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We analyze ultrasensitivity in a model of Vibrio harveyi quorum sensing. We consider a feedforward model
consisting of two biochemical networks per cell. The first represents the interchange of a signaling molecule
(autoinducer) between the cell cytoplasm and an extracellular domain and the binding of intracellular autoinducer
to cognate receptors. The unbound and bound receptors within each cell act as kinases and phosphotases,
respectively, which then drive a second biochemical network consisting of a phosphorylation-dephosphorylation
cycle. We ignore subsequent signaling pathways associated with gene regulation and the possible modification
in the production rate of an autoinducer (positive feedback). We show how the resulting quorum sensing system
exhibits ultrasensitivity with respect to changes in cell density. We also demonstrate how quorum sensing can
protect against the noise amplification of fast environmental fluctuations in comparison to a single isolated cell.
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I. INTRODUCTION

Quorum sensing is a form of system stimulus and response
that is correlated to population density. Many species of bacte-
ria use quorum sensing to coordinate various types of behavior
including bioluminescence, biofilm formation, virulence, and
antibiotic resistance, based on the local density of the bacterial
population [1–8]. In an analogous fashion, some social insects
use quorum sensing to determine where to nest [9]. Roughly
speaking, quorum sensing can function as a decision-making
process in any decentralized system, provided that individual
components have some mechanism for determining the num-
ber or density of the population and a stereotypical response
once some density threshold has been reached.

In the case of bacteria, quorum sensing involves the
production and extracellular secretion of certain signaling
molecules called autoinducers. Each cell also has receptors
that can specifically detect the signaling molecule via ligand-
receptor binding, which then activates transcription of certain
genes, including those for inducer synthesis. However, since
there is a low likelihood of an individual bacterium detecting
its own secreted inducer, the cell must encounter signaling
molecules secreted by other cells in its environment in order
for gene transcription to be activated. When only a few other
bacteria of the same kind are in the vicinity (low bacterial
population density), diffusion reduces the concentration of the
inducer in the surrounding medium to almost zero, resulting
in small amounts of inducer being produced. On the other
hand, as the population grows, the concentration of the inducer
passes a threshold, causing more inducer to be synthesized.
This generates a positive feedback loop that fully activates the
receptor and induces the up-regulation of other specific genes.
Hence, all of the cells initiate transcription at approximately
the same time, resulting in some form of coordinated behavior.
The basic process at the single-cell level is shown in Fig. 1.

Most models of bacterial quorum sensing are based on
deterministic ordinary differential equations (ODEs) in which
both the individual cells and the extracellular medium are
treated as well-mixed compartments (fast diffusion limit)
[10–18]. (Examples of spatial models can be found in
Refs. [12,19–22].) From a dynamical systems perspective, two
distinct forms of collective behavior are typically considered:
either the population acts as a biochemical switch [12] or

the population acts as a synchronized biochemical oscilla-
tor [14,17,18]. In this paper, we focus on the former. At
least two distinct mechanisms for a biochemical switch have
been identified. The first mechanism involves the occurrence
of bistability in a gene regulatory network as exemplified by
the mathematical model of quorum sensing in the bacterium
Pseudomonas aeruginosa (P. aeruginosa) developed by Dock-
ery and Keener [12]. P. aeruginosa is a human pathogen that
monitors its cell density in order to control the release of
various virulence factors [2,3]. That is, if a small number of
bacteria released toxins, then this could easily be neutralized
by an efficient host response, whereas the effectiveness of the
response would be considerably diminished if toxins were only
released after the bacterial colony has reached a critical size via
quorum sensing. Multiple steady-states have also been found in
a related ODE model of quorum sensing in the bioluminescent
bacteria Vibrio fisheri [10]. In this system, quorum sensing
limits the production of bioluminescent luciferase to situations
where cell populations are large; this saves energy since the
signal from a small number of cells would be invisible and
thus useless.

Recent experimental studies of quorum sensing in the bac-
terial species Vibrio harveyi (V. harveyi) and Vibrio cholerae
(V. cholerae) [4,6,7] provide evidence for an alternative
switching mechanism, which can provide robust switchlike
behavior without bistability. In these quorum sensing
systems two or more parallel signaling pathways control a
gene regulatory network via a cascade of phosphorylation-
dephosphorylation cycles (PdPCs). PdPCs are a very common
signaling mechanism within cells, consisting of a protein that
can exist in an unmodified (unphosphorylated) or a modified
(phosphorylated) state. Interconversion of the inactivated and
activated protein states is catalyzed by two enzymes, kinases
that phosphorylate the inactivated protein and phosphotases
that dephopshorylate the activated protein. Within the context
of quorum sensing, the binding of an autoinducer to its
cognate receptor switches the receptor from acting like a
kinase to one acting like a phosphotase. Thus the PdPCs are
driven by the level of autoinducer, which itself depends on
the cell density. One characteristic feature of a PdPC is that
it exhibits ultrasensitivity, that is, its response to a stimulus
takes the form of a sharp switchlike sigmoid function [23–27].
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FIG. 1. A schematic of quorum sensing at the single-cell level.

In this paper, we analyze ultrasensitivity in V. harveyi
quorum sensing. For simplicity, we focus on a single phos-
phorylation pathway by adapting the Goldbeter-Koshland
model of phosphorylation-dephosphorylation cycles [23]. We
consider a feedforward model consisting of two biochemical
networks per cell. The first represents the interchange of
an autoinducer between the cytoplasm and an extracellular
domain and the binding of an intracellular autoinducer to
cognate receptors. The unbound and bound receptors within
each cell act as kinases and phosphotases, respectively, which
then drive a second biochemical network consisting of a PdPC.
We ignore subsequent signaling pathways associated with gene
regulation and the possible modification in the production
rate of the autoinducer (positive feedback). We show how the
resulting quorum sensing system can exhibit ultrasensitivity
with respect to changes in cell density. However, the resulting
switchlike behavior can make the system vulnerable to fast
fluctuations in the environment, which could be detrimental.
Therefore, we also demonstrate how quorum sensing can
protect against the noise amplification of fast fluctuations in
comparison to the PdPC of a single isolated cell.

