volume fraction for the system
of nonpenetrable objects. Corresponding to Eq. (9), the specific
surface area for the system of polydisperse nonpenetrable rods
is

s = 2φ[〈RL〉 + 〈R2〉]
〈R2L〉 . (10)

We next equate the specific surface areas from Eqs. (9)
and (10) and use Eq. (4) to obtain the condition(

1

R0
+ 1

L0

)
= φ[〈RL〉 + 〈R2〉]

(1 − φ)η〈R2L〉 , (11)

which we require to be satisfied for all permissible choices
of the volume fraction and particle-size distribution function
ψ(R,L). Based upon the structure of Eq. (11), we adopt the
following ansatz for ρ0,R0, and L0:

R0 = η

(
1 − φ

φ

)( 〈R2L〉
〈RL〉

)
, (12)

L0 = η

(
1 − φ

φ

)( 〈R2L〉
〈R2

)
, (13)

and

ρ0 =
(

φ

1 − φ

)3( 〈RL〉2〈R2〉
πη2〈R2L〉3

)
. (14)

The choices made in Eqs. (12)–(14) ensure that for
monodisperse systems, R0 (or L0) depends only upon R (or L)
and φ and is independent of L (or R), and that as the volume
fraction approaches zero each of the quantities ρ0,R0, and
L0 approaches ρ,R, and L, respectively. It also bears noting
that the ansatz expressed by Eqs. (12)–(14) leads to a value
for the aspect ratio of the hypothetical penetrable particles,
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L0/R0 = 〈RL〉/〈R2〉, which is independent of the volume
fraction.

Equations (4), (7), (8), and (12)–(14) yield the following
expressions for the mean and mean-squared values for the
pore-size distribution (following a step of integration by parts):

〈r〉
〈R〉 = 1

〈R〉
∫ ∞

0
drf (r)r

=
( 〈R2L〉
〈R〉〈RL〉

)
g(φ)

∫ ∞

0
dxe−ηB(R0/L0,x), (15)

and

〈r2〉
〈R〉2 = 1

〈R〉2

∫ ∞

0
drf (r)r2

= 2

( 〈R2L〉
〈R〉〈RL〉

)2

g2(φ)
∫ ∞

0
dxe−ηB(R0/L0,x)x, (16)

where

g(φ) = (1 − φ)η

φ
, (17)

and

B

(
R0

L0
,x

)
= 4

3

(
R0

L0

)
x3 +

(
πR0

L0
+ 1

)
x2 + 2

(
1 + R0

L0

)
x.

(18)

The variable of integration x in Eqs. (15) and (16) represents
x = r/R0, where r is the pore radius variable.

The results presented in Sec. III for rod systems with
finite aspect ratios are obtained by numerical evaluation of
the integrals that appear in Eqs. (15) and (16). However, in
cases where the aspect ratios for all the rods are large enough
that one may take the limit R0/L0 → 0 in Eq. (18), that is
when 〈RL〉 � 〈R2〉, the integrals in Eqs. (15) and (16) can be
evaluated in closed form [21] to yield

〈r〉
〈R〉

∣∣∣∣
L→∞

=
(√

πη

2φ

)( 〈R2L〉
〈R〉〈RL〉

)
Erfc(

√
η), (19)

and

〈r2〉
〈R〉2

∣∣∣∣
L→∞

=
( 〈R2L〉

〈R〉〈RL〉
)2(

g2(φ)

η

)

× [1 − √
πηeηErfc(

√
η)], (20)

where g(φ) is defined in Eq. (17) and Erfc denotes the
complementary error function. It can be verified from Eq. (17)
that the function g(φ) decreases monotonically from unity
to zero as φ increases from zero to unity. For the situation of
monodisperse particles (for which R and L have unique values)
with effectively infinite aspect ratios, Eqs. (19) and (20) reduce
to the classic results derived by Ogston et al. [7,8] in the limit of
vanishingly small volume fractions. Additionally, inspection
of Eqs. (15)–(18) for the case of monodisperse rods shows that
accounting for finite aspect ratio effects lowers the mean and
mean-squared pore radii, namely, that if the volume fraction
and R are held fixed, systems with shorter rods will exhibit
smaller values of 〈r〉 and 〈r2〉.

C. Modeling the impact of polydispersity

In considering the impact of polydispersity upon the first
two moments of the pore radii we restrict our attention to the
cases where the rods exhibit either (i) a distribution of lengths
for a uniform value of the radius, or (ii) a distribution of radii
for a uniform value of the length, in the interests of simplicity.
Equations (12)–(18) reveal that in the most general case, the
moments of ψ(R,L) that control the pore radius distribution
are 〈R〉,〈R2〉,〈RL〉, and 〈R2L〉.

For a population of rods with a uniform hard-core radius
R but a distribution over the lengths L, we find from
Eqs. (15)–(18) that for a fixed value of R, 〈r〉 and 〈r2〉 are
predicted to depend exclusively upon the volume fraction φ

and the ratio R/〈L〉. Increasing the mean aspect ratio 〈L〉/R for
a fixed volume fraction diminishes the function B(R0/L0,x) of
Eq. (18) for each fixed value of x, leading to (monotonically)
larger values for both 〈r〉 and 〈r2〉.

