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We study force generation by a set of parallel actin filaments growing against a nonrigid obstacle, in the
presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy
cost, or by causing local distortion in its shape which costs much less energy. The nonrigid obstacle also has local
thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the
height profile of a one-dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations
of the barrier strongly affect the force generation mechanism. The qualitative nature of the force-velocity curve is
crucially determined by the relative time scale of filament and barrier dynamics. The height profile of the barrier
also shows interesting variation with the external load. Our analytical calculations within mean-field theory show
reasonable agreement with our simulation results.
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I. INTRODUCTION

Cell motility plays an important role in a wide variety of
biological processes such as morphogenesis, wound healing, or
tumor invasion [1–4]. Actins and microtubules are cytoskeletal
proteins whose polymerization and depolymerization can gen-
erate significant forces, without any assistance of molecular
motors, and propel the cell forward. In the presence of a
biological barrier, these filaments elongate and generate a
pushing force against the barrier and in many in vitro studies
this force has been measured explicitly by applying an external
load on the barrier in the opposite direction. With increasing
load, the velocity of the barrier decreases and the functional
nature of dependence of velocity on the applied force is an
important characteristic of the force generation mechanism.
The maximum polymerization force generated by the filaments
is known as “stall force” and is measured as the minimum load
required in order to stall the barrier motion completely. There
has been a surge of experimental as well as theoretical research
activities to determine the stall force and the force-velocity
characteristic of the cytoskeletal filaments in the last few years.

Interestingly, the qualitative nature of the force-velocity
curve was found to depend on the details of the experimental
setup. A convex force-velocity characteristic was reported for
actin quoted polystyrene beads [5] and magnetic colloidal
particles pushed by unbranched parallel actin filaments [6,7].
On the other hand, a concave force-velocity curve was obtained
for branched actin network [8], where velocity remains almost
constant for small load and drops rapidly at large load. An
even more complex force-velocity relationship was measured
for lamellipodial protrusion in a keratocyte, where velocity
showed rapid decay for very small load, followed by a
plateau at moderate load and another rapid decay close to
stalling [9,10]. Although multiple filaments are expected to
generate larger force than a single filament [5,9,11], in [12] the
stall force of approximately eight actin filaments was measured
and found to be in the piconewton range, close to a single
filament stall force [13], indicating the absence of cooperation
among the filaments.

To investigate the force-velocity relationship theoretically,
several different models have been proposed. Force generation
by a single actin filament growing against a barrier has

been explained using a simple Brownian ratchet mechanism
where thermal fluctuations of the barrier create a gap between
the barrier and the filament tip, making it possible for the
filament to grow by adding one monomer in the gap [14].
This mechanism predicts a convex force-velocity curve. This
simple model has been subsequently generalized where details
of interaction between the monomers and the barrier have
been considered [15] and flexibility of the filament has been
included [16]. In all these cases the existence of a convex
force-velocity relationship has been verified. However, when
the Brownian ratchet mechanism was extended for multiple
filaments, the nature of the force-velocity curve was found to
crucially depend on how the details of the interaction and
load sharing among the filaments were modeled [17–20].
Certain models even showed a crossover from convex to
concave force-velocity curve, as some model parameters are
varied [21–23].

Inside a cell, actin filaments grow against the plasma
membrane which is not a rigid object but elastically de-
formable [24]. Even in vitro, when the filaments push against
an obstacle as they polymerize, the obstacle may in general
have local shape deformations. In [25] a flexible plasma
membrane was explicitly modeled and it was shown that
thermal fluctuation of this flexible obstacle substantially
enhances the growth velocity of a filopodial protrusion. It was
argued that in the case of a flexible membrane, a filament
only has to overcome the local bending energy in order
to polymerize (whereas for a rigid obstacle the full load
must be overcome) and this gives rise to a larger velocity
for a given load. The effect of a flexible plasma membrane
on actin network growth was experimentally demonstrated
in [26] when reconstituted actin networks in vitro were
assembled onto synthetic lipid bilayers and it was found that
the membrane elasticity causes formation of bundled filament
protrusion from branched filament networks.