The structure of the paper is as follows. In Sec. II we
consider a general ODE model of quorum sensing and derive
conditions for the global convergence of the system. Our basic
model of quorum sensing in V. harveyi is presented in Sec. III
where we prove global convergence of the model equations and
use this to establish ultrasensitivity with respect to population
density. In Sec. IV we address the issue of noise amplification
in the presence of receptor fluctuations and show how quorum
sensing suppresses the effects of noise.

II. DIFFUSIVELY COUPLED MODEL OF QUORUM
SENSING

We begin by formulating a general model of quorum
sensing and analyzing the global convergence properties of
the model using the contraction theory tools of Russo and Slo-
tine [28]. Suppose that there are N cells labeled i = 1, . . . ,N .
Let U (t) denote the concentration of signaling molecule
in the extracellular space, and let ui be the corresponding
intracellular concentration within the ith cell. Suppose that
there are K other chemical species within each cell, which
together with the signaling molecule comprise a regulatory
network. Let vi = (vi,1, . . . ,vi,K ) with vi,k as the concentration

of species k within the ith cell. A deterministic model of
quorum sensing can then be written in the general form [14]

dui

dt
= F (ui,vi) − κ(ui − U ), i = 1, . . . ,N, (2.1a)

dvi,k

dt
= Gk(ui,vi), k = 1, . . . ,K, (2.1b)

dU

dt
= ακ

N

N∑
j=1

(uj − U ) − γU. (2.1c)

Here F (u,v) and Gk(u,v) are the reaction rates of the
regulatory network based on mass action kinetics, the term
κ(uj − U ) represents the diffusive exchange of signaling
molecules across the membrane of the j th cell with diffusive
conductance κ , and γ is the rate of degradation of extracellular
signaling molecules. Finally, α = Vcyt/Vext is a cell density
parameter equal to the ratio of the total cytosolic and
extracellular volumes. Note that Vcyt = vcytN , where vcyt is
the single-cell volume. In this paper we treat N and α as
independent variables.

The global convergence properties of quorum sensing
networks where coupling between nodes in the network is
mediated by a common environmental variable have been
analyzed within the context of nonlinear dynamical systems
in Ref. [28]. These authors consider a more general class
of model than given by Eqs. (2.1), including nondiffusive
coupling and nonidentical cells. In order to develop our model
of ultrasensitivity in V. harveyi quorum sensing, it is useful to
apply the analysis of Ref. [28] to the system of Eqs. (2.1). This
requires recalling some basic results of nonlinear contraction
theory [29]. Consider the m-dimensional dynamical system,

dx
dt

= f(x,t), x ∈ Rn, (2.2)

with f:Rn → Rn as a smooth nonlinear vector field. Introduce
the vector norm |x| for x ∈ Rn, and let ‖A‖ be the induced
matrix norm for an arbitrary square matrix A, that is,

‖A‖ = sup{|Ax|: x ∈ Rn with |x| = 1}.
Some common examples are as follows:

|x|1 =
n∑

j=1

|xj |, ‖A‖1 = max
1�j�n

n∑
i=1

|aij |,

|x|2 =
⎛⎝ n∑

j=1

|xj |2
⎞⎠1/2

, ‖A‖2 =
√

λmax(A∗A),

|x|∞ = max
1�j�n

|xj |, ‖A‖∞ = max
1�i�n

n∑
j=1

|aij |,

where A∗ is the transpose of A and λmax(A∗A) is the largest
eigenvalue of the positive semidefinite matrix A∗A. Define the
associated matrix measure μ as

μ(A) = lim
h→0+

1

h
(‖I + hA‖ − 1),
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where I is the identity matrix. For the three above norms on
Rn, the associated matrix measures are

μ1(A) = max
1�j�n

⎧⎨⎩ajj +
∑
i �=j

|aij |
⎫⎬⎭,

μ2(A) = max
1�i�n

{λi([A + A∗]/2)},

μ∞(A) = max
1�i�n

⎧⎨⎩aii +
∑
j �=i

|aij |
⎫⎬⎭.

Given these definitions, the basic contraction theorem is as
follows [28]:

Theorem 1. The n-dimensional dynamical system (2.2) is
said to be contracting if any two trajectories, starting from
different initial conditions, converge exponentially to each
other. A sufficient condition for a system to be contracting
is the existence of some matrix measure μ for which there
exists a constant λ > 0 such that

μ(J (x,t)) � −λ, Jij = ∂fi

∂xj

(2.3)

for all x,t . The scalar λ defines the rate of contraction.
A related concept is partial contraction [28]. Consider

a smooth nonlinear dynamical system of the form ẋ =
f (x,x,t) with x ∈ Rn. Suppose that the so-called virtual
nonautonomous system ẏ = f (y,x,t) with x(t) evolving as
specified is contracting with respect to y. If a particular solution
of the virtual system has some smooth specific property, then
all trajectories of the original x system exhibit the same
property in the large t limit. This follows from the fact
that y(t) = x(t), t � 0 is another particular solution of the
virtual system, and all trajectories of the y system converge
exponentially to a single trajectory.

In order to apply the above results to Eqs. (2.1), we rewrite
the latter in the form

dxi

dt
= f(xi) − κ((xi)1 − U )e1, i = 1, . . . ,N, (2.4a)

dU

dt
= ακ

N

N∑
j=1

((xj )1 − U ) − γU, (2.4b)

with xi = (ui,vi) ∈ R1+K, (xi)1 = ui, f = (F,G1, . . . ,GK ),
and e1 = (1,0, . . . ,0). From the contraction theorem and the
notion of partial contraction, one can show that the global
convergence condition,

|xi(t) − xj (t)| → 0 as t → ∞
holds provided that f(x) − κ(x)1e1 is contracting. The proof
follows from considering the reduced order virtual system,

ẏ = f(y) − κ(y)1e1 + κU (t)e1,

where U (t) is treated as an external input. Setting y(t) = xi(t)
in the virtual system recovers the dynamics of the ith cell.
Hence, xi(t) for i = 1, . . . ,N are particular solutions of the
virtual system so that if the virtual system is contracting in y,
then all of its solutions converge exponentially toward each
other, including the solutions xi(t). In this asymptotic limit,

we effectively have a single cell diffusively coupled to the
extracellular medium, that is, ui(t) → u(t) and vi(t) → v(t)
with

du

dt
= F (u,v) − κ(u − U ), (2.5a)

dvk

dt
= Gk(u,v), (2.5b)

dU

dt
= ακ(u − U ) − γU. (2.5c)

