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Viscoelasticity of reversibly crosslinked networks of semiflexible polymers
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We present a theoretical framework for the linear and nonlinear viscoelastic properties of reversibly crosslinked
networks of semiflexible polymers. In contrast to affine models where network strain couples to the polymer
end-to-end distance, in our model strain rather serves to locally distort the network structure. This induces
bending modes in the polymer filaments, the properties of which are slaved to the surrounding network structure.
Specifically, we investigate the frequency-dependent linear rheology, in particular in combination with crosslink
binding-unbinding processes. We also develop schematic extensions to describe the nonlinear response during
creep measurements as well as during constant strain-rate ramps.

DOI: 10.1103/PhysRevE.93.062502

I. INTRODUCTION

The cytoskeleton is a viscoelastic material with many
interesting mechanical behaviors. From a theoretical point of
view these systems are viewed as networks of reversibly (or
permanently) crosslinked semiflexible polymers [1–3]. Over
the years many theoretical works have discovered and partially
explained different regimes, where certain components of the
networks dominate the mechanical response [4–9]. Simula-
tions on simplified model systems provide a helpful alternative
approach to study the pertinent problems [10–16].

Most notably, the affine approach, relying on the nonlinear
polymer force-extension relation [17,18], has allowed to
rationalize many of the diverse experimental findings. Recent
advances include the glassy wormlike chain model [19],
effective medium theories [20–22], as well as models that use
analogies with rigidity percolation [23], the jamming transition
in dense particle packings [24], and its concept of “soft modes.”
This latter analogy [25,26] is based on the fact that densly
packed hard particles prefer to rotate around—instead of press
into each other. After all, hard particles are “incompressible.”
Similarly, semiflexible polymers are nearly inextensible, and
under deformation they prefer to deform perpendicular to the
polymer axis—what is commonly understood as bending.

Here, we present a theoretical framework that is entirely
constructed on the basis of these bending deformations. The
force-extension relation does not play a role for the linear
response of the network. The theory is based on results [25]
on the static linear elasticity. The key achievement of the
present work is that it generalizes these results to finite
frequencies, allowing us to calculate the linear elastic and
viscous moduli over the whole frequency regime relevant for
standard rheological experiments.

The paper is structured as follows: First a brief review
of the static modulus is given (Sec. II). Then (Sec. III) the
model is generalized to finite frequencies. In Sec. IV low-
frequency crosslink binding processes are considered, and,
finally (Sec. V), we discuss possible nonlinear rheological
effects presenting schematic extensions of the linear model.

*Current address: Deutsches Institut für Kautschuktechnologie, e.
V., Eupener Str. 33, 30519 Hannover, Germany.

II. REVIEW: STATIC MODULUS

We will consider the properties of a test filament crosslinked
into a network of other filaments. The filament is described in
terms of the wormlike chain model. In the “weakly bending”
approximation the bending energy of the filament can be
written as

Hb = κb

2

∫ L

0

(
∂2y

∂s2

)2

ds, (1)

where κb is the filament bending stiffness and y(s) is
the transverse deflection of the filament from its (straight)
reference configuration at y0(s) = 0. In these expressions s is
the arclength, s = [0,L], and L is the length of the filament.

The effect of the surrounding network is to confine the test
filament to a tubelike region in space. In this way the actual
network is substituted by an effective potential that acts on the
test filament. A convenient potential is the harmonic tube

V = 1

2

∫ L

0
k(s)(y(s) − ȳ(s))2ds, (2)

where k(s) is the strength of the confinement and ȳ(s) is the
tube center, which may or may not differ from the reference
configuration y0(s) of the filament.

A key assumption in our model is that the tube depends on
network strain γ . In particular, we will assume that the tube
centerline follows the strain γ ,

ȳ(s,γ ) = β(s)γL, (3)

with a shape function β(s) that is slaved to the local network
structure. The occurrence of the filament length L signifies
its role as nonaffinity length, up to which network response is
nonaffine and determined by local structural features. Such a
scaling has been observed in the simulations of Ref. [27].
Theoretically, one can derive it from the assumption of
affine motion for the filament centers of mass [25]. In this
picture, viscous stresses of the solvent drag along entire
filament patches of length L, however, without stretching
them. Because filaments are connected to their neighbors such
motion necessarily leads to local network distortions which
are captured by the shape functions β.