Motivated by this, we carry out a study to probe the
detailed quantitative aspects of interaction between a set of
growing filaments and an obstacle whose position as well as
shape can fluctuate with time. To keep our description simple,
we model the obstacle by a one-dimensional nonrigid object
whose local thermal fluctuations can alter its shape and using
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a lattice gas model, we describe it by a Kardar-Parisi-Zhang
(KPZ) interface [27]. In the presence of an external load, the
obstacle tends to move in the direction opposite to that of
polymerization. In order to polymerize, the filaments must
push against the barrier, either causing a local change in
its profile (which requires less energy) or causing a global
movement of the whole barrier (which involves a large energy
cost). We are interested to find out how the presence of the
fluctuating barrier affects the dynamics of the actin filaments,
and how the presence of the filaments affects the shape of the
barrier.

Our numerical simulations and analytical calculations show
that there is a rich interplay between the polymerization
dynamics of the filaments and the shape fluctuations of the
barrier. For small and intermediate values of the external force,
the barrier motion is governed by its global movement, and for
large force, the local fluctuations become important. These
local movements cost less energy and can continue even when
the force is significantly large. As a result, the stall force in
our system is much higher than that for a rigid barrier [18].
Moreover, these local movements may be caused by filament
polymerization or by independent thermal fluctuations of the
barrier and hence the stall force may also depend on the
properties of the barrier. Indeed for a single filament, the stall
force is found to increase with the size of the barrier. For
N filaments stall force is independent of the barrier size and
scales linearly with N . The barrier shape is also affected by
the growing filaments and the scaling behavior of its height
profile shows continuous variation as a function of the external
load.

There are two time scales in our system, one associated
with the (de)polymerization of the filaments and the other
with the thermal fluctuations of the barrier. Our results show
that the choice of these time scales may crucially determine
the nature of the force-velocity curve. This is because the
local movements of the barrier make an increasingly important
contribution to its velocity as the thermal fluctuations become
faster. Even for small or intermediate load, therefore, the
barrier velocity is not governed by its global movement alone
and this changes the qualitative nature of dependence of
velocity on load. The stall force is also found to decrease
for faster barrier dynamics.

This paper is organized as follows. In Sec. II, we describe
our model. Our results for the single filament and multiple
filaments are presented in Secs. III and IV, respectively, and
conclusions are in Sec. V.

II. DESCRIPTION OF THE MODEL

Our model consists of N parallel filaments growing against
a barrier with a fluctuating height profile (see Fig. 1). We model
the filaments as rigid polymers, made of rodlike monomers
of length d, such that a (de)polymerization event (decreases)
increases the length of the filament by an amount d. The barrier
is modeled as a one-dimensional surface. In our lattice model,
the discrete surface elements are represented as lattice bonds
of length λ, which can have two possible orientations, ±π/4.
We denote these two cases by the symbols / and \ and call
them upslope and downslope bonds, respectively. Height at

any particular lattice site i is defined as hi = δ/2
∑i−1

j=1 tan θj ,

where θj is the orientation of the j th bond and δ = √
2λ. The

total number of such bonds is L. One / followed by a \ forms
a local hill and in the reverse order \/ they form a local valley.
The local height of the surface fluctuates due to transition
between these hills and valleys. When a local hill (valley) at a
given site flips to a valley (hill), the height of that particular site
decreases (increases) by an amount δ. We assume δ is equal to
the monomer length d. As explained below, this assumption
means that height fluctuation of the surface creates a gap which
is just enough for insertion of a monomer. Towards the end of
the paper, we briefly discuss the case of δ �= d.

A filament whose tip is in contact with the barrier is called
a bound filament and in the absence of any such contact,
it is called a free filament. The surface site where a bound
filament can form a contact is called a binding site. When a
bound filament polymerizes, it creates space for insertion of
another monomer by pushing the barrier up and in this process
performs work against the external load (which tends to push
the barrier down). When the bound filament pushes against
a local valley, that valley flips to a hill and the height of the
binding site increases by an amount d [Fig. 1(a)]. However,
polymerization of a bound filament, which is not in contact
with a local valley, requires a global movement of the whole
barrier as shown in Fig. 1(b), when heights of all the L sites
are increased by an amount d. Assuming F/L is the load
per site, the energy cost for the first process is just Fd/L,
and for the second process it is Fd. Following the rule of
local detailed balance, we assign rates U0 exp(−βFd/L) and
U0 exp(−βFd) to these two types of polymerization processes,
respectively. Here, β is the inverse temperature and U0 is the
free filament polymerization rate that does not involve any
barrier movement and hence is independent of F . We also
assume the depolymerization rate is same for both free and
bound filaments and is denoted as W0. When a bound filament
depolymerizes, it loses contact with the barrier and becomes a
free filament. In certain configurations, when there is only one
bound filament, its depolymerization results in an unsupported
barrier.

