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Stochastic resetting in backtrack recovery by RNA polymerases
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Transcription is a key process in gene expression, in which RNA polymerases produce a complementary
RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process
in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the
transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional
diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the
time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random
walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact
expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for
both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do
not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared
to the rate of cleavage.
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I. INTRODUCTION

Transcription of genetic information from DNA into RNA is
the first step of gene expression and is fundamental for cellular
regulation. The process is performed by macromolecular
enzymes called RNA polymerases that move stepwise along a
DNA template and produce a complementary RNA, as illus-
trated in Fig. 1. Transcription elongation is often interrupted
by pausing and backtracking, a reverse movement of the RNA
polymerase on the DNA template that displaces the RNA 3’
end from the active site and leaves the enzyme transcriptionally
inactive [1–5] (Fig. 1). Backtracking is a central mechanism
of transcriptional proofreading and it facilitates important co-
transcriptional processes, such as promoter-proximal pausing,
co-transcriptional pre-mRNA splicing and arrest [6,7].

In a backtrack, a polymerase performs a random walk on
the DNA template until it realigns the 3’ end of the RNA
with its active site [8]. Once the RNA 3’ end is realigned,
the polymerase is recovered from the backtracked state and
is able to resume elongation. The recovery of the polymerase
from a backtracked state, called backtrack recovery, results
from the kinetic competition between two mechanisms [9]:
polymerases can either recover by diffusing along the DNA
until returning to the elongation-competent state [8,10–15] or
by cleavage of the backtracked RNA which generates a new
RNA 3’ end in the active site [16–18] (see Fig. 1). The cleavage
reaction can be performed by intrinsic cleavage mechanisms
or it can be assisted by a transcription factor, TFIIS [19–21].

The stochastic motion of backtracked RNA polymerases
was previously reported in single-molecule experiments (see
Fig. 2 for an example) and described as continuous-time
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Markov processes [8,10,12–15,22]. Specifically, backtracking
has been modelled as a hopping process over a discrete lattice
of nucleotides [11,13–15,23–25] but also as a diffusion process
in continuous space [8]. However, it remains unclear which
aspects of the backtracking process depend on the discreteness
of the position lattice and which can be described with a
diffusion process.

Here we present both discrete and continuous-space de-
scriptions of backtrack recovery and investigate to which
extent a diffusion process is a good approximation of the
polymerase dynamics during a backtrack. We present a solv-
able stochastic model of RNA polymerase backtrack recovery
that includes both diffusion and cleavage and study its main
statistical features. The process shares similarities with recent
development on diffusion processes with stochastic resetting
introduced in Ref. [26]. In such problems a particle undergoes
Brownian diffusion but can also stochastically reset its position
[26–33]. The mean first-passage time to reach an absorber can
be determined analytically, which depends on the statistics of
resetting. A backtracked RNA polymerase undergoes a random
walk to the elongation-competent state while also resetting its
position via cleavage. Here we determine the first-passage
time properties of this variant of a “diffusion with stochastic
resetting” process.

In experiments, deep backtracks are readily identified, and
it is possible to determine the time a polymerase takes to
recover from a backtrack of a certain depth [9]. Hence we
consider the recovery time τrec, defined as the first-passage
time of a random walker to reach an absorbing barrier
with the walker starting at a given “initial” backtrack depth.
We derive exact expressions for relevant statistics, such as
the mean time to recover from a backtrack, or mean recovery
time, for both continuous and discrete stochastic models.
For previously reported parameter values, where the hopping
rate is much larger than the cleavage rate, we show that both
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FIG. 1. Scheme of transcription elongation (top), backtracking
(middle), and backtrack recovery (bottom) processes. The 3’ end of
the RNA is aligned with the active site of the polymerase (dashed
square) during elongation but displaced in the backtracked state. This
makes the polymerase transcriptionally inactive, as it cannot add new
nucleotides to the 3’ end of the RNA. Here, n0 represents the number
of backtracked nucleotides. Backtrack recovery can proceed through
1D diffusion of the polymerase along the DNA template, until the 3’
end of the RNA realigns with the active site or through cleavage of
the backtracked RNA and production of a new 3’ end that is aligned
with the active site.

discrete and continuous descriptions can be used concurrently
to describe the statistics of backtrack recovery.

