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Single-particle mechanism of magnetostriction in magnetoactive elastomers
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Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic
particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming
the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields
is identified and considered theoretically within the framework of an alternative model. In this mechanism, the
total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix
displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated.
The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than
the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft
magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead
to effects of magnetodeformation and may increase the elastic moduli of these composite materials.
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I. INTRODUCTION

Magnetoactive elastomers (MAEs) consist of micrometer-
sized ferromagnetic particles embedded into a nonmagnetic
soft elastomer matrix [1]. Since the resulting composite
material is ferromagnetic, an associated physical phenomenon,
the so-called magnetostriction (MS) is observed in MAEs
[2–6]. Obviously, an externally applied magnetic field can
cause MS of filling particles, but this effect is very small
(field-induced strain ∼ 10−6 − 10−5) and can be neglected in
comparison with the observed deformations (∼ 10−2 − 10−1).
It should be noted that in conventional magnetic materials there
are two main mechanisms of MS, namely, the interparticle
MS and the single-ion MS [7–15]. The interparticle MS
is associated with the dependence of the spin-interaction
parameters on the mutual arrangement of the atoms, and
the single-ion MS is related to the field distortion of the
ligands in the spin state of the ions. In MAEs there also exists
a possible MS mechanism associated with the interparticle
interactions. For example, elongation of the MAE sample
along the magnetic field decreases the magnetostatic energy
related to the interparticle magnetic dipole-dipole interactions
[16–20]. Such a MS can reach tens of percent [16–20].

Alternatively, the change of the sample magnetic suscepti-
bility due to the rearrangement of ferromagnetic particles in ex-
ternal magnetic fields can stimulate either contraction or elon-
gation of the sample [21,22]. It has been theoretically shown
that samples with a high concentration of particles should
elongate [22]. A comprehensive review of MS in MAEs and its
relation to the field-stiffening (magnetorheological) effect can
be found in Ref. [23]. The physical phenomenon of a distortion
of the polymer matrix due to the transmission of torques from
magnetic particles to the polymer matrix has been previously
analyzed using microscopic models, corresponding to different
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experimental situations. Galipeau and Ponte Castañeda [5]
considered MS of composites consisting of aligned, ellipsoidal
magnetic particles distributed randomly with “ellipsoidal”
symmetry under combined magnetic and mechanical loading.
This model captures the coupling between the magnetic and
mechanical fields, including the effects of magnetic saturation.
Based on these considerations, a new class of MAEs with
doubly layered, herringbone-type microstructures capable of
generating large field-induced strains of up to 100% has been
proposed [6]. Weeber et al. [24–26] considered ferrogels
comprising embedded magnetic nanoparticles with the size
of about 10 nm. These particles had a permanent magnetic
moment and reacted superparamagnetically to an external
magnetic field. These works did not treat the polymer matrix as
a continuous medium but explicitly included polymer chains
bound to specific spots on the surface of nanoparticles.

In the present work, a single-particle mechanism of MS in
MAEs, assuming the rotation of a magnetized soft magnetic
particle in a magnetic field, will be considered using an
alternative theoretical model, which can be solved analytically
for the experimental situation of particular interest. In the
proposed single-particle mechanism of MS, the mechanical
stress, generated in the matrix by the ferromagnetic particle
under an external magnetic force, is localized and related
only to the surroundings of this particle. If the dipole-dipole
interactions are taken into account, the resulting mechanical
stresses are coherently generated in the sample as a result of
particle interactions; see, e.g., Ref. [27].