III. ULTRASENSITIVITY IN V. HARVEYI QUORUM
SENSING

The bioluminescent bacterium V. harveyi has three par-
allel quorum sensing systems, each consisting of a distinct
autoinducer (HAI-1, AI-2, CAI-1), cognate receptor (LuxN,
LuxP/Q, CqS), and associated enzyme (LuxM, LuxS, CqsA)
that helps produce the autoinducer, see Fig. 2. (The human
pathogen V. cholerae has a similar quorum sensing network,
except there appear to be only two parallel pathways. Note,
however, that a recent study suggests there could be up to
four parallel pathways [30].) Each autoinducer moves freely
between the intracellular and the extracellular domains. At low
cell densities there are relatively low levels of autinducer due to
diffusion so that there is a low probability that the autoinducer
can bind to its cognate receptor. Consequently, the receptor acts
as a kinase that autophosphorylates and subsequently transfers
its phosphate to the cytoplasmic protein LuxU. LuxU-P then
passes its phosphate to the DNA-binding regulatory protein
LuxO to yield LuxO-P. The upshot is that, at low cell densities,
the ratio of [LuxO-P] to [LuxO] is high and this activates tran-
scription of the genes encoding five regulatory sRNAs termed
Qrr1–Qrr5. Bacterial sRNAs are small (50–250 nucleotides)
noncoding RNA molecules that can either bind to a protein
and alter its function or bind to messenger RNA and regulate
gene expression. In the case of quorum sensing in V. harveyi,
the small sRNAs Qrr1–Qrr5 destabilize the transcriptional
activator protein LuxR, thus preventing the activation of target
genes responsible for the production of various proteins,
including bioluminescent luciferase. Hence, at low cell density
the bacteria do not bioluminesce. On the other hand, at high
cell density, the concentration of intracellular autoinducers is
increased so that they have a higher probability of binding to
their receptors, which then switch from being kinases to being
phosphotases, significantly reducing the ratio of [LuxO-P] to
[LuxO]. The sRNAs are thus no longer expressed, allowing
the synthesis of LuxR and the expression of bioluminescence,
for example. Both the phosphorylation-dephosphorylation
cascades and the sRNA regulatory network provide a basis
for a sharp sigmoidal response of the concentration of LuxR
to smooth changes in cell density.

A. Single-cell model

We will analyze the occurrence of ultrasensitivity in the
above quorum sensing system by focusing on a single phospho-
rylation pathway and adapting the Goldbeter-Koshland model
of PdPCs [23]. (For a corresponding model of switching due
to the action of sRNAs, see Hunter et al. [31]. In their model,
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FIG. 2. Summary of the V. harveyi quorum sensing circuit. Three phosphorylation cascades work in parallel to control the ratio of LuxO
to LuxO-P based on local cell-population density. Five small RNAs (sRNAs), quorum regulatory RNAs (Qrr1–Qrr5), then regulate expression
of quorum sensing target genes including the master transcriptional regulator LuxR, which up-regulates downstream factors.

the fraction of phosphorylated LuxO is taken to be the external
input to the sRNA network. The latter itself depends on the
level of phosphorylated LuxU, which is the output of our
model. Note that we could also consider ultrasensitivity in a
bicyclic PdPC cascade involving both LuxU and LuxO.) In par-
ticular, we consider the phosphorylation-dephosphorylation of
LuxU by the enzymatic action of a particular quorum sensing
receptor, which is denoted by R when acting as a kinase and
by R̂ when it is bound by an autoinducer (A) and acts like a
phosphotase. Denoting the protein LuxU by W , we define the
following reaction schemes:

W + R
a1�
d1

WR
k1→ W ∗ + R, (3.1a)

W ∗ + R̂
a2�
d2

W ∗R̂
k2→ W + R̂, (3.1b)

R + A
k+�
k−

R̂. (3.1c)

For simplicity, we assume that both the phosphorylation
and the dephosphorylation steps are irreversible. (See the
work of Qian and collaborators for an analysis of more
detailed reversible models of PdPCs [25–27].) Introduc-
ing the concentrations u = [A], w = [W ], w∗ = [W ∗], r =
[R], r̂ = [R̂], v = [WR], and v∗ = [W ∗R̂], the correspond-
ing kinetic equations for a single cell with a fixed intracellular
concentration of autoinducer are

dw

dt
= −a1w(r − v) + d1v + k2v

∗, (3.2a)

dv

dt
= a1w(r − v) − (d1 + k1)v, (3.2b)

dw∗

dt
= −a2w

∗ (̂r − v∗) + d2v
∗ + k1v, (3.2c)

dv∗

dt
= a2w

∗ (̂r − v∗) − (d2 + k2)v∗, (3.2d)

dr

dt
= k−r̂ − k+ur. (3.2e)

These are supplemented by the conservation equations,

WT = w + w∗ + v + v∗, (3.3a)

RT = r + r̂ , (3.3b)

where RT is the total concentration of receptors and WT is the
total concentration of LuxU.

In the various models considered in this paper, the con-
version of the receptors from kinase to phosphotase activity
is taken to be independent of the PdPC. That is, we ignore
any positive feedback pathways in which the regulation of
gene expression by the phosphorylation or dephosphorylation
of LuxU alters the production of the autoinducer [32]. This
allows us to treat the receptor-ligand dynamics given by
Eq. (3.2e) or subsequent extensions independent of the PdPC
dynamics given by Eqs. (3.2a)–(3.2d). In particular, for fixed
concentration u, we can take the concentration of kinases and
phosphotases to be at equilibrium,

req = k−
k+u + k−

RT ≡ R(u), r̂eq = RT − R(u). (3.4)

The system of Eqs. (3.2) then reduces to the classical
Goldbeter-Koshland model of PdPCs [23], and we can apply
their analysis based on a generalization of Michaelis-Menten
kinetics. The first step is to assume that the concentration of
W and W ∗ is much larger than that of the receptor, that is,
WT 	 RT or equivalently WT = w + w∗. This implies that
the time scale for the dynamics of the complexes WR and
W ∗R̂ is much faster than that for the dynamics of W and
W ∗. Performing a separation of time scales, we can treat
the concentrations w and w∗ as constants when analyzing
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Eqs. (3.2b) and (3.2d), whereas we can take the steady-state
values of the concentrations v,v∗ when solving Eqs. (3.2a) and
(3.2c). Hence, setting dv/dt = 0 and r = R(u) in (3.2b) we
can solve for v in terms of w. Similarly, setting dv∗/dt = 0
and r̂ = RT − R(u) in (3.2d) we can solve for v∗ in terms of
w∗. We thus obtain the reduced kinetic scheme,

W
f1(w)
�

f2(w∗)
W ∗, (3.5)

with

f1(w) = k1R(u)w

K1 + w
, f2(w∗) = k2[RT − R(u)]w∗

K2 + w∗ , (3.6)

and

K1 = d1 + k1

a1
, K2 = d2 + k2

a2
.