In the complementary case where the rods are assumed
to be characterized by a uniform length L but to have a
distribution over their radii, it proves convenient to consider the
normalized moments of the pore radii 〈r〉/〈R〉 and 〈r2〉/〈R〉2

,
as in Eqs. (15) and (16). Under these conditions, the normalized
moments 〈r〉/〈R〉 and 〈r2〉/〈R〉2

are seen to depend upon the
volume fraction, L/〈R〉, and 〈R2〉/〈R〉2. For concreteness, the
calculations for which results are presented in Sec. III assume
that the radii of the rods follow a Schulz distribution [17],
namely that

ψ(R′,L′) = δ(L′ − L)

(
1


(m + 1)

)(
m + 1

〈R〉
)m+1

×R′me−(m+1)R′/〈R〉, (21)

where the symbols δ and 
 denote the Dirac delta function and
Gamma function, respectively. The distribution of Eq. (21) is
unimodal and is characterized by the quantities 〈R〉 and m,
where the allowed range for m is 0 � m � ∞. In the limit that
m approaches infinity, Eq. (21) approaches a monodisperse
Dirac delta function centered at 〈R〉, and when m approaches
zero Eq. (21) reduces to an exponential distribution. Moments
of the Schulz distribution [Eq. (21)] are given by

〈Rp〉
〈R〉p = 
(p + m + 1)

(m + 1)p
(m + 1)
, (22)

which yields

m + 1 = 〈R〉2/σR
2, (23)

where σR denotes the standard deviation in the rod radii. (We
similarly use the symbol σr to denote the standard deviation
in the pore radii, that is σr

2 = 〈r2〉 − 〈r〉2). Given that the
allowed range of values for m is 0 � m � ∞, Eq. (23) shows
that for this choice of the distribution function ψ(R,L), the
standard deviation σR is restricted to values that are no larger
than the average rod radius 〈R〉. Figure 1 displays results
for the pore-radius distribution function f (r) calculated from
Eqs. (7), (8), (12), and (13) for a system of rods that have
uniform lengths but polydisperse radii. For fixed values of the
volume fraction and average aspect ratio L/〈R〉, the peak in the
pore-size distribution moves toward larger radii and becomes
broadened and flattened with increasing polydispersity in the
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FIG. 1. The normalized pore radius distribution function calcu-
lated from Eqs. (7), (8), (12), and (13), 〈R〉f (r), is shown as a function
of r/〈R〉 for rods with an aspect ratio L/〈R〉 = 50 and volume fraction
φ = 0.05. The solid and broken lines correspond to monodisperse
rods (σR = zero) and to polydisperse rods for which σR = 〈R〉,
respectively. The mean value and standard deviation of the pore
radii (calculated from Eqs. (15)–(18)) are equal to 〈r〉/〈R〉 = 2.81
and σr/〈R〉 = 1.72 for the monodisperse rods (solid line), and
〈r〉/〈R〉 = 5.32 and σr/〈R〉 = 3.19 for the polydisperse rods (broken
line), respectively.

rod radii. These trends are manifested in concomitant increases
in 〈r〉/〈R〉 and σr/〈R〉 with increasing polydispersity. Results
from calculations of 〈r〉/〈R〉 and σr/〈R〉 as functions of the
volume fraction, mean aspect ratio, and σR/〈R〉 are presented
in Sec. III.

III. RESULTS

In presenting results for the mean pore radius and the
standard deviation in pore radii as calculated from our model,
we first consider the case of monodisperse rods for which L
and R have unique values. Figures 2 and 3 display results for
〈r〉/R and σr/R as functions of φ and 〈r〉/R, respectively, for

FIG. 2. The mean pore radius normalized by the rod radius,
〈r〉/R, is shown as a function of the volume fraction φ for
monodisperse rods. The solid curve displays the result for the
limiting case: L/R → ∞ [Eq. (19)]. The lower and upper broken
curves correspond to L/R equal to 20 and 100, respectively, and are
calculated from Eqs. (15), (17), and (18). The upper broken curve is
nearly indistinguishable from the solid curve.

FIG. 3. The standard deviation in the radius normalized by the
rod radius, σr/R, is shown as a function of the normalized mean
pore radius 〈r〉/R for monodisperse rods. The solid curve displays
the result for the limiting case: L/R → ∞ [Eqs. (19) and (20)]. The
lower and upper broken curves correspond to L/R equal to 20 and
100, respectively, and are calculated from Eqs. (15)–(18).

different fixed values of R/L. The broken lines in Figs. 2 and 3
are calculated from Eqs. (15)–(18); the solid lines represent
the limiting case of monodisperse rods with infinite aspect
ratios and are calculated from Eqs. (19) and (20). In Fig. 3,
the volume fraction increases as we travel from right to left
across the figure. For each fixed value of R/L, both 〈r〉/R
and σr/R are found to be monotonically decreasing functions
of the volume fraction φ. As mentioned briefly in Sec. II C,
increasing the aspect ratio (reducing R/L) for a fixed value of
φ translates into larger values for the mean pore radius, in a
trend that saturates when L/R ≈ 100.