By scrutinizing the single-particle mechanism of MS, we
will show that in an external magnetic field two processes
minimizing the magnetic energy occur: (i) rotation of the
particle’s magnetic moment away from its easy axis and (ii)
rotation of the particle’s easy axis. It will be demonstrated that,
if the matrix is sufficiently soft, then the magnetic moment
of the particle is reoriented due to the rotation of the particle,
rather than rotation of the magnetic moment vector. Rotation of
the particle is accompanied by deformation of the surrounding
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matrix. However, the theoretical problem of finding the
equilibrium orientation of the particle’s magnetic moment and
the direction of its easy magnetization axis is not limited to
the calculation of the elastic deformation of the matrix due to
the rotation of the particle. The formulated physical problem
is thermodynamic by nature. The calculation of the magnetic
state of the particle and the elastic deformation of the matrix
due to the interaction of the magnetic moment with the external
magnetic field involves determination of the equilibrium ori-
entation of the particle’s magnetic moment consistent with the
matrix deformation. Therefore, we will study the phenomenon
of single-particle MS in MAEs employing an alternative
theoretical approach. It is emphasized that in our model the
total magnetic anisotropy energy of the filling particles in the
matrix is the sum over single particles. The interparticle MS
is associated with dipole magnetic interactions. Therefore, it
is generated by interactions described by a sum of dipole-
dipole interactions over all pairs of particles. Dipole-dipole
interactions are anisotropic, since they are dependent on
the positions of the filling magnetic particles and spatial
orientation of induced magnetic moments, for example, if the
magnetic particles are aligned in chain aggregates. Obviously,
when considering such an interparticle MS it is not possible to
separate one particle from the totality of particle pairs. In the
case of single-particle MS, consideration of a single particle is
justified approximation. Therefore, for the physical description
of a single-particle MS mechanism a soft magnetic particle
embedded into the elastomer matrix will be considered. The
shape of the particle and its arrangement in the matrix will be
chosen in such a way that the underlying physics will be not
unnecessarily complicated by mathematical transformations.
The calculation of deformations should remain simple. The
magnetic interactions should not be complicated by magneto-
static corrections associated with the shape of particles. Such
conditions are well fulfilled with magnetic particles in the form
of a disk (platelet).

II. MODEL

In most experiments, the micrometer-sized magnetic par-
ticles are of nearly spherical shape and the particle diameter
is much larger than the single-domain critical size. Therefore,
the demagnetizing field must be considered for the magne-
tization of the particle. In general, the demagnetization field
generates an inhomogeneous magnetic state in the particle.
This complicates the calculations of the anisotropy energy and
the magnetic moment of the particle. To avoid the influence of
demagnetization, let us consider a disk-shaped ferromagnetic
particle with the radius r0 being much larger than the disk
thickness D0 � r0. The particle is placed into the magnetic
field parallel to the plane of the disk. The particle is embedded
into the elastic film of the same thickness D0 (Fig. 1). Models
with disk-shaped particles are often considered in statistical
mechanics [28–32].

Let the easy magnetization axis L be in the plane of the
particle. ϕH denotes the angle between the easy magnetization
axis and the external magnetic field (see Fig. 2).

Since the particle is magnetically anisotropic (there exists
the easy magnetization axis), in the external magnetic field
H not parallel to L, the direction of the magnetic moment M

FIG. 1. Soft magnetic disk-shaped particle in an elastic matrix.
H denotes the external magnetic field strength. The thickness of the
disk is equal to the thickness of the elastic film.

will not coincide with the direction of H. Denote the resulting
angle between M and L as ϕM .

Hence there will be the nonvanishing torque acting on the
magnetic moment M and proportional to M × H . In the static
case, this torque is compensated by elastic stresses arising in
the matrix due to rotation of the particle.

Since the particle is considered to be rigid (the elastic
modulus of the particle is much larger than that of the elastomer
matrix), the rotation of the matrix will be determined by the
rotation angle γ of the easy magnetization axis (cf. Fig. 2).

The directions of the external magnetic field H, the easy
magnetization axis L in the absence of the field (H = 0), the
easy magnetization axis L′ in the presence of the field (H �= 0),
and the magnetic moment M of the particle are shown.

In the field H, the energy of the “magnetic particle–
deformed matrix” system can be written as the sum of three
terms,

E = EA + EH + Eel, (1)

where EA is the magnetic anisotropy energy of the easy-axis
type, EH is the energy of the magnetic moment in the field H,
and Eel is the energy of elastic deformation of the matrix. The
magnetic anisotropy energy is written similarly to [33], and in

FIG. 2. Geometry of the problem.
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our case it will have the following form:

EA = − 1
2Kcos2(ϕM − γ )πr2

0 D0, (2)

where K is the magnetic anisotropy constant, whose value
is given by the product of the anisotropy field HA and the
magnetization m: K = mHA and M = mπr2

0 D0.
The energy EH can be written as

EH = −Hm cos(ϕH − ϕM )πr2
0 D0, (3)

where H = |H|.
Since the rotation of the particle causes the inhomogeneous

deformation of the matrix, the determination of Eel requires the
solution to the elasticity problem of distribution of deformation
in the matrix with the given rotation angle of the particle γ .