Imposing the conservation condition WT = w + w∗ thus
yields the single independent kinetic equation,

dw∗

dt
= f1(WT − w∗) − f2(w∗). (3.7)

The steady-state concentration w∗
eq of LuxU-P is thus

obtained by solving f1(WT − w∗) = f2(w∗), which yields a
quadratic equation for w∗. Taking the positive root and ex-
pressing it as a function of the fixed autoinducer concentration
u, we find that

[LuxU-P]

[LuxU-P] + [LuxU]
= φ[V (u)], (3.8)

with

V (u) = k1R(u)

k2[RT − R(u)]
= k−

k+u

k1

k2
, (3.9)

and φ given by

φ = −B + √
B2 + 4AC

2AWT

(3.10)

for V �= 1, where

A = V (u) − 1, B = 1

WT

[K1 + K2V (u)] − [V (u) − 1],

C = K2

WT

V (u).

A plot of φ as a function of the autoinducer concentration u is
shown in Fig. 3 for K1 = K2 = K . At low values of K , there is
a sharp change from high to low levels of modified protein over
a very small change in u (ultrasensitivity); this corresponds to
a regime in which the two enzymes are saturated. On the other
hand, for large values of K , the curve is relatively shallow, and
one obtains a response similar to first-order kinetics.

Note on units

In this paper we are concerned with certain qualitative
features of the quorum sensing network. Therefore, we treat
all parameters and variables as dimensionless. We fix the units
of autoinducer concentration by taking the PdPC switch to
occur at u = 1. (Typical intracellular molar concentrations
are on the order of nanomolars.) The receptor concentration
r is expressed in terms of the fraction of receptors that act

m
ol

ar
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n 
φ 

K = 0.01

K =1
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FIG. 3. Molar fraction of modified protein W ∗ at steady state as
a function of the autoinducer concentration u for different values of
K with K = K1 = K2 and k−k1 = k+k2.

as kinases by setting RT = 1. Similarly, the concentration of
LuxU-R is expressed in terms of the fraction of phosphorylated
LuxU proteins by setting WT = 1. Finally, the units of time
are taken to be on the order of minutes, comparable to typical
unbinding times k−1

− . In all figures variables are dimensionless.

B. Global convergence of the population model

Now consider a population of N identical cells that are
coupled via a common extracellular domain due to the transfer
of the autoinducer A across the cell membrane. Equation (3.2e)
for a single cell is then replaced by a system of equations of
the form (2.1)

dui

dt
= � + k−(RT − ri) − k+uiri − κ(ui − U ), (3.11a)

dri

dt
= k−(RT − ri) − k+uiri, i = 1, . . . ,N, (3.11b)

dU

dt
= ακ(uav − U ) − γU, (3.11c)

where

uav = 1

N

N∑
j=1

uj (3.12)

is the population-averaged intracellular concentration of A, U

is the extracellular concentration of A, and � is the rate of
production of A due to the action of enzymes.

We would like to use contraction analysis (Sec. II) to derive
conditions that ensure global convergence of the system (3.11).
In order to achieve this, it is first necessary to obtain an upper
bound on ui for any i. (Since ui is a concentration, the lower
bound is given by ui � 0.) Equation (3.11c) implies that

U (t) � ακuav(t)

ακ + γ
,

with uav(t) evolving according to

duav

dt
= � + k−

N

N∑
i=1

(RT − ri) − k+
N

N∑
i=1

(uiri) − κ(uav − U ).
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The latter is obtained by summing Eq. (3.11a) with respect to
i. It follows that

duav

dt
� � + k−RT − κ(uav − U )

� � + k−RT − κγ

ακ + γ
uav.

Hence, using a comparison principle if uav(0) � v(0), then
uav(t) � v(t) for all t > 0 with

dv

dt
= � + k−RT − κγ

ακ + γ
v.

Moreover, if

v(0) � 	 ≡ (� + k−RT )(ακ + γ )

κγ
,

then v(t) � 	 for all t > 0 and thus

uav(t) � 	 for all t > 0.

This in turn means that

U (t) � α

γ
(� + k−RT ),

which leads to an upper bound on each ui(t),

ui(t) � 	. (3.13)

Let us now consider global convergence of Eqs. (3.11). The
reduced virtual system takes the form

dy1

dt
= � + k−[RT − y2] − k+y1y2 − κ(y1 − U ), (3.14a)

dy2

dt
= k−[RT − y2] − k+y1y2, (3.14b)

with U (t) treated as an external input. The Jacobian of the
virtual system is

J (y,t) =
(−k+y2 − κ −k− − k+y1

−k+y2 −k− − k+y1

)
. (3.15)

Suppose that we take the 
2 norm for y. In order to determine
the corresponding matrix measure μ2(J ), we need to calculate
the eigenvalues of the symmetric matrix,

J + J ∗

2

=
( −k+y2 − κ −[k− + k+(y1 + y2)]/2

−[k− + k+(y1 + y2)]/2 −k− − k+y1

)
.

These are given by

λ± = 1
2 [−b(y) ±

√
b(y)2 − c(y)],

with

b(y) = κ + k− + k+(y1 + y2),

c(y) = 4(κ + k+y2)(k− + k+y1) − [k− + k+(y1 + y2)]2.

Since b(y) > 0, the matrix measure is

μ2(J ) = max{λ±} = λ+.

Hence, the virtual system is contracting provided that c(y) > 0.