II. DISCRETE MODEL: HOPPING PROCESS
WITH CLEAVAGE

We first describe the recovery of an RNA polymerase
from a backtrack as a continuous-time one-dimensional (1D)
hopping process on a semi-infinite discrete lattice. Each state
of the lattice n ∈ [1,2,3, . . . ,∞) represents the number of

FIG. 2. Experimental trace of RNA polymerase I. Position of the
polymerase on a DNA template (in nucleotides, nt) as a function
of time obtained in a single-molecule experiment. The regions
highlighted in red (light gray) correspond to pauses, and the inset
shows a zoomed view of one of the pauses, which includes a
backtrack. The data is obtained with the experimental setup described
in [9,34], using a sampling rate of 1 kHz.

nucleotides backtracked by the polymerase (see Fig. 3 for a
graphical illustration). For example, n(t) = 3 means that at
time t the polymerase has backtracked three nucleotides. In
our model, polymerases can jump between adjacent states with
hopping rate k can cleave an RNA transcript of any length with
a cleavage rate kc. We consider that no external forces bias
the hopping rates of the polymerase on the lattice. Cleavage
is represented by an instantaneous jump or stochastic reset
[26–30] to the elongation-competent state located in n = 0.
The elongation-competent state is considered as an absorbing
state because the probability to backtrack after cleavage is
very low [14]. Our discrete model is a variant of the hopping
models introduced by Depken et al. in Refs. [11] and [12].

The time evolution of the position of the polymerase can be
described in a master equation formalism [35]. The probability
of the polymerase to be at state n at time t � 0 is denoted by
pn(t). We consider the initial condition pn(0) = δn,n0 , that is,
polymerases are initially positioned at n0 � 1. The dynamics
of the probability of the polymerase to be at a given state at
time t is described by the following master equation:

dp1(t)

dt
= k p2(t) − (2k + kc) p1(t), (1)

dpn(t)

dt
= k pn+1(t) − (2k + kc) pn(t) + k pn−1(t), (2)

where n � 2. The elongation state n = 0 is an absorber. Recent
experiments showed that the elongation rate from n = 0 is
more than 10 times faster than the rate of backtracking by
one nucleotide [14], so we neglect the possibility to make a
jump from n = 0 to n = 1. Hence, the recovery time is the
first-passage time of the polymerase to reach the absorber
located in n = 0.

Equations (1) and (2) can be solved exactly. We now present
the exact solution of the master equation and derive exact
expressions for the recovery time distribution and the mean
recovery time of a polymerase from a given initial backtracked
state.

A. Solution of the master equation

We now derive the analytical solution for the master
equation of the hopping model. Equations (1) and (2) can

FIG. 3. Stochastic model of backtrack recovery: hopping process
with cleavage. Each state n represents the number of backtracked
nucleotides. The stochastic motion of the polymerases in a backtrack
is described as a continuous-time hopping process between adjacent
states with hopping rate k. Cleavage is represented as a stochastic
reset to the elongation state with rate kc. The recovery time from an
initial backtrack depth n0 is given by the first-passage time to the
absorbing elongation state located at n = 0.
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be rewritten as
d

dt
P(t) = AP(t), (3)

where P(t) = [p1(t) p2(t) ...]� is a column vector including
the state probabilities at time t and A is a tridiagonal symmetric
Toeplitz matrix [36] of the form

A =

⎡
⎢⎢⎣

−(2k+kc) k 0 0 . . .

k −(2k+kc) k 0 . . .

0 k −(2k+kc) k 0 . . .
...

...
...

. . .
. . . . . .

⎤
⎥⎥⎦.