Apart from being pushed by the filaments, the barrier can
also show thermal fluctuations, when local hills can flip to
valleys and vice versa. However, due to the presence of the
filaments, these transitions can sometimes get blocked. For
example, if a bound filament is in contact with a hill, then
that particular hill cannot flip to a valley, until the filament
depolymerizes and a gap is created for a local downward
movement of the barrier. When both forward and reverse
transitions are allowed, their rates satisfy local detailed balance
R+
R−

= e−βFd/L, where R+ is the rate at which local surface
height can increase (i.e., a valley flips to a hill) and R−
is the reverse transition rate. Note that in the absence of
any external load F , the transition between hills and valleys
become symmetric at all sites other than the binding sites
and the surface has a local Edwards-Wilkinson dynamics [28].
For nonzero F , hill to valley transitions are generally favored
(except, possibly, at the binding site) and the barrier behaves
like a KPZ surface with a downward bias.

We assume periodic boundary conditions for the surface
and an equal number of upslope and downslope bonds, i.e., no
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FIG. 1. Schematic representation of our model. (a) Polymerization of a bound filament by causing a local change in barrier height with
rate U0e

− βFd
L . (b) A bound filament polymerizes by causing global movement of the whole barrier with rate U0e

−βFd . (c) A free filament
polymerizes and depolymerizes with rates U0 and W0, respectively. Since these processes do not involve any barrier motion, these rates are
independent of F . (d) Thermal fluctuation of the barrier: a local valley can flip to a hill with rate R+ and the reverse process occurs with rate
R−. We use local detailed balance, R+/R− = exp(−βFd/L), except at the binding sites, where hill to valley transition may be blocked due to
the presence of a filament.

overall tilt. In one Monte Carlo step, we attempt to perform
N filament updates (polymerization or depolymerization) and
S independent (unaided by the filaments) surface updates.
By changing the value of S we can tune the relative time
scale between filament dynamics and barrier dynamics. For
smaller (larger) S value, the barrier dynamics is slower (faster)
than the filament dynamics. A relative time scale between
the surface and filament dynamics can also be introduced
by rescaling R+ and R−, but we have used R− = U0 and
R+ = U0e

−βFd/L throughout and controlled the relative time
scale by S instead. We start with an initial configuration where
all N filaments have unit length, containing one monomer each
and the upslope and downslope bonds are placed alternatingly
(a flat surface). We let the system evolve for a long time,
according to the above dynamical rules. All our measurements
are performed in the steady state.

III. RESULTS FOR SINGLE FILAMENT

For a single filament, we first present the results for S = L

and later we consider the effect of variation of S. We define
the velocity V of the barrier as the rate of change of the

average height of the surface after the system has reached
steady state. We present the force-velocity curve in Fig. 2(a).
This curve has a convex shape where velocity decays rapidly
for small force, and for large force it decays slowly. In fact for
small and intermediate values of force, the velocity falls off
exponentially [Fig. 2(a), inset] and close to stalling it shows
deviation from the exponential form. We explain below that the
exponential dependence originates from the global movement
of the barrier [as shown in Fig. 1(a)] which dominates V for
small and moderate F range. In Fig. 2(b) we show the variation
of stall force Fs with the barrier size L. Stall force increases
with L, although logarithmically slowly. Note that the stall
force is often interpreted as the maximum polymerization
force generated by the filament and therefore it is somewhat
surprising that it depends on the size of the barrier. We show
below that in our system the local fluctuations of the barrier,
which depend on L, make substantial contribution towards its
net velocity and this becomes particularly significant in the
stalling regime.

In our system there are two possible barrier movements:
global and local. In a global movement, a bound filament
polymerizes by pushing the whole barrier up, such that the
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FIG. 2. Force-velocity characteristic and stall force for a single filament. (a) Force-velocity curve has a convex shape. Inset shows
exponential decay of the barrier velocity for small and intermediate F , when the global motion of the barrier dominates. Close to stalling
the local fluctuations become important. We have used L = 512 here. (b) Stall force increases with the barrier size L. In both the panels, we
have used S/L = 1. The free filament depolymerization rate W0 = 1.4 s−1 [1,29] and the polymerization rate U0 is proportional to the free
monomer concentration with a proportionality constant k0 = 11.6 μm−1 s−1 [1,29]. We have used a monomer concentration C = 0.24 μm,
which gives U0 = 2.784 s−1. The monomer size is d = 2.7 nm [1,23]. At room temperature the parameter βd = 0.65 pN−1. Discrete points
show simulation data and continuous lines show analytical results.

average height changes by an amount d. The rate at which this
process happens is U0 exp(−βFd). Let this process contribute
a velocity V1 to the barrier in steady state, which can be written
as

V1 = p0dU0 exp(−βFd). (1)

Here, p0 is the probability that the filament is in contact with
the barrier. Note that here we have ignored the possibility that
the bound filament is pushing against a valley (in that case
no global movement takes place; only a local flip is sufficient
for polymerization). In fact we have verified in our simulation
[data presented in Fig. 6(b)] that the probability of finding a
valley at the binding site is indeed small.