The physical basis for this effect arises from the circum-
stance that in order to achieve a given volume fraction with a

FIG. 4. The mean pore radius normalized by the average rod
radius, 〈r〉/〈R〉, for rods with uniform lengths and polydisperse
radii, is shown as a function of the normalized standard deviation
in the rod radii σR/〈R〉. The rod radii are assumed to follow a
Schulz distribution in each case. The upper and lower solid lines
correspond to L/〈R〉 → ∞ [Eq. (19)] for the fixed volume fractions
φ = 0.025 (upper) and φ = 0.1 (lower), respectively. The upper and
lower dashed lines correspond to L/〈R〉 = 100 [Eqs. (15)–(18)], for
the fixed volume fractions φ = 0.025 (upper) and φ = 0.1 (lower),
respectively. The upper and lower dotted lines correspond to L/〈R〉 =
20 [Eqs. (15)–(18)], for the fixed volume fractions φ = 0.025 (upper)
and φ = 0.1 (lower), respectively.
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FIG. 5. The standard deviation of the pore radii normalized by
the average rod radius, σr/〈R〉, for rods with uniform lengths and
polydisperse radii, is shown as a function of the normalized standard
deviation in the rod radii σR/〈R〉. The rod radii are assumed to follow
a Schulz distribution in each case. The upper and lower solid lines
correspond to L/〈R〉 → ∞ [Eqs. (19) and (20)] for the fixed volume
fractions φ = 0.025 (upper) and φ = 0.1 (lower), respectively. The
upper and lower dashed lines correspond to L/〈R〉 = 100 [Eqs. (15)–
(18)], for the fixed volume fractions φ = 0.025 (upper) and φ = 0.1
(lower), respectively. The upper and lower dotted lines correspond
to L/〈R〉 = 20 [Eqs. (15)–(18)], for the fixed volume fractions φ =
0.025 (upper) and φ = 0.1 (lower), respectively.

population of longer rods, there must exist a smaller number
density of rods per unit volume of the system. Thus, as the
aspect ratio (L/R) is increased, although the excluded volume
between each individual rod and a test sphere of fixed radius
also becomes larger, there are concomitantly fewer randomly
located particles per unit volume that might overlap with
the test sphere. This reduction in the number of independent
and randomly arranged particles, each of which individually
exhibits a larger excluded volume with respect to the test
sphere, explains the increase in 〈r〉/R with L/R for fixed
values of φ that is observed in Fig. 2. Similar arguments apply
toward the behavior observed for σr/R in Fig. 3.

The impact of polydispersity in the radii of the rods upon
〈r〉/〈R〉 and σr/〈R〉 for fixed value of L/〈R〉 and φ is explored
in Figs. 4 and 5. Each of the calculations in Figs. 4 and 5 is

performed for a Schulz distribution [Eq. (21)] over the rod
radii, and the rods are assumed to have uniform lengths L.
The broken and solid lines in Figs. 4 and 5 are evaluated
from Eqs. (15)–(18), and (19) and (20), respectively. For each
case examined, increasing polydispersity in the rod diameters
(quantified by σR/〈R〉) leads to larger values for both 〈r〉/〈R〉
and σr/〈R〉 for fixed values of L/〈R〉 and φ. Larger values
of L/〈R〉 for fixed values of σR/〈R〉 and φ correspond to
increases in both 〈r〉/〈R〉 and σr/〈R〉, in a manner similar
to that reported for monodisperse systems in Figs. 2 and 3.
The sensitivity of both 〈r〉/〈R〉 and σr/〈R〉 toward changes
in L/〈R〉 decreases with increase in the volume fraction.
A similar trend of increase in the mean pore radius with
polydispersity in the dimensions of the obstacles has been
reported in prior work that examined the situation of randomly
located polydisperse spherical particles [17,22].

IV. CONCLUDING REMARKS

A model has been developed for the pore-size distribution
in systems of polydisperse rods with finite aspect ratios
that exploits an analogy between systems of penetrable and
impenetrable particles. It bears reiterating that our arguments
ought to be viewed as entirely heuristic and motivated by
the physical notion that the volume fraction and specific
surface area are key microstructural descriptors, and that our
development makes no pretense to be rigorous. Accounting
for the finite nature of the rod aspect ratio is shown to reduce
the mean pore radius when compared to that predicted for
fibers with infinite aspect ratios at equal volume fractions.
Additionally, polydispersity in the diameters of the rods is
found to increase the expected mean pore radius, again under
conditions of fixed volume fraction. When used in conjunction
with implementations of the cell model [3,4], the present
framework may prove to be useful for describing the impact
of steric (excluded-volume) interactions upon diffusion and
partitioning of tracer particles in realistic fiber networks [23].
Further development and analysis along the lines of this
approach would also greatly benefit from appropriate computer
simulation studies. It is hoped that our results encour-
age more such investigations that focus upon polydisperse
systems.
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