The physical picture of strain-induced local deformations
is thus that by straining the network the preferred location
(the tube) of a polymer changes—and not primarily the
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polymer itself. This is the key difference to many previous
works that assume strain to lead to a change in end-to-end
distance of the polymers. The rheology in these models then is
a direct consequence of the force-extension relation of the
single polymer. By way of contrast, in our approach, the
force-extension relation plays no role at all (for the linear
response), and the polymers can be taken to be completely
inextensible. In fact, one can show [25] that tube deformations
leave the end-to-end distance (to linear order) unchanged, as
long as one takes for the shape function βi ≡ β(si) = − cot θi

at crosslink position si , where θi is the angle at which the
crosslinked filament connects to the test filament. In this way,
the polymer tube changes in such a way as to guarantee
that the polymer end-to-end distance is not changed under
network straining (in linear response) (see Fig. 1). For any
real filament this assumption of inextensibility breaks down at
the point, where the relevant forces become large enough to
compete with the extensional stiffness. This may happen, for
example, in nonlinear response (see Sec. V) or at high-enough
frequencies where viscous stresses in the medium enforce
affine motion.

We assume the network to be represented by an effective
medium that couples to the test filament only at the crosslink-
ing points,

k(s) = km

N∑
i=1

αiδ(s − si), (4)

where N is the total number of crosslinking sites, and km

represents the stiffness of the medium. This is expected to
be rather uniform, hence having roughly the same elastic
properties at every crosslink. The effects of local variability,
e.g., binding angle, is accounted for by the factors αi = sin2 θi .
There may be cases where km may actually vary from point
to point. For example, in composite networks of two or more
filaments (e.g., actin and microtubules) one has to differentiate
between couplings given that the test filament is of either type.
Such a scenario has been dealt with in Ref. [28].

The central goal of this work is to calculate in a self-
consistent way the stiffness km, as well as its frequency-
dependent generalization, the complex modulus g	(ω). In
previous work [25] we have argued that the stiffness may be

FIG. 1. Illustration of the differences between our (nonaffine)
model and the affine model of polymer stretching. In the affine model
a network strain γ leads to the stretching of a polymer segment (of
length l) by �l ∝ γ l. In the nonaffine model we assume that network
strain primarily affects the polymer tube, which is deflected to a new
position ȳ(s) = Lγβ(s). The shape function β(s) is determined by
the local network structure, such that the polymer is not stretched.

calculated from the equation
1
2km(γL)2 = 〈

min
y(s)

(Hb[y] + V [y](km))
〉
, (5)

where the angular brackets denote ensemble average with
respect to the quenched local network structure. This equation
highlights the twofold role of the stiffness km. On a mesoscopic
scale it is defined as an elastic modulus that quantifies the
energy cost to deformation (left-hand side). On a microscopic
scale (right-hand side) this deformation is carried by filaments
that are themselves connected to the elastic medium via the
crosslinks (also see Fig. 2).

Formally, Eq. (5) represents a Cayley-tree approximation
to the real network, that is, loops of filaments are neglected.
This allows to spread a network strain from one filament via
its crosslinks to its neighboring filaments and further on to
secondary and tertiary neighbors. Continuing this process to
infinity one obtains a self-consistent equation similar to a
classic Dyson equation.

Equation (5) can be solved in a simplified scaling picture
by assuming a single wavelength λ = L/N and one angle θ to
dominate (see the Appendix for details)

km ∼ κN3(N − Nc), (6)

where we defined Nc = 1/αiβ
2
i , which represents the perco-

lation threshold of the model. The modulus is zero if fewer
than Nc crosslinks are present and scales linearly with δN

in the critical regime. As explained above, our theory can
be taken as a Cayley tree approximation to the real network.
The percolation threshold therefore is the one of the Cayley
tree. Therefore it is not surprising that its location, as well as
its exponents are different from Maxwell counting or exact
values [29,30]. Nevertheless, the very presence of such a
“liquid-solid” transition, which is a genuine property of real
filament networks, allows us to study both sides and monitor
the viscoelastic properties when crossing the transition (see
below).