To write V1 as a function of F we still need to calculate
p0. Define pi as the probability that the distance between the
filament tip and the binding site is i. Clearly, i = 0 corresponds
to the contact probability. It is easy to see that for i > 0, the
probability pi satisfies the master equation for a biased random
walker,

dpi

dt
= W0pi−1 + U0pi+1 − (W0 + U0)pi, (2)

and for i = 0 one has
dp0

dt
= U0p1 − W0p0. (3)

Here, we have ignored any change in pi due to height
fluctuations at the binding site. For fast barrier dynamics, when
height fluctuations increase, this assumption breaks down. In
the steady state, these equations yield a recursion relation
pi = (W0

U0
)ip0 for positive i. This recursion relation, along with

the normalization condition
∑

i pi = 1, yields the expression
p0 = (1 − W0/U0), which is independent of F . So the final
expression for V1 becomes

V1 = d(U0 − W0) exp(−βFd). (4)

To calculate the velocity due to local height fluctuations of
the barrier, we consider a local valley (hill) flipping to a hill
(valley) which increases (decreases) the average height by an
amount d/L. As discussed in Sec. II, the transition rates at the
binding site are different from the rest of the system, since a hill
to valley transition may be blocked, if a filament is in contact.
Then the barrier velocity due to local height fluctuations can
be written as

V2 = dU0

L

[(
(1 + p0)pv(0) +

L−1∑
i=1

pv(i)

)
e−βFd/L

−(1 − p0)ph(0) −
L−1∑
i=1

ph(i)

]
, (5)

where pv(i) and ph(i) denote the probability to find a valley
and a hill, respectively, at a distance i from the binding site.
In the above equation, the first term on the right-hand side
represents the situation where a valley at the binding site flips
to a hill, due to thermal fluctuations or due to being pushed by
the filament. The second term presents flipping of a valley to a
hill at all the other sites. The third term describes the case when
there is a hill at the binding site which can flip to a valley when
no filament is in contact. The fourth term describes flipping of a
hill to a valley in the rest of the system. The probabilities pv(i)
and ph(i) can be calculated within a mean-field approximation
by considering a KPZ surface with the binding site acting as a
“defect site” (see Appendix A for details), where the transition
rates are different from the rest of the system. Our calculations
show that pv(i) and ph(i) have a rather weak dependence on
F and their difference [pv(i) − ph(i)] is independent of i and
scales as 1/L. For large L, the total velocity of the barrier
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V = V1 + V2 can be written as

V (F ) = d(U0 − W0)e−βFd

+dU0

L

[
pv(0)(1 + p0) − (1 − p0)ph(0)

+
L−1∑
i=1

{
pv(i)

(
1 − βdF

L

)
− ph(i)

}]
, (6)

where we have retained terms up to order 1/L and ignored
higher order terms. In Fig. 2(a) we compare our calculation
with simulation results and obtain reasonably good agreement.
For small F , the first term in Eq. (6) dominates the velocity
and as F increases, local fluctuations become more important.
The last term in Eq. (6), within the braces, which represents the
velocity due to hill-valley fluctuations at all sites, except the
binding site, is the most dominant term in the local movement.
In the stalling region, the positive contribution from the
global movement and the negative contribution from the local
fluctuations cancel each other, where the first and last terms
of Eq. (6) determine the major balance. The stall force Fs can
be obtained by graphically solving the above transcendental
equation after putting its left-hand side zero. This gives stall
force as a function of L and we compare this variation with
simulation results in Fig. 2(b). We find good agreement for
large L but as expected, for small L there are deviations. Note
that the stall force in our system is substantially higher than
that for a rigid barrier [18]. Since the local movements cost
much less energy, they can continue even when the load is
high.