The solution of Eq. (3) with initial condition P(0) =
[0,0, . . . ,0,1,0, . . .]�, with pn0 (0) = 1 and pn(0) = 0 for n �=
n0, is given by [37]

P(t) = P(0)eAt . (4)

We now decompose A in the following form:

A = Q D Q−1, (5)

where D is a diagonal matrix containing the eigenvalues of
A and Q is a matrix with the eigenvectors of A in columns.
Note that since A is symmetric, Q−1 = Q�. To obtain the
eigenvalues of A we first assume that the matrix is of finite
size N × N and then take the limit N → ∞. For N finite, the
matrix elements of the matrices D and Q are given by [36]

Dii = −(2k + kc) + 2k cos

(
iπ

N + 1

)
, (6)

Qij =
√

2

N + 1
sin

(
ijπ

N + 1

)
. (7)

The term
√

2
N+1 that appears in Eq. (7) is a normalization

constant. As a result, Eq. (4) can be rewritten as

P(t) = Q eDt Q� P(0), (8)

where eDt is a diagonal matrix with elements eDii t (i =
1, . . . ,N ) in the diagonal. After some algebra, we obtain the
following expression for the nth element of the vector P(t):

pn(t) =
N∑

m=1

sin

(
knπ

N + 1

)
e[−(2k+kc)+2k cos( mπ

N+1 )]t

× 2

N + 1
sin

(
n0kπ

N + 1

)
. (9)

We now take the asymptotic limit N → ∞. In this
limit, k/N → x where x is a continuous variable and the
sum

∑N
k=1

1
N

→ ∫ 1
0 dx. Using these approximations, and the

property sin(ax) sin(bx) = 1
2 {cos[(a − b)x] − cos[(a + b)x]}

we obtain the following exact solution for the master equation:

pn(t) = 2e−(2k+kc)t

π

∫ π

0
e2kt cos x sin(n0x) sin(nx) dx

= e−(2k+kc)t

π

{ ∫ π

0
e2kt cos (x) cos[(n0 − n)x] dx

−
∫ π

0
e2kt cos (x) cos[(n0 + n)x] dx

}

= e−(2k+kc)t [In0−n(2kt) − In0+n(2kt)], (10)

where In is a modified Bessel function of the first kind, which
is given by [38]

Im(z) = 1

π

∫ π

0
ez cos x cos(mx) dx. (11)

From Eq. (10) we can calculate the probability to be at
state n = 1 at time t . Using the property Im−1(z) − Im+1(z) =
2m
z

Im(z) [38] in Eq. (10) we obtain

p1(t) = e−(2k+kc)t n0In0 (2kt)

kt
. (12)

For n0 = 1, the probability for a polymerase to return to the
first backtracked state at time t equals the expression derived
previously for a cleavage-deficient polymerase (see Eq. (2) in
[11]) times an exponential factor e−kct . The exponential factor
e−kct equals the probability that cleavage does not occur in the
time interval [0,t].

B. Recovery time distribution

Next, using the analytical solution of the master equation
we derive an analytical expression for the recovery time
distribution from an initial backtrack depth, n0.

We first introduce a generating function

G(t,z) ≡
∞∑

n=1

pn(t)zn−1. (13)

For z = 0, the generating function gives the probability to be
in n = 1 at time t , G(t,0) = p1(t). For z = 1, the generating
function equals the survival probability S(t ; n0) at time t

starting from n0, G(t,1) = ∑∞
n=1 pn(t) = S(t ; n0).

Using the generating function, the full set of master
equations [Eqs. (1) and (2)] can be rewritten as a single
ordinary differential equation for the generating function,

∂G(t,z)

∂t
=

[
kz − (2k + kc) + k

z

]
G(t,z) − k

z
G(t,0). (14)

The initial condition pn(0) = δn,n0 can be expressed in terms
of the generating function as G(0,z) = ∑∞

n=1 pn(0)zn−1 =∑∞
n=1 δn,n0z

n−1 = zn0−1. The solution of Eq. (14) with this
initial condition is

G(t,z; n0) = exp

[(
kz − (2k + kc) + k

z

)
t

]

×
[
zn0−1 − k

z

∫ t

0
e−(kz−(2k+kc)+k/z)sG(s,0)ds

]
.