Far above the threshold Eq. (6) indicates that the modulus
scales with ∼N4. We have shown previously [25] how the
inclusion of different wavelengths as well as angles can change
the scaling of the modulus with crosslink concentration N (also
see Fig. 7).

FIG. 2. Illustration of the basic model assumptions. On a meso-
scopic scale the network is represented by a continuum viscoelastic
body with modulus g(t) (or km for the static case). Application of a
force F will therefore lead to network strain γ , via the convolution
F (t) = (g 	 γ )(t) (or km · γ ). On the microscopic scale the individual
filaments couple to the same matrix g (km) at their crosslinks. The
curved lines enclosing the red dots symbolize this coupling to the
viscoelastic matrix.
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The static theory presented above has been used in various
contexts, e.g., to describe the mixing rule in composite
networks of microtubules and f-actin [28]. In the following we
want to generalize the theory to account for finite frequency of
the deformation, as well as for finite lifetime of the crosslink
bond.

III. FINITE FREQUENCY

Experiments are most often conducted in the frequency
domain, where a time-dependent oscillatory strain γ (t) =
γ0 sin(ωt) is imposed. In order to account for time-dependent
phenomena we first rewrite Eq. (5) as two force-balance
equations.

The minimization operation makes the transverse deflection
of the polymer, y(s), the solution to the equation

0 = κy(4) +
∑

i

δ(s − si)Ti sin θi . (7)

Here, we have defined the force in the ith crosslink

Ti = km sin θi(yi − ȳi). (8)

The part of these forces transverse to the polymer (Ti sin θi)
must balance the bending force κy(4) to give a stable contour
in mechanical equilibrium.

A second balance equation can be obtained by differentiat-
ing Eq. (5) with respect to γ . This will give us the force that
is needed to displace the polymer by the strain. Using Eq. (5)
we find

kmγ =
〈

N∑
i=1

Ti cos θi

〉
, (9)

where now the forces Ti are projected onto the axis of the fiber.
In other words, the external force Fext = kmγ is balanced by
the forces at the n crosslinks.

The generalization to finite frequencies is now straightfor-
ward. First, additional viscous (and possibly thermal) forces
need to enter the force-balance equations. Second, the stiffness
km needs to be substituted by a frequency-dependent function
g	(ω). This is achieved by defining the response function

T (t) =
∫ t

−∞
dτg(t − τ )

∂γ

∂τ
≡ (g 	 γ )(t). (10)

This function specifies the force at time t that is needed for a
given strain history γ (τ ).

If g(t) = km is constant, then T = kmγ (t), i.e., a quasistatic
solid response, while the limit g(t) = ζ δ(t) gives a fluidlike
behavior, where T = ζ γ̇ .

With these modifications we obtain the following two
equations:

κy(4) +
∑

i

αig 	 (y − ȳi)δ(s − si) = η
∂y

∂t
+ ξ, (11)

g 	 γ +
〈∑

i

αiβig 	 (y − ȳi)

〉
= ηz

∂γ

∂t
+ ξz, (12)

where η and ηz are drag coefficients governing the viscous
forces, while ξ and ξz are thermal (random) forces. In the
following we will neglect the axial damping ηz (which leads

to a high-frequency regime g	 ∼ ω) as well as the noise terms ξ

and ξz (which can be shown to be subdominant). Equation (11)
has to be solved for y(s,t) and used in Eq. (12) to determine the
response function g(t) or in frequency-space g	(ω) = g′(ω) +
ig′′(ω). Adopting the latter representation, Eq. (11) can be
written as

y(x,ω) =
∑

i

G(x,xi,ω)g	αi(yi − ȳi), (13)

which shows how the Greens function G mediates between the
position xi of the crosslink, where the force T̂i = g	αi(yi − ȳi)
is applied, and the actual position x, at which the deflection is
evaluated. The Greens function itself is given as

Gij (ω) ≡ G(xi,xj ,ω) =
∑

q

ψq(xi)ψ	
q (xj )

κq4 + iωη
, (14)

where ψq are suitable basis functions, e.g., trigonometric
functions that are chosen to respect the boundary conditions.