A. Effect of faster and slower barrier dynamics

We find the nature of the force-velocity curve depends on
the relative time scale of the barrier and filament dynamics.
For faster barrier dynamics, the local fluctuations of the barrier

increase and as a result their contribution to the net velocity is
also higher. This means even for small force, the velocity is not
dominated by the global movement [first term in Eq. (6)] alone.
In addition, our simple expression for the contact probability
p0 = (1 − W0/U0), which was derived neglecting the local
fluctuations at the binding site, does not remain valid for fast
barrier dynamics and p0 increases with F in this case (see
our data in Fig. 7). As a result, the velocity does not decay
exponentially for small force, but follows a slower decay. For
a given value of F in the small or intermediate range, as the
barrier dynamics becomes faster, the velocity becomes higher,
and the convex nature of the curve is gradually lost. Moreover,
since stalling phenomenon in our system can be described as
a balance between global and local velocities of the barrier
[see Eq. (6)], larger contribution from local movement implies
this balance is reached at a smaller value of force. Therefore,
for faster barrier dynamics we have a smaller stall force. We
present our data in Figs. 3(a) and 3(b).

Our data in Fig. 3(b) imply that in the limit of infinitely slow
barrier dynamics, when the barrier can be considered as an
effectively rigid object, the stall force diverges. Note that even
in this limit, our model remains different from the rigid barrier
case studied in [18], where at least one filament is always bound
to the barrier. For N = 1 this would mean whenever there is a
depolymerization, the barrier also moves down, along with the
filament tip. On the contrary, we allow unsupported barrier in
our system and when the barrier is effectively rigid, it shows
only global movement which is always in the upward direction.
The force velocity curve is perfectly exponential in this case
and zero velocity is reached at the F → ∞ limit.

B. Variation of the shape of the barrier with load

We have seen above how the barrier fluctuations affect
the growth of the filament. The barrier properties are also
altered in this process. As the load increases, the height profile
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FIG. 3. Force-velocity characteristic for a single filament depends on the relative time scale between the filament and the barrier dynamics.
(a) Velocity of the barrier vs scaled force for different values of S/L. For large S/L, the convex nature of the force-velocity characteristic is
lost. As S/L increases, the local fluctuations of the barrier become more important and even for small F , the barrier velocity is not governed
by the global movement alone, and hence V does not decay exponentially anymore. Here, we have used L = 64. (b) Stall force decreases as a
function of S/L. Since local movements of the barrier become more important for large S/L, the balance between global and local movements
is reached at a smaller force. Note, however, that the x axis is plotted in a log scale, indicating a weak dependence of stall force on the time
scale. Here we have used L = 256. The other parameters are the same as in Fig. 2.
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FIG. 4. Variation of α as a function of external load. Close to the
stalling force, α shows a sharp increase. Here, we have used S/L = 1
and L = 256 (red triangle) and 128 (blue circle). Other simulation
parameters are the same as in Fig. 2.

of the barrier shows larger variation across the system. We
characterize it by measuring the scaling of average height
with distance from the binding site: 〈h(r) − h(0)〉 ∼ rα , where
h(r) is the height of a site at a distance r from the binding
site. In Fig. 4 we plot α as a function of the external force,
which shows that for small force α increases slowly, around the
stalling force there is a sharp increase, and finally for very large
force, α saturates to unity. Note that large value of α indicates
the presence of large hills and valleys in the system. α = 1
corresponds to a phase separation of upslope and downslope
bonds in the system which gives rise to one single large hill, the
highest point being the binding site. This situation is similar to
the case of an elastic membrane, when the membrane tension
is large and the membrane is stretched.

IV. RESULTS FOR MULTIPLE FILAMENTS

In the case of N filaments in the system, we mainly consider
the case when the ratio N/L is small. We assume the binding
sites are uniformly placed on the lattice, at a distance L/N .
Between the segment of two successive binding sites, the same
considerations as in a single filament case apply. We assume
these segments are independent and apply our results for the
single filament case for each segment.

To start with, we consider the velocity of the barrier due
to its global movement V1 = p0NdU0 exp(−βFd). As before,
p0 is the probability to find a filament in contact with the barrier
and p0N is the average number of bound filaments in the
system. Here, we have neglected any correlation between the
binding sites. To calculate p0, we write down master equations
for average number Ni of filaments at a distance i from the
corresponding binding sites. The steady state solutions of these
equations can be obtained recursively for different values of i

(see Appendix C for details). For N filaments we have

p0 = (1 − W0/U0)

1 + (N − 1) exp(−βFd)
. (7)

For large F , the contact probability becomes the same as the
single filament case. For small F , the contact probability is

approximately 1/N times the single filament value, indicating
that for small F , at most one filament is in contact with the
barrier.