(15)

We next define �(τrec; n0) dτrec as the probability of a
polymerase to recover from an initial backtracked position n0

in the time interval [τrec,τrec + dτrec]. To calculate �(τrec; n0),
we use the fact that a polymerase can exit a backtrack by
hopping (from state n = 1 with rate k) or by cleavage (from any
state with rate kc). The probability density of the polymerase
to reach the absorbing state at time τrec is then given by

�(τrec; n0) = k G(τrec,0; n0) + kc G(τrec,1; n0). (16)
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The probability to be at the state 1 in τrec, G(τrec,0; n0) is
given by Eq. (12):

G(τrec,0; n0) = e−(2k+kc)τrec
n0 In0 (2kτrec)

kτrec
. (17)

The survival probability in τrec, S(τrec; n0) = G(τrec,1; n0),
equals

G(τrec,1; n0) = e−kcτrec

[
1 − k

∫ τrec

0
e−2ks n0 In0 (2ks)

ks
ds

]
,

(18)
which yields

G(τrec,1; n0) = e−kcτrec

[
1 − (kτrec)n0

n0�(n0)
H (τrec; n0)

]
, (19)

where � is the Gamma function and

H (τrec; n0) = 2F2
[{

n0,n0 + 1
2

}
; {n0 + 1,2n0 + 1}; −4kτrec

]
.

(20)

Here 2F2 is a generalized hypergeometric function (see
Ref. [38]). The recovery time distribution is obtained by
substituting (17) and (19) in (16):

�(τrec; n0) = e−(2k+kc)τrec
n0 In0 (2kτrec)

τrec

+ kce
−kcτrec

[
1 − (kτrec)n0 H (τrec; n0)

n0�(n0)

]
. (21)

For a cleavage-deficient polymerase kc = 0 initially in the
first backtracking state n0 = 1, the recovery time distribution
equals

�(τrec) = e−2kτrec
I1(2kτrec)

τrec
, (22)

which coincides with the pause time distribution derived in
previous works (Eq. (2) in Ref. [11]).

To verify our model, we perform numerical simulations
of the hopping process with cleavage using the Gillespie
algorithm [39] [Figs. 4(a) and 4(b)]. From our simulations,
we calculate first-passage time distributions to the elongation
state and compare them with the recovery time distribution
derived in Eq. (21) [Figs. 4(c) and 4(d)]. In the presence of
cleavage, recovery can happen from backtracks of any depth.
Cleavage prevents backtracks of large duration, as shown
by the sharp cutoff of the first-passage time distribution at
large times [Fig. 4(c), inset]. In the absence of cleavage, deep
backtracks are recovered at very large times, with a power-law
tail �(τrec; n0) ∼ τ

−3/2
rec [Fig. 4(d), inset]. The first-passage

time distributions obtained from numerical simulations in both
the cleavage-assisted [Fig. 4(c)] and cleavage-deficient case
[Fig. 4(d)] agree with the theoretical expression of the recovery
time distribution derived here in Eq. (21).

C. Mean recovery time

The mean recovery time 〈τrec〉 is a useful statistic that can
be measured experimentally in single-molecule experiments.
Moreover, the mean recovery time can provide a quantitative
measure of kinetic rates of backtrack recovery, as shown
in Ref. [9]. The mean recovery time can be obtained from

Eq. (21), and equals

〈τrec〉 = 1

kc

⎡
⎢⎣1 −

⎛
⎝

√
4k
kc

+ 1 − 1√
4k
kc

+ 1 + 1

⎞
⎠

n0
⎤
⎥⎦. (23)

We introduce the following characteristic scales of time and
backtrack position:

nc =
√

4k

kc

, (24)

τc = 1

kc

. (25)

The mean recovery time then simplifies to

〈τrec〉 = τc

[
1 −

(√
n2

c + 1 − 1√
n2

c + 1 + 1

)n0
]
. (26)

For n0 = 0, 〈τrec〉 = 0 since the polymerase is at time t = 0
already in the recovered state. For n0 = 1 we obtain

〈τrec〉n0=1 = 2 τc√
n2

c + 1 + 1
. (27)

Note that Eq. (27) is in agreement with previous results (see
Eq. (5) in Ref. [24]).

For initial backtracked positions n0 that are not large
compared to nc, i.e., when n0 � nc, the mean recovery time
given by Eq. (26) depends linearly on the initial backtrack
depth

〈τrec〉 = τc ln

(√
n2

c + 1 + 1√
n2

c + 1 − 1

)
n0 + O

(
n2

0

)
. (28)

When the initial position is much larger than the characteristic
backtrack position nc, i.e., when n0 � nc, the mean recovery
time saturates to τc.