The proposed microscopic model explicitly includes the
influence of uniaxial magnetic anisotropy and its interplay
with the linear elasticity.

III. CALCULATION OF ELASTIC DEFORMATIONS

For linear and isotropic elastic medium, the equilibrium
equations have the following form [34]:

(λ + 2μ) grad divu − μ curl curl u = 0, (4)

where λ and μ are the Lamé parameters and u is the
displacement vector. In the context of elasticity, μ is called
the shear modulus.

The boundary conditions for the displacement vector u are

uϕ|r=r0 = r0γ, ur |r=r0 = 0, (5)

uϕ|r=∞ = 0, ur |r=∞ = 0. (6)

The condition (6) means that the matrix as a whole does
not rotate, except in the vicinity of the particle.

According to the symmetry expressed in the boundary
conditions, the partial derivative of the displacement com-
ponent uϕ on the angular coordinate ϕ vanishes: ∂uϕ/∂ϕ = 0.
The radial projection of displacement is also zero: ur = 0.
This condition corresponds to the volume conservation of the
elastomer surrounding the particle under deformations given
by boundary conditions (5) and (6). Now Eq. (4) can be written
in polar coordinates as follows:

1

r

∂(ruϕ)

∂r
= a, (7)

where a is a constant value.
After integration of (7), the constants of integration can be

found from the boundary conditions. It turns out that a = 0.
Solution of Eq. (4) with conditions (5) and (6) in the polar

coordinate system has the following form:

uϕ = u0
r0

r
, ur = 0, u0 = r0γ, (8)

where uϕ is the component of the displacement vector along
the angular coordinate ϕ in the point r (see Fig. 2).

The corresponding (nonvanishing) component of the strain
tensor is

urϕ = 1

2

(
∂uϕ

∂r
− uϕ

r

)
= −u0

r0

r2
. (9)

Taking into account (9), the expression for the elastic energy
density of the matrix can be written in the following form:

eel = 2μu2
rϕ = 2μu2

0

r2
0

r4
. (10)

The missing expression for the elastic energy [cf. Eq. (1)]
is found by integration of Eq. (10):

Eel =
∫

V

eeldV = 2πD0

∫ ∞

r0

2μu2
0
r2

0

r3
dr =2πr2

0 D0μγ 2.

(11)

IV. CALCULATION OF PHYSICAL QUANTITIES FOR
SINGLE-PARTICLE MAGNETOSTRICTION

Now it is possible to determine how the magnitude of
deformation depends on the magnetic field direction and its
magnitude. We use the equilibrium conditions for the particle
corresponding to the minimum of the total energy of the
system,

∂E

∂ϕM

= 0,
∂E

∂γ
= 0. (12)

By substituting the expressions for EA [Eq. (2)], EH

[Eq. (3)], and Eel [Eq. (11)] into Eq. (12), we arrive at the
following system of equations for ϕM and γ :

1
2K sin 2(ϕM − γ ) − Hm sin(ϕH − ϕM ) = 0, (13)

1
2K sin 2(ϕM − γ ) − 4μγ = 0. (14)

The system of equations (13) and (14) can be solved
numerically for ϕM and γ with given ϕH ,μ, and K.

Figure 3 shows the dependencies of angles ϕM and γ on the
ratio μ/K . The graphs are obtained for the following external
magnetic fields: H = 0.1HA, 0.5HA, HA, 2HA, comparable
with the anisotropy field and inclined at angle ϕH = 0.01 rad
(i.e., slightly more than half of a degree). Recall that HA =
K/m, ϕM is the rotation angle of magnetization vector and γ

is the rotation angle of the particle.
It is seen that if the matrix elasticity is predominant

(μ/K � 1), rotation of the particle is small and rotation angle
γ tends to zero. For large values of μ/K , the vector of the
magnetic moment just inclines in the direction of the external
magnetic field. The corresponding graphs for the angle ϕM in
Fig. 3(b) asymptotically approach constant values:

ϕM

(
μ

K
→ ∞

)
= ϕH

1 + (HA/H )
. (15)

If the magnetic anisotropy is dominating (μ/K � 1), the
rotation angle of the particle almost coincides with the angle
γ → ϕH . In this case, the single-particle MS is prevailing and
the magnetic moment vector of the particle is oriented towards
the field due to the rotation of the particle and ϕM → ϕH .