We now derive conditions for c(y) to be positive definite.
First, note that

c(0) = k−(4κ − k−) > 0

provided κ > k−/4. Assuming this inequality holds, we can
ensure positivity of c(y) by imposing the following conditions:

∂c

∂y1
≡ 2k+[2κ − 2k− − k+(y1 − y2)] > 0,

∂c

∂y2
≡ 2k+[k− + k+(y1 − y2)] > 0

for all y. The minimum possible value of ∂2c occurs when
y2 = RT and y1 = 0, which will be positive definite provided

k+RT < k− < 4κ. (3.16)

The minimum possible value of ∂1c occurs when y1 = 	, see
Eq. (3.13), which will be positive definite provided

k− + k+	 < 2κ. (3.17)

We have thus proven that if conditions (3.16) and (3.17) hold,
then μ2(J ) < 0 and the y dynamics is contracting. Applying
the notion of partial contraction, we thus deduce that the
quorum sensing system (3.11) is globally convergent with
ui(t) → u(t) and ri(t) → r(t) in the limit t → ∞, with (u,r)
evolving according to the effective single-cell model,

du

dt
= � + k−[RT − r] − k+ur − κ(u − U ), (3.18a)

dr

dt
= k−[RT − r] − k+ur, (3.18b)

dU

dt
= ακ(u − U ) − γU. (3.18c)

An illustration of global convergence is presented in Fig. 4
where we plot the evolution of the inducer concentration for
ten coupled cells based on numerically solving Eqs. (3.11).
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FIG. 4. Global convergence of the intracellular autoinducer con-
centration for N = 10 coupled cells. Parameter values are k− = k+ =
� = 1, RT = 1, κ = 1, and α = 0.05.
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C. Ultrasensitivity in the population model

Global convergence of the quorum sensing system means
that, ignoring transients, we can explore the effects of the
extracellular coupling on ultrasensitivity of the PdPC pathway
by taking the cells to be synchronized and evolving according
to Eqs. (3.18). The latter have a unique stable fixed point ueq

with

ueq = �
(ακ + γ )

κγ
≡ ψ(α). (3.19)

Setting u = ueq in Eq. (3.8) finally shows that

[LuxU-P]

[LuxU-P] + [LuxU]
= φ

(
k−

k+ψ(α)

k1

k2

)
≡ �(α). (3.20)

In order that the system exhibit switchlike behavior as a
function of cell density α, we require a critical value αc, 0 <

αc < ∞ such that (for � = 1)

χ ≡ k−
k+

k1

k2
= αc

γ
+ 1

κ
,

that is,

αc = γ (χ − κ−1).

Assuming that χ = 1 and taking αc = 0.05 [14], we require
κ > 1 and γ = γc = 0.05(1 − κ−1). For low cell densities
(α � αc) we have �(α) ≈ 1, which follows from the func-
tional form of φ, see Fig. 3. Hence the fraction of phos-
phorylated LuxU-P is high, which ultimately means that the
expression of the gene regulator protein LuxR is suppressed.
On the other hand, for large cell densities (α 	 αc) we find
that �(α) ≈ 0. Now the fraction of phosphorylated LuxU-P
is small, allowing the expression of LuxR and downstream
gene regulatory networks. The α dependence is illustrated in
Fig. 5. Since α and u are linearly related, we will focus on the
u dependence in subsequent sections and choose γ and � such
that αc = 0.05 for all κ’s.
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FIG. 5. Molar fraction of modified protein W ∗ at steady state as
a function of the cell density α for different values of K, K = K1 =
K2. Other parameter values are chosen so that k−k1 = k+k2, � =
1, κ = 10, αc = 0.05.

IV. NOISE AMPLIFICATION OF INTRINSIC
FLUCTUATIONS

One of the characteristic features of ultrasensitive bio-
chemical signaling networks is that they tend to amplify
noise [24,26,33,34]. On the other hand, collective behavior at
the population level as exhibited by quorum sensing networks
can mitigate the effects of noise [28,35]. In this section
we explore the amplification of intrinsic fluctuations in the
V. harveyi quorum sensing model introduced in Sec. III. Note
that our analysis is distinct from some recent studies based
on stochastic versions of Eqs. (2.1) in which the mass-action
kinetics of the auxiliary species within each cell is replaced by
a master equation describing the stochastic reactions of a finite
number of molecules [36–38]. We will assume throughout that
the population model is contracting as defined in Sec. II.

A. Linear response of the single-cell model

We begin by returning to the single-cell model with fixed
concentration u of the autoinducer. In the deterministic case
with r given by the equilibrium solution (3.4), the dynamics
of LuxU is given by Eq. (3.7), which we write explicitly in the
form

dw∗

dt
= F(w∗,r) ≡ k1r(WT − w∗)

K1 + [WT − w∗]
− k2[RT − r]w∗

K2 + w∗ .

(4.1)
A number of recent studies have investigated noise signal
amplification in ultrasensitive signal transduction based on
stochastic versions of Eq. (4.1) [24,26,33,34]. A more detailed
analysis would need to start from a stochastic version of the
full system of Eqs. (3.2) since r(t) is now time dependent.
Here, however, we will follow along similar lines of previous
authors and consider the effects of fluctuations in receptor
concentration by applying linear response theory to Eq. (4.1).

Suppose that r(t) undergoes small fluctuations about the
equilibrium state req of Eq. (3.4). This can be incorporated by
replacing Eq. (3.2) for fixed u by the Langevin equation,

dr

dt
= k−(RT − r) − k+ur + σ0ξ (t), (4.2)

with ξ (t) as a white noise process,

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = δ(t − t ′),

and σ0 as a fixed noise intensity. One possible source of noise
is fluctuations in the autoinducer concentration u; these will be
modeled explicitly in the population model of quorum sensing
in Sec. III B. Under the linear noise approximation, we set
r(t) = req + R(t) such that

dR

dt
= −(k− + k+u)R + σ0ξ (t). (4.3)

Similarly, linearizing Eq. (4.1) about the equilibrium solution
by setting w∗ = w∗

eq + W, w∗
eq = φ[V (u)] gives

dW

dt
= −β1W + β2R, (4.4)
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a function of autoinducer concentration u for different values of
K, K = K1 = K2. Other parameter values are k− = k+ = k1 = k2 =
1 and RT = WT = 1.

with

β1 = − ∂F
∂w∗

∣∣∣∣
eq

= k1K1req

(K1 + [WT − w∗
eq])2

+ k2K2[RT − req]

[K2 + w∗
eq]2

,

(4.5)
and

β2 = ∂F
∂r

∣∣∣∣
eq

= k1(WT − w∗
eq)

K1 + [WT − w∗
eq]

+ k2w
∗
eq

K2 + w∗
eq

. (4.6)

Note that the gain of the underlying deterministic system (4.1)
at equilibrium is given by

g = �W/w∗
eq

�R/req
= β2

β1

req

w∗
eq

. (4.7)

Incorporating the u dependence of req and β1,2 we determine
g = g(u). In Fig. 6 we plot the gain g as a function of u.
It can be seen that there is a sharp gain around the critical
concentration u = 1.