Inserting into Eq. (12) one obtains the final equation

1 =
〈∑

ij

(1 + g	SG)−1
ij αiβiβj

〉
, (15)

where we introduced the diagonal matrix Sij = αiδij . Equa-
tion (15) needs to be solved numerically for the modulus g	(ω).

The full numerical solution of Eq. (15) is presented in Fig. 3
for various crosslink densities N . For a numerical evaluation
we set κb = 1, L = 1, thus fixing energy and length scales.
The time scale is set by the viscous coefficient η = 1 of the
filaments. The noise ξ and ξz turn out to be subdominant.
The leading contribution to the modulus is thus athermal and
independent of temperature.

On small frequencies the static solution is recovered and
leads to a plateau in the storage modulus, g0 ∼ Nx , where
the value of the exponent x depends on the type of quenched
local network structure (angular brackets). This sensitivity on
network structure can, for example, be seen in Fig. 7, where
the plateau modulus rises by several orders of magnitude just
by changing the angle distribution.

Experimentally, the plateau modulus is measured as a
function of actin- or crosslink concentration. With additional
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FIG. 3. Frequency-dependent modulus g	 = g′ + ig′′ for differ-
ent crosslink number N ; storage modulus g′ (solid lines and filled
symbols); loss modulus g′′ (broken lines and open symbols).
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FIG. 4. Amplitude y0(ω) of filament contour y(x,t) =
y0(x) sin(ωt) for different driving frequencies. For high ω (left)
the filament feels the driving only in the vicinity of the crosslinks
[represented by the light (red) bars]. Low-frequency driving (right)
only excites the longest possible wavelengths, which are set by
the local network structure (orientation and distance of contacting
filaments).

assumptions on how N depends on the concentration c× of
crosslinking proteins in solution one can derive a prediction
for the dependence g0(c×), which agrees with experimental
observations in fascin-crosslinked actin networks [31]. Sim-
ilar reasoning has been applied for scruin-crosslinked actin
networks using the affine model [32].

The associated low-frequency loss modulus scales linearly
with frequency g′′ ∼ ω and characterizes the viscous losses
of a filament that moves with a velocity v ∼ ω through the
solvent. The crossover to the high-frequency regime happens
at the frequency scale ωc ∼ κ/ηL4 with an N -dependent
prefactor, set by the plateau modulus and its sensitivity
to N .

For high ω there is no coupling from one crosslink to the
next. The excited bending modes have small wavelength (see
Fig. 4), and perturbations are only local. For high frequencies
the Greens function is diagonal,

Gij (ω) → δij

1√
8κ1/4(iωη)3/4

. (16)

The (iω)3/4 scaling can be understood by noticing that, at
large ω, each mode in Eq. (14) contributes terms of order 1/ω

and the mode spectrum is cut at q∗ ∼ ω1/4. The determining
Eq. (15) is simplified accordingly,

1 =
〈∑

i

cos2 θi

1 + g	αiGii

〉
. (17)

This gives g	 ∼ 1/G ∼ (iω)3/4. The high-frequency scaling
is the same as in affine models [4]; however, the prefactor
differs by a term lp/L, which for f-actin is usually not a
large number. This factor can, in principle, be changed in
experiments; however, care should be taken that by changing,
for example, L the network is not changed at the same time
(for example, one might freeze in more bents and prestress
in networks with longer filaments). Experimentally, the 3/4
scaling is well established and has, for example, been measured
with microrheology in Ref. [33].

IV. FINITE CROSSLINK LIFETIME

If thermal fluctuations are comparable to the strength
of a crosslink, then the bond will have a finite lifetime.
In biological systems the crosslink-induced bonds between
filaments usually have a lifetime in the range of seconds.

The binding kinetics can therefore be picked up in standard
rheological measurements. In fact, some systems display a
pronounced peak in the loss modulus g′′ at the respective
frequencies [34,35]. In the following we explain how crosslink
binding and unbinding can be introduced into the theory.
Alternative theoretical developments are presented along with
the experiments in Refs. [34,35] or, for example, in Refs. [36–
38].