Consider small deviations of easy magnetization axes from
the direction of the external magnetic field H: ϕM � 1, γ � 1,
ϕH � 1. For small angles, the following formulas for angles
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FIG. 3. Dependencies of angles γ (а) and ϕM (b) on the ratio of
the elastic modulus and the anisotropy constant μ/K .

ϕM and γ are easily obtained after some algebra:

ϕM = Hm
K + 4μ

KHm + 4μ(K + Hm)
ϕH , (16)

γ = Hm
K

KHm + 4μ(K + Hm)
ϕH . (17)

Accordingly to (17), the equilibrium component of the
strain tensor will be given by

urϕ = −Hm
K

KHm + 4μ(K + Hm)
ϕH

r2
0

r2
. (18)

The obtained expressions (16) and (17) agree well with the
numerical solutions given in Fig. 3. On the scale of the figure,
they are indistinguishable from the curves shown in Fig. 3.
Figure 4 compares some numerical solutions with approximate
solutions (16) and (17). It can be concluded that approximate
solutions work very well for ϕH < 0.4 rad in the wide range
of parameters. Analytical results for H/HA = 2,μ/K = 0.1
are shown in Fig. 4(a) as unfilled circles, since otherwise
they would be indistinguishable from the numerical solution.
This set of parameters is not shown in Fig. 4(b) where it
would overlap with other curves. From Eq. (18) it is seen
that the magnitude of matrix deformation in high magnetic
fields is determined by the ratio of the elastic modulus and

FIG. 4. Solutions for γ (a) and ϕM (b). Comparison of numerical
(solid lines) and analytical (dashed lines or unfilled circles) solutions
to the system of equations (13) and (14) in dependence on the angle
ϕH for different parameter sets.

the anisotropy constant. In high magnetic field, the limiting
particle rotation angle is γ = ϕHK/(K + 4μ). In this case
for the soft matrix μ/K � 1 the strain will be maximal and
equal to

urϕ = −ϕH

r2
0

r2
. (19)

It follows from (18) that the magnitude of small matrix
deformations in low fields H → 0 is directly proportional to
the magnitude of the external magnetic field. This is related
to the fact that the magnetization of a magnetically soft disk
along its easy magnetization axis, as in Fig. 2, leads to the
saturation of magnetization in small magnetic fields. For a
spherical particle, such a magnetization is impossible due to
the action of the demagnetizing field. It is expected that for the
spherical particle there will be no MS directly proportional to
the small magnetic field.

V. DISCUSSION

The condition μ/K � 1 is essential for observation of
single-particle MS. This condition is feasible in ultrasoft
MAEs and gels, where μ ∼ 103 − 104 Pa can be realized
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[35–38]. The room temperature magnetocrystalline anisotropy
constant of Fe, Co, and Ni is one to two orders of magnitude
larger: K1 ∼ (0.5 − 50) × 104 J/m3. Most of the experiments
with MAEs employ almost spherical carbonyl iron particles.
However, it is obvious that any deviation of the particle shape
from the perfect sphere should lead to the appearance of
the magnetic shape anisotropy since the demagnetizing field
will not be equal for all directions, creating one or more
easy axes. The value of uniaxial anisotropy K is directly
proportional to the difference �N between the largest and
the smallest values of the demagnetizing tensor. Assume that
the iron particle is magnetized to the saturation (m = 1.72 ×
106A/m = 1720 emu/cm3). For a prolate, almost spherical
ellipsoid with the ratio of half axes a/b = 1.1, it can be
calculated that �N ≈ 0.47 (the sum of the eigenvalues of the
demagnetizing tensor Na + 2Nb = 4π ) and K ≈ 138 kJ/m3.
This corresponds to the anisotropy field HA ≈ 63 660 A/m =
800 Oe. If a/b = 1.2, the values of uniaxial anisotropy K ≈
260 kJ/m3 and anisotropy field HA ≈ 119 kA/m = 1500 Oe
are almost two times larger. Similar considerations also arise
in the simplified dipole-spring models of MAEs where the
so-called orientation memory terms include possible orienta-
tion coupling of magnetic particles to the polymer network
[39].