In order to determine the variance of the concentration of
LuxU-P, w∗, we use Fourier transforms. Taking

R(ω) =
∫ ∞

−∞
eiωtR(t)dt,

etc., we Fourier transform the linear equations (4.3) and (4.4)
to obtain

W (ω) = β2

β1 + iω
R(ω), R(ω) = σ0

k− + k+u + iω
ξ (ω),

where ξ (ω) is the Fourier transform of a white noise process
with

〈ξ (ω)〉 = 0, 〈ξ (ω)ξ (ω′)〉 = 2πδ(ω − ω′).

Using the Wiener-Khinchine theorem, the variance of the
receptor concentration is given by the integral of the power
spectrum defined by

2πSR(ω)δ(ω − ω′) = 〈R(ω)R(ω′)〉.

That is,

σ 2
R =

∫ ∞

−∞
SR(ω)

dω

2π

=
∫ ∞

−∞

σ 2
0

[k− + k+u]2 + ω2

dω

2π

= σ 2
0

2[k− + k+u]
. (4.8)

Similarly, the variance of the Lux-P concentration is

σ 2
W =

∫ ∞

−∞
SW (ω)

dω

2π

=
∫ ∞

−∞

β2
2

β2
1 + ω2

σ 2
0

[k− + k+u]2 + ω2

dω

2π

= β2
2

β2
1 − [k− + k+u]2

σ 2
0

2[k− + k+u]

+ β2
2

2β1

σ 2
0

[k− + k+u]2 − β2
1

= β2
2σ 2

0

2β1[k− + k+u]

1

k− + k+u + β1
. (4.9)

If we interpret σW/w∗
eq as the relative noise intensity of

the output and σR/req as the relative noise intensity of the
output, then the noise amplification of the PdPC in response
to receptor fluctuations is defined by the stochastic gain [33],

G = σW/w∗
eq

σR/req
= req

w∗
eq

√
β2

2

β1

1

k− + k+u + β1

= g

√
β1

k− + k+u + β1
, (4.10)

where g is the deterministic gain (4.7). In Fig. 7 we plot the
relative gain G/g and the stochastic gain G as a function
of u. It can be seen that the sharp amplification around the
critical density u = 1 in the ultrasensitive regime (K = 0.01)
is suppressed relative to the deterministic gain.

B. Linear response of the population model

We now extend the analysis of noise amplification to the
population model where we explicitly model the stochastic
dynamics of the autoinducer concentration. We show how
filtering of the noise by the quorum sensing network can greatly
reduce the effects of noise amplification. The first point to note
is that, in a stochastic model of quorum sensing, we cannot
identify the state of all the cells, even if the deterministic
system (2.1) is globally convergent. Therefore, in the case
of V. harveyi, we have to consider a stochastic version of
Eqs. (3.11a) and (3.11b),

dui

dt
= � + k−(RT − ri) − k+uiri − κ(ui − U ) + θ0ξi(t),

(4.11a)

dri

dt
= k−(RT − ri) − k+uiri, (4.11b)
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dU

dt
= ακ(uav − U ) − γU (4.11c)

for i = 1, . . . ,N , with

〈ξi(t)〉 = 0, 〈ξi(t)ξj (t ′)〉 = δ(t − t ′)δij .

We assume that each cell is driven by an independent white
noise term with constant noise intensity θ0; one source of the
noise could be fluctuations in the production of the autoinducer.
Linearizing about the global steady state by setting

ui(t) = ueq + Ui(t), ri(t) = req + Ri(t),

U (t) = Ueq + V(t)

yields

dUi

dt
= −k−Ri − k+(Ui req + ueqRi) − κ(Ui − V)

+ θ0ξi(t), (4.12a)

dRi

dt
= −k−Ri − k+(Ui req + ueqRi), (4.12b)

dV
dt

= ακ(Uav − V) − γV, Uav = 1

N

N∑
i=1

Ui . (4.12c)

Fourier transforming this linear system of equations gives

�U (ω)Ui(ω) = −(k− + k+ueq)Ri(ω) + κV(ω) + θ0ξi(ω),

(4.13a)

�R(ω)Ri(ω) = −k+reqUi(ω), (4.13b)

�V (ω)V(ω) = ακUav(ω), (4.13c)

where

�U (ω) = iω + κ + k+req, �R(ω) = iω + k− + k+ueq,

�V (ω) = iω + γ + ακ.

Summing both sides of Eqs. (4.13a) and (4.13b) with respect
to i and using Eq. (4.13c) we obtain the result,

Rav(ω) = −k+reqUav(ω)

�R(ω)
, Uav(ω) = θ0ξav(ω)

�̂U (ω)
, (4.14)

where

�̂U (ω) = �U (ω) − k+req(k− + k+ueq)

�R(ω)
− ακ2

�V (ω)
.

It follows that

[�̂U (ω) + �(ω)]Ui(ω) = θ0ξi(ω) + �(ω)Uav(ω), (4.15)

where

�(ω) = ακ2

�V (ω)
.

Multiplying Eq. (4.15) by its complex conjugate and averaging
with respect to the noise gives

[�̂U (ω) + �(ω)][�̂U (ω′) + �(ω′)]〈Ui(ω)Ui(ω′)〉
= θ2

0 〈ξi(ω)ξi(ω′)〉 + �(ω)�(ω′)〈Uav(ω)Uav(ω′)〉
+θ0[�(ω′)]〈ξi(ω)Uav(ω′)〉 + �(ω)〈Uav(ω)ξi(ω′)〉.

From Eq. (4.14), we find that

〈Uav(ω)Uav(ω′)〉 = 2πθ2
0

N |�̂U (ω)|2 δ(ω − ω′),

〈ξi(ω)Uav(ω′)〉 = 2πθ0

N�̂U (ω)
δ(ω − ω′).