If the hopping and cleavage rates are equal (k = kc), the
mean recovery time given by Eq. (26) can be rewritten in
terms of the Golden ratio ϕ = (

√
5 + 1)/2 and the Golden

ratio conjugate � = (
√

5 − 1)/2:

〈τrec〉k=kc
= τc

[
1 −

(
�

ϕ

)n0
]
. (29)

The duration of a transcriptional pause, or equivalently, the
mean recovery time from n0 = 1 is, for the case where k = kc,
equal to 〈τrec〉k=kc,n0=1 = τc/ϕ.

Figure 5 shows the analytical expression of the mean
recovery time in the discrete model (23) compared to the aver-
age recovery time obtained from numerical simulations. The
mean recovery time increases with increasing initial backtrack
depth and saturates at 1/kc for deep initial backtracks. The
saturation of the mean recovery time at large n0 was observed
experimentally for Pol II recovery assisted with TFIIS [9].

In the absence of cleavage, the mean recovery time is not
bounded, yielding 〈τrec〉 = ∞. Alternative statistics should
therefore be considered to characterize the recovery in the
absence of cleavage, such as the mode or the median recovery
times.
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FIG. 4. Stochastic trajectories of the discrete hopping model and recovery time distributions. (a) Sample trajectories of the hopping model
with diffusion and cleavage (k = 1/s, kc = 0.01/s) simulated using the Gillespie algorithm. The light blue (light gray) trajectory represents a
polymerase that recovers by diffusion, and the dark blue (dark gray) trajectory a polymerase that recovers by cleavage. (b) Sample trajectories
for the discrete model with only diffusion, k = 1/s, kc = 0, obtained using the Gillespie algorithm. (c) Recovery time probability density for
the case where k = 1/s and kc = 0.01/s. The bars are obtained from histograms of 1000 numerical simulations, and the curve is the exact
expression given by Eq. (21). The inset shows a log-log plot of the recovery time distribution for long recovery times. (d) Numerical and
analytical probability density of the recovery time for the case where k = 1/s, kc = 0. The inset shows the tail τ−3/2

rec of the distribution at long
times. In all cases the initial backtrack depth was set to n0 = 5.

III. CONTINUOUS MODEL: DIFFUSION
PROCESS WITH CLEAVAGE

To address which features of the backtrack recovery process
depend on the details of the 1D lattice of the DNA template,
we now consider a continuous-space model where the motion
of the polymerase is described by a diffusion process with a
stochastic resetting [26] to the elongation state due to RNA
cleavage. Such a model can be envisioned as the continuous
limit of the model in Fig. 3.

We consider that the position of the polymerase, x, is a
continuous random variable. We define ρ(x,t |x0,0)dx as the
probability of a polymerase to be in the interval [x,x + dx] at
time t , given that it was at x0 at time 0. In this continuous-space
description the probability density ρ(x,t |x0,0) evolves in time
according to a Fokker-Planck equation with a diffusion term
and a sink term,

∂ρ(x,t |x0,0)

∂t
= D

∂2ρ(x,t |x0,0)

∂x2
− kcρ(x,t |x0,0), (30)

where we assume x > 0. Equation (30) results from tak-
ing the continuous limit in Eq. (2) and defining x = an,
x0 = an0 and the diffusion coefficient D = a2k, with a =
0.34 nm the distance between two nucleotides. The solution
of the Fokker-Planck equation (30) with initial condition

ρ(x,0|x0,0) = δ(x − x0) and the absorbing boundary condi-
tion ρ(0,t |x0,0) = 0 for x > 0 is given by [40]

ρ(x,t |x0,0) = e−kct

√
4πDt

[e−(x−x0)2/4Dt − e−(x+x0)2/4Dt ]. (31)

The recovery time probability density is given by the
probability density flux to x = 0 due to diffusion, plus the
probability flux due to cleavage:

�(τrec; x0) = �diff(τrec; x0) + �c(τrec; x0) (32)

= D
∂ρ(x,τrec|x0,0)

∂x

∣∣∣∣
x=0

+ kcS(τrec; x0), (33)

where �diff(τrec; x0)dτrec is the probability to recover by diffu-
sion in the time interval [τrec,τrec + dτrec] and �c(τrec; x0)dτrec

is the probability to recover by cleavage in the time interval
[τrec,τrec + dτrec]. The probability density flux across x = 0
due to diffusion equals