For the local movement of the barrier, we need to calculate
the probabilities to find hills and valleys. As discussed above,
for each segment between two successive binding sites, we use
our results for pv(i) and ph(i) for the single filament case [with
the modification that i in this case varies from 0 to (L/N − 1)].
The velocity due to local fluctuations then becomes

V2 = NdU0

L

[(
pv(0)(1 + p0) +

L/N−1∑
i=1

pv(i)

)
e−βFd/L

−(1 − p0)ph(0) −
L/N−1∑

i=1

ph(i)

]
. (8)

The total velocity to leading order in 1/L and N/L becomes

V (F ) = d
(U0 − W0)

1 + (N − 1)e−βFd
Ne−βFd

+dU0N

L

[
{pv(0)(1 + p0) − ph(0)(1 − p0)}

+
L/N−1∑

i=1

{
pv(i)

(
1 − βFd

L

)
− ph(i)

}]
. (9)

The stall force can be obtained by solving the above transcen-
dental equation graphically for V (F ) = 0 and we compare the
analytical stall force with our simulation results in Fig. 5(a),
inset. We find that the stall force is independent of L in
this case and scales with N , which can be easily seen from
Eq. (9). Since the value of the stall force is rather large in this
case, one can neglect global movement of the barrier close to
the stalling regime. In addition, p0 ≈ (1 − W0/U0) for large
force, and [pv(i) − ph(i)] is of order N/L. Using these in
Eq. (9) it directly follows that the stall force for N filaments is
independent of L and scales as N . We also investigate the effect
of the time scale of the barrier dynamics on the force-velocity
dependence [Fig. 5(b)] and we find qualitatively the same
effect as in the N = 1 case.

V. CONCLUSIONS

In this paper, we have studied force generation by a set of
parallel filaments polymerizing against a barrier. A similar
question has been addressed in many recent works where
the barrier was modeled as a rigid wall, which may have
a motion like a thermal ratchet [14,15,30,31], or may be a
passive obstacle which can move only when pushed by the
filaments [18,20,23,32–34]. In this paper, we have considered
a barrier with thermal fluctuations but instead of modeling it
as a rigid wall, we allow for its shape fluctuations. In [35] a
similar aspect was studied where the barrier was modeled
by a one-dimensional Edwards-Wilkinson type membrane
under tension, which was being locally pushed by a set of
growing filaments. The uncorrelated drive from the filaments
gives rise to a KPZ type behavior in the correlated height
fluctuations of the membrane, but this is associated with very
slow crossover. Interestingly, the steady-state fluctuations of
the driven membrane show a nonmonotonic behavior with
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FIG. 5. Force-velocity characteristic for multiple filaments. (a) Velocity shows very slow decay for large F , when global movement can be
neglected and V can be assumed to be governed by local fluctuations alone. Here, we have used L = 512 and N = 32. Inset shows stall force
as a function of N for two different L values. We find stall force scales linearly with N and remains independent of L. The continuous lines
show analytical results. (b) Dependence of force-velocity characteristic on the time scale of the barrier dynamics. In this case we find the same
qualitative effect as in the single filament case. Here, we have used N = 16 and L = 128.

the driving rate, where the strongly driven and weakly driven
regimes are separated by a minimum in the width of the
membrane profile. Although the filaments only impart local
drive to the membrane, and no global movement of the
membrane is considered in [35], the velocity still shows an
exponential dependence on the membrane tension, whereas in
our model the exponential dependence is caused by the global
movement and the local fluctuations generate a velocity that
decreases roughly linearly with the external load.

One interesting result obtained in our system is the depen-
dence of the qualitative shape of the F -V curve on the relative
time scale between the filament polymerization and barrier
fluctuation. For slow barrier dynamics, the curve has a convex
shape and V shows an exponential decay for small and moder-
ate F . But for fast barrier dynamics when the local fluctuations
become more important, there is significant deviation from
exponential dependence. A similar effect was reported in [21]
for a hybrid mesoscopic model that combines the microscopic
dynamics of semiflexible actin filaments and the viscous
retrograde flow of actin network modeled as a macroscopic
gel. It was shown that the force-velocity curve can be both
convex and concave, depending on the characteristic time scale
of recoil of the gel-like network. It is remarkable that our
simple lattice gas model can reproduce this same effect, which
underlines the importance of the relative time scale of obstacle
and filament dynamics on the force generation mechanism.