Each cell thus has the same spectrum SU with

SU (ω) = θ2
0

|�̂U (ω) + �(ω)|2

×
(

1 + |�(ω)|2
N |�̂U (ω)|2 + 2

N
Re

[
�(ω)

�̂U (ω)

])
. (4.16)

Now suppose that N is sufficiently large so that the O(1/N)
terms can be dropped. The remaining denominator can be
simplified by noting that

�̂U (ω) + �(ω) = iω + κ + k+req − k+req(k− + k+ueq)

iω + k− + k+ueq

= (iω + z+)(iω + z−)

iω + k− + k+ueq
,
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with

z± = 1
2 {[k− + k+(ueq + req) + κ]

±
√

[k− + k+(ueq + req) + κ]2 − 4κ(k− + k+ueq)}.
Noting that z±’s are real with z± > 0, we see that the denomi-
nator of SU (ω) has simple poles at w = −iz−± and w = iz±
with iz± lying on the upper-half complex plane. Hence, using
Eq. (4.13b), the variance in the receptor concentration ri at
the single-cell level is (after closing the contour C on the
upper-half plane)

σ 2
R = (k+req)2

|�R(ω)|2
∫ ∞

−∞
SU (ω)

dω

2π

=
∮

C

σ 2
0

|iω + z+|2|iω + z−|2
dω

2π

= σ 2
0

2z−(z2+ − z2−)
− σ 2

0

2z+(z2+ − z2−)

= σ 2
0

2z+z−(z+ + z−)
, (4.17)

where we have taken σ0 = k+reqθ0/� with � = 1. It is
straightforward to show that σ 2

R → 0 as κ → ∞. This is
illustrated in Fig. 8 where we plot the ratio σ 2

R/σ 2
0 as a function

of ueq for various κ’s. Hence, the receptor fluctuations vanish
in the limit N,κ → ∞, which is consistent with the nonlinear
analysis of Sec. IV C.

We now calculate the gain of individual-cell PdPCs driven
by the receptor fluctuations of the population model. Following
along identical lines as Sec. III B,

σ 2
W =

∫ ∞

−∞
SW (ω)

dω

2π

=
∫ ∞

−∞

β2
2

β2
1 + ω2

σ 2
0

|iω + z+|2|iω + z−|2
dω

2π

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9
κ=2

κ=4

κ=8

ga
in

 G

inducer concentration ueq

FIG. 9. Plot of stochastic gain G of the population model as a
function of autoinducer concentration ueq for different values of κ

and K = 0.01. Other parameter values are k− = k+ = k1 = k2 = 1
and RT = WT = 1. The dashed curve is the gain of the single-cell
model from Fig. 7(b).

= β2
2

2β2
1

β2
1σ 2

0(
β2

1 − z2+
)(

β2
1 − z2−

)
×
[
β2

1 − (z2
− + z−z+ + z2

+)

(z+ + z−)z+z−
+ 1

β1

]
. (4.18)

The gain G is then

G = σW/w∗
eq

σR/req

= g
β1σW

β2σR

= g

√
β1(

β2
1 − z2+

)(
β2

1 − z2−
)

×
√

β1
[
β2

1 − (z2− + z−z+ + z2+)
]+ (z+ + z−)z+z−.

(4.19)

Expressing req and β1,2 in terms of ueq, we plot the stochastic
gain G of the population model as a function of ueq for
K = 0.01 and various coupling strengths κ , see Fig. 9. We
find that the stochastic gain G is only weakly dependent on κ

and approaches the gain of the single-cell model as κ increases.
Given that the receptor fluctuations σ 2

R are suppressed in the
quorum sensing model for large κ , while the gain is hardly
changed, we conclude that the fluctuations in the LuxU-P
concentration w∗ are greatly suppressed compared to an
isolated cell.

C. Nonlinear stochastic analysis

In Sec. IV B we showed that within the framework of
linear response theory, the variance in receptor fluctuations
vanishes in the limits N → ∞ and κ → ∞. It turns out that
this result also holds for the full nonlinear model, which
can be established by applying the contraction analysis of
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Refs. [28,35]. First, we rewrite Eqs. (4.11a) and (4.11b) in the
more compact form

dxi

dt
= f(xi) + e1θ0ξi(t), (4.20)

with x = (u,r), e1 = (1,0),

f1(x) = � + k−(RT − r) − k+ur − κ(ui − U ),

f2(x) = k−(RT − r) − k+ur.

Summing both sides of Eq. (4.20) with respect to i and setting
xav = N−1∑N

i=1 xi , we have

dxav

dt
= f(xav) + ε + e1

θ0

N

N∑
i=1

ξi(t), (4.21)

where

ε = 1

N

N∑
i=1

f(xi) − f(xav).

In order to estimate ‖ε‖2 we use the Taylor expansion
formula with integral remainder,

fk(xi) = fk(xav) +
∫ 1

0
∇fk(xi(s)) · dxi

ds
ds,

where xi(s) = (1 − s)xav + sxi . Integrating by parts,

fk(xi) = fk(xav) + (xi − xav) · ∇fk(xav)

+
∫ 1

0

∑
l,l′=1,2

(xi(s) − xav)l

×Hk,ll′(xi(s))(xi(s) − xav)l′ds,

where H is the Hessian matrix,

Hk,ll′(x) = ∂2fk

∂xlxl′
.

We will assume that, for k = 1,2, the largest eigenvalue
λmax(Hk) of the Hessian matrix is uniformly bounded from
above by a constant Hbd/

√
2. This means in particular that for

all x,

x · Hkx � Hbd√
2

‖x‖2.

Averaging both sides with respect to i and taking absolute
values then implies∣∣∣∣∣ 1

N

N∑
i=1

fk(xi) − fk(xav)

∣∣∣∣∣ � Hbd√
2N

∫ 1

0

N∑
i=1

‖xi(s) − xav‖2ds

� Hbd

2
√

2N

N∑
i=1

‖xi − xav‖2.

It immediately follows that

‖ε‖2 � Hbd

2N

N∑
i=1

‖xi − xav‖2.

Following Refs. [28,35], suppose that after a transient phase,

E

[
N∑

i=1

‖xi − xav‖2

]
= 1

N
E

⎡⎣ N∑
i<j

‖xi − xj‖2

⎤⎦ � ρ

N
.