�diff(τrec; x0) = D
∂ρ(x,τrec|x0,0)

∂x

∣∣∣∣
x=0

(34)

= e−kcτrec
x0√

4πDτ 3
rec

e−x2
0 /4Dτrec , (35)
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FIG. 5. Mean recovery time as a function of the backtrack depth
for the discrete model shown in Fig. 3. Recovery time averaged over
1000 numerical simulations (symbols) of recovery from different
initial backtrack depths. Diffusion rate was set to k = 1/s in all
cases and kc = 0.01/s (diamonds), kc = 0.03/s (squares) and kc =
0.05/s (circles). Error bars are standard errors of the mean with
90% statistical significance. The solid curves are obtained with the
analytical expression given by Eq. (23) using k = 1/s and kc = 0.01/s
(top), kc = 0.03/s (center), and kc = 0.05/s (bottom).

where the spatial derivative in Eq. (34) is a derivative from the
right. The survival probability at time τrec can be calculated by
integrating the probability of the polymerase to be at time τrec

in x > 0,

S(τrec; x0) =
∫ ∞

0
ρ(x,τrec|x0,0) dx (36)

= e−kcτrec erf

(
x0√

4Dτrec

)
, (37)

where erf is the error function. The probability density
R(τrec; x0) of recovery from an initial backtrack depth x0 in
a time τrec (referred to as the recovery probability) is then
given by

R(τrec; x0) = 1 − S(τrec; x0) = 1 − e−kcτrec erf

(
x0√

4D τrec

)
.

(38)

For the case kc = 0, the recovery probability simplifies to

R(τrec; x0) = erfc

(
x0√

4D τrec

)
, (39)

where erfc is the complementary error function. From Eq. (37),
we obtain the probability density flux through x = 0 via
cleavage:

�c(τrec; x0) = kcS(τrec; x0) = kce
−kcτrec erf

(
x0√

4Dτrec

)
. (40)

We obtain an exact expression for the recovery time
distribution in the continuous-space model summing Eqs. (35)

and (40):

�(τrec; x0) = e−kcτrec
x0√

4πDτ 3
rec

e−x2
0 /4Dτrec

+ kce
−kcτrec erf

(
x0√

4Dτrec

)
. (41)

We now write Eq. (41) scaling time with respect to τc = 1/kc

and the initial position with respect to xc = √
4D/kc similarly

to Eqs. (24) and (25) in the hopping model. In units of a scaled
time trec = τrec/τc and a scaled initial position x0 = x0/xc, we
obtain a universal expression

�(trec; x0) = e−trec
x0√
π t3rec

e−x2
0/trec + e−trec erf

(
x0√
trec

)
. (42)

To test the validity of the analytical expression for the
recovery time distribution (42), we perform numerical sim-
ulations of the continuous model (see Fig. 6). The following
Langevin equation, dx(t)/dt = ξ (t), describes the evolution
of the backtracked distance at time t in continuous space,
denoted as x(t). Here ξ (t) models a stochastic force that
drives the polymerase forward or backward. The stochastic
force is described by a δ-correlated Gaussian white noise
with zero mean 〈ξ (t)〉 = 0 and an amplitude proportional to
the diffusion coefficient, 〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). Cleavage
events are modelled as a stochastic resetting process with a
resetting probability independent of time and position [26]. In
every simulation time step of duration �t , the probability to
cleave is set to kc�t . This ensures that in the limit of �t small,
the probability that cleavage does not occur in the time interval
[0,t] is equal to e−kct . We perform numerical simulations of
the Langevin equation using an Euler discrete-time numerical
integration scheme with �t = 1 ms, which is one order of
magnitude smaller than any characteristic time of backtrack
recovery given by the inverse of cleavage or diffusion rates [9].

The results shown in Fig. 6 validate the exact expression
obtained for the recovery time distribution given by Eq. (41)
both in the presence and in the absence of cleavage. The
recovery time distributions obtained for the same initial
backtrack distance x0 = 5 have the same shape as those
obtained in the discrete-space description [cf. Fig. 4].