Throughout this paper, we have considered the case δ = d,
when the local movement of the barrier occurs in steps whose
size is equal to that of a monomer. We have verified (data
not shown here) that many of our qualitative conclusions
remain valid for δ 
 d. In other words, even when the shape
fluctuations of the barrier occur over much smaller length
scales, their effect cannot be ignored. We find that the stall force
continues to show dependence on the barrier properties. The
relative time scales between the filament and barrier dynamics
affect the F-V curve in the same way. However, the quantitative
value of the stall force increases as smaller δ values are
considered.

Finally, our simple model shows that a nonrigid obstacle
can produce remarkable effects on force generation of parallel
actin filaments. Our results underline the importance of the
local shape distortions of an obstacle and indicate that more
research with detailed modeling of this aspect is required.
Many of our conclusions are generic and can be expected
to remain valid in systems where different descriptions of a
nonrigid obstacle are used. This also opens up the possibility
of observing some of these effects in experiment. For example,
the change of shape of the barrier with external load can
be monitored in an experiment and our prediction that the
height variation across the barrier increases with load can be
explicitly verified. The key feature of a fluctuating barrier
is that one component of velocity comes from the local
fluctuations and a direct measurement of this component will
surely give insights into the effects of barrier fluctuations. Our
model shows that for multiple filaments close to the stalling
regime, velocity is dominated by these local movements and
we also predict the scaling behavior of this velocity with
filament density and barrier size. It would be interesting to
verify these predictions in experiments, which would not only
shed light on the qualitative nature of the local fluctuations
but would also provide insights about their quantitative
behavior.
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APPENDIX A: CALCULATION OF pv(i) AND ph(i)
FOR A SINGLE FILAMENT

The shape of the barrier changes due to transition between
local hills and valleys. The probability to find a hill at a site
s located at a distance i from the binding site is ph(i) and
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FIG. 6. Average shape of the barrier for single filament. Discrete points show simulation results and continuous lines show analytical
predictions. (a) Probability ρi to find an upslope bond as a function of scaled distance i/L from the binding site. ρi = 1/2 for i = L/2 and
for larger i, we have ρi = 1 − ρi−L/2. The open symbols correspond to F = 0 and the closed symbols correspond to F = 4 pN. Symbols ∗
and ◦ are for L = 128 and × and � are for L = 256. These data show that, except close to the binding site, ρi increases linearly with i with
a gradient ∼1/L. We also find that ρi remains almost the same for these F values. The continuous lines are analytical predictions, where the
green solid line is for F = 0 and the blue dashed line is for F = 4 pN. (b) Probability pv(i) to find a valley at a distance i from the binding site.
For i = 0 the probability is substantially smaller compared to the rest of the system, which means it is rather unlikely to find a valley at the
binding site. The symbols ∗ and 	 represent F = 0 pN and 4 pN, respectively. We have used L = 512 here. (c) and (d) [pv(i) − ph(i)] shows
a sharp jump at i = 0 and then remains constant at a value that scales as 1/L. The open symbols correspond to F = 0 and the closed symbols
correspond to F = 4 pN. Symbols ∗ and ◦ are for L = 256 and × are � are for L = 512.

it can be written as ρi(1 − ρi+1), where ρi is the probability
that the bond preceding the site s has π/4 orientation and
(1 − ρi+1) is the probability that the bond immediately after
the site s has −π/4 orientation. Here, we have used mean-field
theory and neglected correlation between the bonds. The
probability to find a valley at site s can similarly be written
as (1 − ρi)ρi+1. The transition rate from a hill to a valley is
R− and the reverse process occurs with rate R+. For i �= 0,
R+/R− = exp(−βFd/L). However, when i = 0, or, in other
words, the site s is the binding site itself, then although valley
to hill transition is not affected, the reverse transition can take
place only when the filament is not in contact with the binding
site. We therefore make the simplifying assumption that the
effect of the filament can be included by merely rescaling
the hill to valley transition rate at the binding site by the
probability that the filament is in contact. In Sec. III we
calculate the contact probability p0 = 1 − W0/U0  1/2. The
master equations describing the time evolution of ρi can then

be written as

dρi

dt
= (1 − ρi)(R−ρi−1 + R+ρi+1)

−ρi[R−(1 − ρi+1) + R+(1 − ρi−1)],

for 2 � i � L − 1, (A1)

and at the binding site,

dρ1

dt
= (1 − ρ1)[R−(1 − p0)ρL + R+ρ2]