We think of the crosslink to live in a one-dimensional peri-
odic energy landscape that represents the binding states along
the filament backbone (see Fig. 5). In f-actin the double-helical
repeat implies a periodicity of roughly δ ≈ 50 nm. While being
bound at one site the crosslink stays in the respective minimum
of the energy landscape, unbinding corresponds to Kramers
escape from this minimum. In the fast-rebinding regime we
can assume the crosslink to immediately fall in the neighboring
minimum a distance δ away.

Via a force-dependent escape rate r± = r0e
±βFδ one direc-

tion is favored over the other. In linear response the crosslink
then moves with a velocity v = F/ζ and friction coefficient
ζ = kBT /2r0δ

2, as imposed by the fluctuation dissipation
relation and a diffusion constant D = 2r0δ

2.
We thus conclude that crosslink binding and rebinding

processes can be envisioned, on average, as a dash-pot. The
friction coefficient is given in terms of microscopic properties
of the crosslink and the binding domain of the filament.
Each crosslink i may have its own friction coefficient ζi , the
limit ζi → ∞ representing the case of a nonreversible, i.e.,
permanently bound (“quenched”), crosslink.

With this insight the response function g on the right-hand
side of Eqs. (11) and (12) have to be substituted (in frequency-
space) by

ḡ−1 = g−1 + (iωζ )−1, (18)

representing a serial connection of crosslink binding domain ζ

and viscoelastic medium g (Maxwell element). This modifies
Eq. (15) as follows:

1 =
〈∑

ij

(1 + g	�SG)−1
ij αiβi(�β)j

〉
, (19)

the diagonal matrix � containing the Maxwell elements of the
crosslink, �ij = δij

iωζj

iωζj +g
.

The result of this modification can be seen in Figs. 6
and 7. Primarily, crosslink binding leads to the appearance of
a Maxwell-like peak at small frequencies ω	 ∼ g0/ζ , where
g0 is the respective plateau modulus (inset Fig. 6). In Fig. 6 we
display the rheology for a mixture of Nr reversible (ζj ≡ ζ )

FIG. 5. Binding potential felt by the crosslink taken along the
filament axis.
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FIG. 6. Storage modulus (main panel) and loss modulus (inset,
same axes as in main panel) vs. frequency for different fraction of
quenched crosslinks nq = Nq/N = 0,0.18,0.2,0.4,1 (from bottom
to top). A second plateau develops when the number of quenched
crosslinks is above the percolation threshold. Viscous coefficient of
the reversible crosslinks is ζ = 105.

and Nq quenched crosslinks (ζj → ∞). If there is a minimum
number of quenched crosslinks per filament, then there is
a second (lower) plateau modulus at low frequencies. The
height of the plateau depends on the number of crosslinks. For
frequencies above the Maxwell frequency g0/ζ all crosslinks
are effectively quenched as the network deformation is too fast
for the crosslinks to be able to follow. The plateau is therefore
determined by the total number of crosslinks. On frequencies
far below the Maxwell frequency the reversible crosslinks
can be assumed to be removed and only the Nq quenched
crosslinks remain. The plateau is therefore determined by only
Nq crosslinks. The presence of a plateau at low frequencies
indicates that quenched crosslinks are sufficient in number to
form a rigid structure—rigidity percolates.

In Fig. 7 we vary the structural randomness of the network.
In particular, the distribution P (θ ) of crosslink angles θ is

10-8
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10-4 1 104 108

g’
, g

’’
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[0,π]
[π/4,3π/4]

[3π/8,5π/8]

FIG. 7. Frequency-dependent modulus g	 = g′ + ig′′ for differ-
ent angular randomness P (θ ) (flat distribution restricted to different
intervals as specified in the legend); storage modulus g′ (solid lines
and filled symbols); loss modulus g′′ (broken lines and open symbols).
If crosslink intersection angles θ are sufficiently random, then an
anomalous regime at small frequencies develops that reflects the
spatial inhomogeneity along the single filament.

changed. As a result, a broad intermediate regime devel-
ops for the loss modulus whenever the angles are broadly
distributed. This regime reflects the spatial heterogeneity
along the test filament. The ultimate low-frequency regime
(g′′ ∼ ω2) is only reached when all crosslinks along the
test filament effectively behave equally. The low-frequency
behavior in some experiments on f-actin (e.g., Ref. [35])
and also in the simulations of Ref. [16] show a pronounced
anomalous tail, g	 ∼ (iω)1/2, which is explained by Rouse-like
relaxation modes. These are not included in the present
model.