(4.22)
This then implies

E[‖ε‖2] � Hbd

2N2
ρ (4.23)

for some finite ρ. We find that ρ ∼ N2/κ so that E[‖ε‖2] → 0
as κ → ∞. Finally, returning to Eq. (4.21), we note that since
the noise terms ξi(t) are independent,

σ

N

N∑
i=1

ξi(t) ≈ 1√
N

ξ (t).

Hence, in the limit N,κ → ∞, the difference between tra-
jectories xav(t) and those of the deterministic system y =
f(y) tend to zero, and this then carries over to individual
trajectories xi(t).

It remains to establish the inequality (4.22). We will adapt
the analysis of the coupled FitzHugh-Nagumo oscillators
presented in Ref. [35]. Let us first consider two cells (N = 2)
with states (u1,r1),(u2,r2). We construct the following linear
virtual system for which (u1,r1,u2,r2) are treated as external
inputs:

dx1

dt
= −k−x2 − k+(r1 + r2)x1 − k+(u1 + u2)x2 − κx1

+ θ0ξ (t), (4.24a)

dx2

dt
= −k−x2 − k+(r1 + r2)x1 − k+(u1 + u2)x2. (4.24b)

Comparison with Eqs. (4.20) for i = 1,2 implies that
(x1,x2)� = (u1 − u2,r1 − r2)� is a particular solution of
Eqs. (4.24). The evolution matrix in Eqs. (4.24) takes the form

M =
(−a − κ −b

−a −b

)
,

with a = k+(r1 + r2) and b = k− + k+(u1 + u2). The associ-
ated eigenvalues are μ = −λ± with

λ± = 1
2 [a + b + κ ±

√
(a + b + κ)2 − 4κb] > 0,

and corresponding eigenvectors are

v+ = (λ+ − b,a)�, v− = (−b,λ+ − b)�.

Since we are interested in the large κ limit, we will assume
that κ � a,b. It follows that

λ+ ≈ κ, λ− ≈ b

κ
, (4.25)

and we can take v+ ≈ (λ+,a)�, v2 ≈ (−b,λ+)�. Diagonal-
izing Eqs. (4.24) by setting y = Tx with T = (v1,v2)� then
yields the following pair of uncoupled Langevin equations:

dy1

dt
= −λ+y1 + θ0λ+ξ (t), (4.26a)

dy2

dt
= −λ+y2 − θ0bξ (t). (4.26b)
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FIG. 10. Plots of autoinducer and receptor concentrations for the stochastic quorum sensing model consisting of N = 10 coupled cells.
The time evolution of two cells are represented by the green (light) and blue (dark) trajectories, respectively. (a) and (b) Solutions for κ = 1.
(c) and (d) Solutions for κ = 8. Other parameter values are k− = k+ = 1, RT = WT = 1, α = 0.05, and θ0 = 0.5.

It follows that [35]

E
[
y2

1

]
� θ2

0 λ+
2

, E
[
y2

2

]
� θ2

0 b2

λ−
.

Now considering the inverse transform x = T−1y for large κ ,
that is,

x1 ≈ y1

λ+
− a

λ2+
y2, x2 ≈ b

λ2+
y1 + 1

λ+
y2,

we obtain the approximate upper bounds,

E
[
x2

1

]
� θ2

0

2λ+
, E

[
x2

2

]
� θ2

0 b2

λ−λ2+
.

Finally, since (x1,x2)� = (u1 − u2,r1 − r2)� is a particular
solution of Eqs. (4.24), we conclude that

E[(u1 − u2)2] � θ2
0

2κ
, E[(r1 − r2)2] � θ2

0 b

2κ
.

We have used the approximations (4.25).
A similar argument can be applied for N > 2 by choosing

any pair 1 � i, j � N, i < j and showing that

E[(ri − rj )2] + E[(ui − uj )2] � θ2
0 (1 + b)

κ
.

Summing over i,j then yields

E

⎡⎣∑
i<j

‖xi − xj‖2

⎤⎦ � N (N − 1)θ2
0 (1 + b)

2κ
.

It follows that for large κ,N , Eq. (4.22) holds with

ρ/N2 ∼ θ2
0 (1 + b)/κ,

which converges to zero as κ → ∞.
The suppression of receptor fluctuations for large coupling

κ is further confirmed by carrying out simulations of the
stochastic model given by Eqs. (4.11). Even for a relatively
small population (N = 10) it can be seen that fluctuations
in the concentration ri(t) about the equilibrium state req are
negligible for large κ , see Fig. 10. Note that, for simplicity,
we take noise throughout the paper to be white noise. This
means that, even for sufficiently small noise intensities θ0 and
σ0, there is a small but nonzero probability that a trajectory
can become negative, see Fig. 10(a). A more realistic model
would require some form of multiplicative noise to ensure
that concentrations remain positive. However, this makes the
analysis more difficult without changing the basic results.

V. DISCUSSION

In this paper we investigated how collective cell behavior
in a quorum sensing model system affects ultrasensitivity and
noise amplification in a feedforward signal transduction path-
way. The latter was taken to be a classical phosphorylation-
dephosphorylation cycle in which the ratio of kinases to
phosphotases within each cell is controlled by the binding of
autoinducers to their cognate receptor. We showed how global
convergence of the quorum sensing network can greatly reduce
the level of fluctuations in the number of kinases within a cell.
Although we focused on one specific example of PdPCs, the
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results of our analysis should be applicable to other examples
of switchlike biochemical networks.

Within the specific context of V. harveyi quorum sensing,
we made a number of simplifications that warrant a closer look.
First, we only considered a single signaling pathway, whereas
V. harveyi and V. cholerae have several parallel pathways that
converge to control downstream gene regulatory networks. It
has been suggested that this “many-to-one” circuitry allows
these cells to survey heterogenous populations involving
different bacterial species and to program gene expression
based on the make up of the population [30,32]. Second,
we ignored another potential source of switchlike behavior,
involving the action of the sRNAs Qrr1–Qrr5 [31]. Third,

we neglected feedback pathways in which the downstream
gene regulatory network controlled by the phosphorylation-
dephopshorylation of LuxU modifies the rate of synthesis of
the autoinducers. A number of feedback loops have recently
been identified in V. harveyi and V. cholerae, and it has been
suggested that they contribute to reducing the detrimental
effects of sudden fluctuations in the environment [32].
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