The magnetostriction in MAEs arising from the average
effect of internal forces between the induced magnetic dipoles
is proportional to the square of the particle concentration c2.
The magnetic torques on particles are induced through the
direct interaction of them with the applied magnetic field.
Therefore, their magnitude is of order c [6]. This means that
single-particle mechanisms can dominate for relatively small
particle concentrations, but their effect on the magnetodefor-
mation can be significant. Indeed, the numerical simulations
in Ref. [24] revealed that magnetodeformation could be large
(area shrinkage ∼20%) although dipolar interactions were
irrelevant for investigated systems.

Moreover, even the thin-film geometry with embedded
cylindrical platelets shown in Fig. 1 is feasible, since the
necessary technological prerequisites already exist. Ruiz et al.
[40] fabricated structured elastomer films with thicknesses
about 100 µm presenting piezo- and magnetoresistance. The
films are composites of magnetite filler particles, which
are both electrically conductive and magnetic, dispersed in
an elastomeric matrix. Iannotti et al. [41] fabricated novel
composite MAE samples with iron microparticles in the form
of platelets with an average thickness of 7 μm and an average
size of particles’ major axis around 37 μm. The preferential
in-plane magnetization of a single particle due to the shape
anisotropy has been indeed achieved.

It is well known that MAEs display an extremely large but
reversible increase in dynamic shear modulus upon application
of external magnetic field [denoted as the field-stiffening or
magnetorheological (MR) effect]. Similarly to MR fluids, the
change in MR properties is believed to be due to the magnetic
polarization induced in each particle by the external field,
with the resulting interaction forces between the particles
leading to the formation of elongated aggregates in the
direction of the field [42–45]. The large increase in shear
modulus is attributed to these magnetic-network aggregates
[46–50]. However, complete understanding of the physics

of this phenomenon in MAEs, including a comprehensive
mathematical model, is still missing, in spite of significant
theoretical efforts and progress achieved (see, e.g., [51,52]).
In the above mentioned experiments, induced magnetization
of magnetically soft MAE samples is practically parallel
to the external magnetic field. Therefore, the analysis of
experimental data leaves the impression that the magnetization
of the sample does not create an additional mechanical moment
on the particles, and, seemingly, the magnetic field is not
involved in shear deformation. Note that such a large increase
in the shear modulus has not been observed previously in
the homogeneous magnetic crystals, even upon martensitic
transitions [53,54].

We hypothesize that the large increase of the shear modulus
µ in MAEs may have a contribution from the single-particle
deformations caused by particle rotations in external magnetic
fields. Indeed, the particle in a compliant matrix (see Fig. 1)
can be easily rotated at an arbitrary angle γ in the absence
of magnetic field H = 0. If H �= 0 and it is directed along
the easy axis, the magnetic field will withstand the particle
rotation. The deformation field will be set up around the
particle, but its calculation will be the same as described above,
if we put ϕH = γ . Rotation of the particle and the surrounding
matrix in a strong magnetic field will require additional effort,
when the shear modulus of the matrix is much less than
the anisotropy constant of the particle material. A possible
interpretation of the external observer is that the magnetic field
leads to the local increase of elastic modulus in the vicinity
of the particle, and the particle and the surrounding polymer
become locally less sensitive to external influences under
applied magnetic fields. In the case of a composite material,
such a behavior will occur in the vicinity of each particle,
resulting in an increase of “effective” elastic modules of the
composite material. Full calculation of the field dependence
of the effective shear modulus will be a subject of future
publications. However, the above arguments make clear that
the effective shear modulus will depend on the ratio of the
constant of the particle’s magnetic anisotropy and the shear
modulus of the matrix, as well as on the concentration of
particles.