V. NONLINEAR RESPONSE

A full nonlinear theory has to include several factors, e.g.,
the reorientation of filaments under large strain [39] or the
force-induced change in the polymer end-to-end distance. In
addition, the effects of an applied prestress in combination
with small amplitude oscillations is an important experimental
probe. It is outside the scope of this work to fully combine
all these aspects with our theoretical framework. However,
progress is possible on a “schematic” level.

A. Prestress

To incorporate a constant prestress in our formalism, we
make a “quasilinear” approximation: We assume the linear
theory to be valid, while we change the propagator

Gij (ω) →
∑

q

ψq(xi)ψ	
q (xj )

κq4 + f q2 + iωη
, (20)

where the new f -dependent term takes care of the reduction of
transverse undulations by applying a tensile prestress, adding a
term ∼f (∂y/∂s)2 to the Hamiltonian [Eq. (1)] or, equivalently,
the term f ∂2y/∂s2 to the equation of motion Eq. (11). In
essence, this assumes network prestress to act primarily as
filament tension. This results in a new stress-dependent plateau
modulus gf ∼ f , as well as a new regime g ∼ (iω)1/2 at
intermediate frequency (see Fig. 8), which is a result of
the domination of the f q2 term and the resulting cutoff
of the mode spectrum at q∗ ∼ ω1/2. The frequency scale
for this new regime is ωf ∼ f/λ2η, where λ = L/N is the
wavelength of the relevant bending mode. In order for this

1012

1014

1016

1012 1014 1016 1018

g’
, g

’’

ω

1/2

3/4

FIG. 8. Modulus vs frequency for a large value of tension
(f/g0 ≈ 10).
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regime to be accessible, the tension needs to be large enough to
make gf /g0 > (ωf /ω0)3/4, where ω0 ∼ κ/λ4η is the relevant
frequency scale without tension.

B. Schematic theory for strain ramp

Under large forces, the polymer will no longer behave
as inextensible rod. Rather the specific form of the force-
extension relation will become important. We can include
this factor in a schematic model for the behavior under a
strain ramp [40], where the strain linearly increases in time,
γ (t) = γ̇ t .

This schematic model utilizes the key assumptions of
Secs. II–IV: Network strains translate into non-affine filament
bending modes via a deformation of the tube; the amplitude of
these bends ȳ ∼ γL grows linearly with strain [see Eq. (3)]; the
wavelengths of the bends are slaved to the surrounding network
structure [factors β(s); see Fig. 4]. The bending wavelengths
are thus set by the typical intercrosslink spacing. That is, if
we consider a filament with N crosslinks, then the average
bending wavelength will be λ = L/N .

Under larger strain, beyond the linear regime, two pro-
cesses compete: First, nonlinear filament elasticity (nonlin-
ear force-extension relation) leads to strain-stiffening, and,
second, crosslink unbinding leads to an increase in the
wavelength of the bending modes and subsequently to strain
softening.

For a given bending amplitude ȳ, an associated longitudinal
extension u (increase of end-to-end distance) can be calculated
via Pythagoras’s law, u ∼ ȳ2/λ ∼ γ 2L2/λ.

In response to large elastic deformations the crosslinks
start to unbind (neglecting rebinding). Thus, the bending
wavelength gets longer, as λ = L/N , and the elastic energy
decreases. The interplay between stiffening and softening is
then a competition between elastic stiffening (embodied in the
non-linear longitudinal response) and softening via unbinding.
To implement the softening part, we need a model for the
elastic energy as well as a dynamical evolution equation
for the crosslink number N (t). The bending energy of the
filament scales Eb = Nk⊥ȳ2 where we have used the bending
spring constant k⊥ ∼ κ/λ3 of an elastic filament with bending
stiffness κ . For the stretching energy we take the linearized
force-extension relation of a wormlike chain with spring
constant ks ∼ κlp/λ4 and the persistence length lp. The total
energy then is E = Eb + Es , the force F is the first derivative,
and the modulus μ is the second derivative with respect to
strain. Without crosslink unbinding, this describes a strain-
stiffening system. The strain dependence in the nonlinear
regime follows from the longitudinal response and will differ,
for example, when one considers an exponential stiffening
model as in Ref. [37].