−ρ1[R−(1 − ρ2) + R+ρ1(1 − ρL)], (A2)

where we have applied periodic boundary condition, which
also gives

dρL

dt
= (1 − ρL)(R−ρL−1 + R+ρ1)

−ρL[R−(1 − ρ1)(1 − p0) + R+(1 − ρL−1)]. (A3)
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We solve the above equations in the steady state when the left-
hand sides vanish. To leading order in 1/L, we find ρi = a +
bi/L, where a and b are related via the condition

∑L
i=1 ρi =

L/2 and b satisfies the quadratic equation

[
βFd

2L
− p0

4

(
1 − 2

L

)]
b2

+
[

1 − βFd

4L
− p0

2

(
1 − 1

L

)]
b + 1

4

(
βFd

L
− p0

)
= 0,

(A4)

one of whose roots can be discarded from the condition
that 0 � ρi � 1 for all i. For a given F , therefore, ρi

varies linearly with the distance from the binding site with
a gradient 1/L. For F = 0, we have a = (

√
2 − 1) and

b = (3 − 2
√

2). For 0 � F � Fs , the ranges of variation of
a and b are rather small and occur at third or higher decimal
places. Therefore, ρi does not change significantly with F .
Our simulation data in Fig. 6(a) show similar qualitative
behavior, although close to the binding site there is deviation
of ρi from linearity. The quantitative values of a and b,
however, do not match with simulations. We attribute this
mismatch to the mean-field theoretic assumptions used in our
calculation.

We calculate pv(i) and ph(i) from ρi and compare with
simulation in Fig. 6(b). Notice that from our analytical
expression for ρi , it follows immediately that [pv(i) − ph(i)]
is independent of i and ∼b/L. This has important consequence
for our calculation of V2 in Sec. III. Moreover, the probability
that the filament is in contact with a valley is given by pv(0)p0

and our numerical results in Fig. 6(b) show that this probability
is rather small.
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For slow barrier dynamics, we find reasonable agreement. But for
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anymore and p0 increases with F . The simulation parameters are as
in Fig. 2.

APPENDIX B: VARIATION OF CONTACT PROBABILITY
FOR A SINGLE FILAMENT WITH LOAD FOR FAST

AND SLOW BARRIER DYNAMICS

The variation of contact probability with load is shown in
Fig. 7.

APPENDIX C: CALCULATION OF CONTACT
PROBABILITY FOR MULTIPLE FILAMENTS

Let Ni be the average number of filaments at a distance
i from the respective binding sites. By definition, N0 is the
average number of bound filaments and the contact probability
is p0 = N0/N . The time-evolution equations for Ni can be
written as

dN0

dt
= U0N1 − {(N0 − 1)U0e

−βFd + W0}N0, (C1)

dN1

dt
= {(N0 − 1)U0e

−βFd + W0}N0 + U0N2

−(N0U0e
−βFd + W0 + U0)N1, (C2)

dNi

dt
= (N0U0e

−βFd + W0)Ni−1 + U0Ni+1

−(N0U0e
−βFd + W0 + U0)Ni, for i � 2. (C3)

Here, we have assumed that the distance i between the filament
tip and the binding site can change only due to polymerization
and depolymerization dynamics and the global movement of
the whole barrier due to polymerization of bound filaments.
We have neglected local height fluctuations occurring at the
binding sites. As we show below, this approximation works
reasonably well as long as the filament density N/L is small
and the time scale of barrier fluctuation is comparable to, or
slower than the filament dynamics. For very fast motion of
the barrier, the height fluctuations at the binding sites become
more frequent and this assumption breaks down.
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FIG. 8. Average number of bound filaments N0 as a function
of force F . For slow barrier dynamics, our analytical prediction in
Eq. (C6) agrees well with numerics. But as the barrier dynamics
becomes faster, deviations are observed. Here we have used L = 256,
N = 32. Other simulation parameters are the same as in Fig. 2.
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Solving Eqs. (C1), (C2), (C3) in the steady state, we obtain
the recursion relation

Ni+1 =
(

N0U0e
−βFd + W0

U0

)i

N1, i = 1,2, . . . , (C4)

and

N1 = (N0U0e
−βFd + W0 − U0e

−βFd )

U0
N0. (C5)

Using the normalization relation,
∑

Ni = N , we get

N0 = N (U0 − W0)

U0 − U0e−βFd + NU0e−βFd
(C6)

and the contact probability has the form p0 = (U0−W0)
U0+(N−1)U0e−βFd .

In Fig. 8 we compare this result with simulation and find
reasonable agreement.
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