It should also be noted that the field dependence of
the rotation angle of spherical particles, surrounded by an
elastomeric matrix in magnetic fields larger than the maximum
demagnetizing field, will have the form of Eq. (17), but
with slightly different numerical coefficients. This means that,
qualitatively, our result for the deformation limit will be valid
for spherical particles as well. However, it is expected that
for spherical particles in small fields the influence of the
demagnetizing field will lead to deviations to Eq. (17) for
the dependence of the rotation angle on the field.

The calculation of the rotation angle of the magnetic
moment and the particle rotation is based on the minimization
of the total energy of the system. Such a minimum corresponds
to the conditions of the mechanical equilibrium of the particle.
Indeed, Eq. (13) corresponds to the vanishing sum of torques
applied to the magnetic moment of the particle by the
external magnetic field and the anisotropy field. Equation (14)
corresponds to the equality of the total moment of force applied
to the particle, both from the side of the magnetic subsystem
and the elastically deformed matrix.
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VI. CONCLUSION

In this paper, a mechanism of magnetic-field-induced
MS in mechanically soft MAEs is proposed and described
mathematically for a simplified model. The mechanism is
based on the rotation of a single soft magnetic particle with
uniaxial magnetic anisotropy in external magnetic fields. The
mechanism is denoted as single-particle MS because the total
magnetic anisotropy energy of the filling particles in the matrix

is the sum over single particles. It is shown that the particle
rotation leads to the mechanical deformations and therefore
mechanical stresses in the vicinity of the particle. This effect
is pronounced well if the magnetic anisotropy coefficient K is
much larger than the shear modulus µ of the elastic matrix. The
magnetic-field-induced internal stresses may lead to effects of
magnetodeformation and diminish the mechanical compliance
of the composite material, known as the MR effect.
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20130385 (2013).
[7] J. C. Slonzewski, Phys. Rev. 122, 1367 (1961).
[8] E. Сallen and H. Callen, Phys. Rev. 129, 578 (1963).
[9] E. Сallen and H. Callen, Phys. Rev. 139, A455 (1965).

[10] T. G. Phillips and R. L. White, Phys. Rev. 153, 616 (1967).
[11] K. P. Belov, G. I. Kataev, R. Z. Levitin, S. A. Nikitin, and V. I.

Sokolov, Sov. Phys. Usp. 26, 518 (1983).
[12] M. R. Ibarra and P. A. Algarabel, Phys. Rev. B 50, 4196

(1994).
[13] S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki, and Y. Iijima,

Appl. Phys. Lett. 79, 653 (2001).
[14] V. M. Kalita, A. F. Lozenko, S. M. Ryabchenko, and P. A.

Trotsenko, Low Temp. Phys. 31, 794 (2005).
[15] V. M. Kalita, A. F. Lozenko, S. M. Ryabchenko, and P. A.

Trotsenko, J. Exp. Theor. Phys. 99, 1054 (2004).
[16] M. Zrinyi, L. Barsi, and A. Buki, J. Chem. Phys. 104, 8750

(1996).
[17] M. Zrinyi, L. Barsi, D. Szabo, and H.-G. Kilian, J. Chem. Phys.

106, 5685 (1997).
[18] Yu. L. Raikher and O. V. Stolbov, Tech. Phys. Lett. 26, 156

(2000).
[19] Yu. L. Raikher and O. V. Stolbov, J. Magn. Magn. Mater. 258–

259, 477 (2003).
[20] Yu. L. Raikher and O. V. Stolbov, J. Magn. Magn. Mater. 89, 62

(2005).
[21] A. Zubarev, Physica A (Amsterdam, Neth.) 392, 4824 (2013).
[22] A. Zubarev and D. Yu. Borin. J. Magn. Magn. Mater. 377, 373

(2015).
[23] Y. Han, A. Mohla, X. Huang, W. Hong, and L. E. Faidley, Int.

J. Appl. Mech. 07, 1550001 (2015).
[24] R. Weeber, S. Kantorovich, and C. Holm, Soft Matter 8, 9923

(2012).
[25] R. Weeber, S. Kantorovich, and C. Holm, J. Magn. Magn. Mater.

383, 262 (2015).
[26] R. Weeber, S. Kantorovich, and C. Holm, J. Chem. Phys. 143,

154901 (2015).
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