The simplest description for the crosslink dynamics is in
terms of a rate equation

dN/dt = f (N ) − b(N ), (21)

with forward rate f and backward rate b. Neglecting rebinding,
b = 0. Unbinding happens at any one of N crosslinks, thus
f = Nkoff , with an off-rate that may be force dependent, koff =
k0e

F (N)/F0 , with the N -dependent force F (N ) as given above.
Solving the combined problem then gives Fig. 9. It clearly

 0.8
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 1.8

2
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t
10-3 10-2 10-1

γ

FIG. 9. Nonlinear modulus μ vs time t (left) and vs strain γ

(right) for different strain rates. Larger strainrates imply less time
for unbinding processes. Therefore more of the elastic nonlinearity
is visible in the modulus (the larger the strainrate the higher the
peak).

shows the competition between hardening response as a result
of elastic nonlinearities (modulus increases as set by strain)
and softening response due to crosslink unbinding (modulus
decreases as set by time). The transition line between both
regimes depends on the unbinding rate and agrees well with
the results of full network simulations in Ref. [40]. Similar
curves have also been found experimentally, for example, in
Refs. [40–42].

VI. CONCLUSIONS

In conclusion, we have presented a theoretical framework
for the linear and nonlinear viscoelastic properties of reversibly
connected networks of semiflexible polymers. In our model
the network strain does not couple directly to the filament
end-to-end distance but rather serves to locally distort the
network structure. This induces bending modes in the filaments
the amplitude of which grow linearly in strain, and the
wavelength of which are slaved to the local network structure,
e.g., the distance to the next crosslink, etc. Specifically,
we investigated the frequency-dependent linear rheology, in
particular in combination with crosslink binding and unbind-
ing processes. At low frequencies the rheology is crosslink
dominated and given by an effective Maxwell element, 1/g ∼
1/g0 + 1/iζω, where ζ = kBT /D is the friction coefficient
induced by diffusive crosslink un- and rebinding processes.
At intermediate frequencies a quasielastic network forms,
characterized by a plateau modulus g0 that sensitively depends
on crosslink concentration as well as on network structure.
The latter dependence can, for example, be evidenced by
monitoring the change of the plateau modulus with changing
the typical angles between crosslinked filaments. Finally, at
high frequencies we observe a single-filament regime, where
the modulus shows scaling with frequency, g	 ∼ (iω)3/4. The
scaling is the same as in affine models; however, the prefactor
differs by a factor L/lp. Going beyond linear response, we
devised a schematic model for the nonlinear response in a
creep experiment. We found a transition between the hardening
and softening responses, as the strainrate or the crosslinker
off-rate are tuned. This transition reflects the competition
between elastic nonlinearities, which leads to hardening,
and crosslink unbinding, which leads to softening and to
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network failure. These tests show that our model is capable of
reproducing many of the key experimental findings available
in the literature.
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APPENDIX

Equation (5) can be solved in a simplified scaling picture.
To this end we assume one angle θi ≡ θ , as well as one
wavelength, λ = L/N , to dominate. For a given bending
amplitude y(s) → y0 the Hamiltonian Eq. (1) scales as

Hb = κ

2

y2
0

λ4
L. (A1)

The tube potential Eq. (2) can with Eqs. (3) and (4) be written
as

V = km

2

∑
i

αi(y − βiγL)2. (A2)

With the one-angle approximation this scales as

V = km

2
Nα(y0 − βγL)2. (A3)

Minimization of H + V with respect to y0 then yields

y0 = kmα

(κ/λ3) + kmα
βγL. (A4)

Inserting this into Eq. (5) (dropping the angular average), one
finds

1 = Nβ2α
κ/λ3

κ/λ3 + kmα
. (A5)

This can be solved for the modulus km,

km = κ

λ3

(
N − 1

β2α

)
β2, (A6)

which is Eq. (6).
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