A. Mean recovery time

In the continuous model, the mean recovery time can be
obtained by calculating the mean value of the first-passage
distribution [Eq. (41)]:

〈τrec〉 = 1

kc

[1 − e−x0/
√

D/kc ], (43)

or equivalently,

〈τrec〉 = τc[1 − e−2x0/xc ]. (44)

Note that the mean recovery time can be also calculated by
a different route, using the backward Fokker-Planck equation
together with the Laplace transform of the survival probability
(see Appendix).

Equations (43) and (44) show that the mean recovery time
for deep initial backtracks (x0 � xc) saturates to τc. Our
results indicate that recovery happens mostly by diffusion for
shallow backtracks, where x0 � xc, and mostly by cleavage
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FIG. 6. Stochastic trajectories of the continuous diffusion model and recovery time distributions. (a) Sample trajectories of the continuous-
space model with diffusion and cleavage (k = 1/s, kc = 0.01/s) simulated using Euler numerical scheme for a discrete-time Langevin equation.
The light blue (light gray) trajectory represents a polymerase that recovers by diffusion, and the dark blue (dark gray) trajectory a polymerase
that recovers by cleavage. (b) Sample trajectories for the continuous model with only diffusion, k = 1/s, kc = 0 obtained with the same
numerical integration scheme. (c) Recovery time probability density for the case where k = 1/s and kc = 0.01/s. The bars are histograms
obtained from 1000 numerical simulations and the curve is the exact expression given by Eq. (41). (d) Recovery time probability density for
the case where k = 1/s and kc = 0. The bars are histograms obtained from 1000 numerical simulations, and the curve is the exact expression
given by Eq. (41) with kc = 0. In all simulations, the simulation time step was set to �t = 1 ms and the initial distance to x0 = 5 nt.

for deep backtracks, where x0 � xc. For shallow initial
backtracks (x0 � xc), the mean recovery time scales linearly
with x0,

〈τrec〉
τc

= x0

xc/2
+ O

(
x2

0

)
, (45)

similarly to the mean recovery time in the discrete hopping
model [see Eq. (28)].

Taking the limit nc � 1 in the expression for the mean
recovery time in the discrete model [Eq. (26)], we obtain

〈τrec〉 � τc[1 − e−2n0/(
√

n2
c+1+1)] � τc[1 − e−2x0/xc ], (46)

where we have used x0 = an0 and xc = anc. Note that
this expression is equal to the mean recovery time in the
continuous model [Eq. (44)]. Hence, the mean recovery times
in the discrete and continuous description coincide for large
characteristic depth.

Figure 7 shows the scaled mean recovery time 〈τrec〉/τc in
the discrete and continuous models as a function of the scaled
initial backtrack depth n0/nc (or x0/xc). The figure shows that
the mean recovery time in the discrete model coincides with
the mean recovery time in the continuous model for nc � 1
and the agreement holds for any initial backtrack depth. When
nc � 1, the polymerase typically performs a large number of
jumps prior to recovery. Hence, in this regime the details of

the DNA template do not impact on the mean recovery time,
even for shallow initial backtracks.

Notably, the limit nc � 1 is in agreement with the ex-
perimental data obtained from single-molecule experiments
with RNA polymerase II, where k ∼ 1 s−1 and kc ∼ (0.01 −
0.1) s−1 [9,13–15,41], yielding nc > 1. Therefore, for reported
values of diffusion and cleavage rates, the diffusion approx-
imation can be used without loss of generality, with the
advantage of providing a simpler mathematical framework
with respect to the hopping process.

IV. DISCUSSION

Here we have described the diffusive backward motion
of paused RNA polymerases as a diffusion process with
stochastic resetting. For this purpose we have considered
continuous-time stochastic models with the position of the
backtracked polymerase described by a discrete or a continu-
ous random variable.

We have provided exact results on the statistics of the
time needed for an RNA polymerase to recover from an
arbitrary initial backtrack depth in both discrete (hopping)
and continuous-space (diffusion) stochastic descriptions. In
our models, recovery times are equivalent to first-passage
times to reach an absorber. We have presented a roadmap
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ÉDGAR ROLDÁN et al. PHYSICAL REVIEW E 93, 062411 (2016)

FIG. 7. Scaled mean recovery time as a function of the scaled
initial backtrack depth for discrete and continuous models. Scaled
mean recovery time 〈τrec〉/τc as a function of the scaled initial
backtrack depth n0/nc for the discrete-space hopping model [Eq. (26),
blue symbols] and as a function of x0/xc for the continuous-space
diffusion model [Eq. (44), magenta curve].

for the calculation of the first-passage time distribution for a
continuous-time random walk with an absorbing state, which
models RNA polymerase backtrack recovery with high fidelity.
Both hopping and diffusion models provide similar recovery
time distributions, with the majority of differences in the short
recovery times and a complete overlap for long recovery times
(see Table I for a summary of the main results).

We have shown that both a discrete and continuous descrip-
tion can be used concurrently for backtrack recovery analysis
for short and long backtracks when the characteristic distance
nc = 2

√
k/kc is greater than one. This corresponds to cases

where the hopping rate k is larger than the cleavage rate kc and
is in good agreement with estimated rates of RNA polymerase
backtracking [9,14,15]. Future work in the framework of
stochastic resetting will have to be done to consider the case
where polymerases can cleave only until a critical backtrack

distance, as recently found in single-molecule experiments [9].
Single-molecule optical tweezers transcription experiments
of RNA polymerase backtracking [8–10,13–15,25,42] would
allow one to experimentally validate the stochastic models
provided here and quantify the backtrack diffusion and
cleavage rates of these enzymes.
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APPENDIX: CALCULATION OF THE MEAN RECOVERY
TIME FROM THE BACKWARD FOKKER-PLANCK

EQUATION

The backward Fokker-Planck equation corresponding to
Eq. (30) in the continuous-space model reads

∂ρ(x,t |x0,0)

∂t
= D

∂2ρ(x,t |x0,0)

∂x2
0

− kcρ(x,t |x0,0). (A1)

Integrating Eq. (A2) with respect to x from x = 0 to x = ∞
we obtain the following equation for the survival probability:

∂S(t ; x0)

∂t
= D

∂2S(t ; x0)

∂x2
0

− kcS(t ; x0). (A2)

Taking the Laplace transform, Eq. (A2) yields

qS(q; x0) − 1 = D
∂2S(q; x0)

∂x2
0

− kcS(q; x0), (A3)

TABLE I. Summary of expressions for the probability distribution of the recovery time and the mean recovery time from a given
initial backtrack depth in the hopping model with cleavage �(τrec; n0) and in the diffusion model with cleavage �(τrec; x0) with initial
backtrack depths n0 and x0, respectively. Here k is the diffusion rate, kc is the cleavage rate, D is the diffusion coefficient, and H (τrec; n0) =
2F2({n0,n0 + 1/2}; {n0 + 1,2n0 + 1}; −4kτrec).

Discrete hopping model

Diffusion and cleavage (k > 0; kc > 0) Only diffusion (k > 0; kc = 0)

�(τrec; n0) e−(2k+kc )τrec
n0 In0 (2kτrec)

τrec
+ kce

−kcτrec
[
1 − (kτrec)n0 H (τrec;n0)

n0�(n0)

]
e−(2k+kc )τrec

n0 In0 (2kτrec)

τrec

〈τrec〉 1
kc

[
1 − (√

(4k/kc )+1−1√
(4k/kc )+1+1

)n0
] ∞

Continuous diffusion model

Diffusion and cleavage (D > 0; kc > 0) Only diffusion (D > 0; kc = 0)

�(τrec; x0) e−kcτrec x0√
4πDτ3

rec

e−x2
0 /4Dτrec + kce

−kcτrec erf( x0√
4Dτrec

) x0√
4πDτ3

rec

e−x2
0 /4Dτrec

〈τrec〉 1
kc

[1 − e−x0/
√

D/kc ] ∞
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where S(q; x0) = ∫ ∞
0 dte−qtS(t ; x0) is the Laplace transform

of the survival probability and we have used S(0; x0) = 1. The
solution of Eq. (A3) is given by

S(q; x0) = 1

kc + q
[1 − e−x0

√
(kc+q)/D]. (A4)

From Eq. (A4) one can find all the moments of the re-
covery time distribution. In particular, the mean recovery

time:

〈τrec〉 = Sn(0) = 1

kc

[1 − e−x0
√

kc/D], (A5)

which coincides with Eq. (43).
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