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While the biochemistry of metabolism in many organisms is well studied, details of the metabolic dynamics
are not fully explored yet. Acquiring adequate in vivo kinetic parameters experimentally has always been an
obstacle. Unless the parameters of a vast number of enzyme-catalyzed reactions happened to fall into very
special ranges, a kinetic model for a large metabolic network would fail to reach a steady state. In this work we
show that a stable metabolic network can be systematically established via a biologically motivated regulatory
process. The regulation is constructed in terms of a potential landscape description of stochastic and nongradient
systems. The constructed process draws enzymatic parameters towards stable metabolism by reducing the change
in the Lyapunov function tied to the stochastic fluctuations. Biologically it can be viewed as interplay between
the flux balance and the spread of workloads on the network. Our approach allows further constraints such
as thermodynamics and optimal efficiency. We choose the central metabolism of Methylobacterium extorquens
AM1 as a case study to demonstrate the effectiveness of the approach. Growth efficiency on carbon conversion
rate versus cell viability and futile cycles is investigated in depth.
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I. INTRODUCTION

Large-scale metabolic networks attract interests from de-
veloping diagnostic markers for human diseases to metabolic
engineering of bioproducts with economic values [1–4]. In
the literature, steady states are often assumed when these
systems are analyzed. The existence of reachable steady
states on a given metabolic network is apparently consistent
with experimental observations [5–9]. On the other hand,
steady states for a set of chemical reaction equations are
usually difficult to achieve, as many dynamical system theories
and previous modeling works have experienced [10–12]. To
complicate the issue further, it is impractical to construct
a kinetic model purely based on current experimental data
due to the unavailability of a large number of parameters
[13–17]. Retrofitting to obtain parameters from in vivo
experiments [11,12] is normally limited to laboratory bacteria.

To avert the difficulty, metabolic analyses mostly rely
on static methods that employ stoichiometric matrices and
incorporate mass conservation, thermodynamic constraints,
and optimization hypotheses [7,18–20]. These approaches
would be sufficient if they could adequately reproduce
topologies for the underlying networks. Unfortunately, for
many systems this is not the case. For example, the flux
distribution of central glucose metabolism varies widely across
species of bacteria, while the chemical reactions on the
metabolism remain conserved [21]. An elementary flux mode
method would have yielded the simplest flux mode under the
glucose growth condition. Nature, nevertheless, prefers some
complex routes for the simple carbon source. Toxic metabolites
buildup was suggested as a contributing factor [22]. To verify
the hypothesis, a kinetic model is necessary as detailed
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knowledge of concentration variations becomes essential.
Another example that calls for better modeling is the bistability
observed in the Escherichia coli population after a glucose-
gluconeogenic substrate shift [24]. In principle, dynamical
aspects of metabolism, such as flux oscillations [25], require
proper kinetic models. To date environmental influence on flux
distribution remains largely unexplained [21,23].

We investigate the dynamics of a metabolic network by
placing metabolism in an adaptive process. The structure of
the metabolic network, represented by its entire set of reaction
parameters, is assumed to change in time: In our approach,
there is a generic “regulatory” dynamics in the parametric
space that acts to improve the network stability. The key idea
is to employ a dynamical landscape and its associated potential
function that can depict the stability of a stochastic network.
The existence and construction of the potential function in
nongradient systems [26–29] are established via a stochastic
dynamical decomposition. The “regulation” draws under the
landscape the enzymatic parameters towards the space in
which the metabolic network stabilizes. When thermodynamic
constraints on chemical reactions are taken into account, the
range of the parametric space can be further specified to offer
a realistic metabolic model.

The construction of potential functions from general
stochastic differential equations in Ref. [26] has been ex-
plicitly demonstrated in typical complex nonlinear dynamics,
including fixed points [36,37], limit cycles [29,37], and chaotic
systems [28]. The stochastic dynamical decomposition leads
to a stochastic integration (A-type) which is different from
traditional Ito’s and Stratonovich’s types. The approach adds
a unique advantage connecting determinacy and stochasticity
through dual roles of the potential functions [27,38]. Experi-
ments confirm that some processes in nature do correspond
to the A-type integration [27]. The present work intends
to extend the analyses into practically useful computational
tools.
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Our work is biologically motivated. A living cell differs
from an isolated chemical reactor in many ways. Enzymes are
constantly synthesized and degraded, activated and inactivated
by metabolites and kinases. Metabolites move in and out of
the cell in a regulated manner. The concept of regulations
is truly generic and everywhere. In this work, we attempt
to place the various sources and mechanisms of biological
regulations under a unified mathematical description, with a
clear goal. The unified regulation aims to identify the regions
in the parametric space that can harbor stable steady-state
solutions for the metabolic network in question. The stability
here refers to the existence of steady-state solutions, and more
importantly, the solutions are stable against random noises
that are present in any biological system. To achieve the
goal, we explicitly introduce stochastic fluctuations at some
intermediate steps. At the computational stage, the expressions
are simplified with respect to the physiological conditions of
a living cell. Finally, in addition to being a tool for metabolic
modeling, the mathematics developed in our study may help to
clarify other biological regulations that are similar in nature.

II. GENERIC RATE EQUATION

Let us start with the simplest formula for an enzyme-
catalyzed reaction, the so-called Michaelis-Menten equa-
tion [30],

dy

dt
= Vmaxx

KM + x
, (1)

where x, y, Vmax, and KM are, respectively, the concentrations
of the substrate and the product, the maximum reaction rate,
and the Michaelis-Menten constant. Vmax is determined by
both the concentration of the enzyme and its catalytic rate.
In an organism, a reaction is often modified via allosteric
regulations by additional chemical which binds to the same
enzyme and acts to inhibit or activate the enzyme. This can
result in effective Vmax and KM that differs from Eq. (1).
For example, the presence of a competitive inhibitor with
concentration xI changes the Michaelis-Menten constant to

KM ⇒ KM

(
1 + xI

KI

)
. (2)

Quasisteady states on the intermediate complexes are assumed
in Eqs. (1) and (2).

For kinetic modeling of large-scale metabolic networks,
there are several obstacles to overcome concerning the enzyme
reaction rates. First of all, the modifier(s) to a reaction is
not always known. Second, even when the information does
exist, the exact form of the reaction rate can be obscured by
many unknown parameters. We address the second obstacle
by observing that the rate equation of some well-known mod-
ification mechanisms, Uni-Uni mechanism, Bi-Uni random
mechanism, Bi-Bi ordered mechanism [31], ordered Uni-Bi
mechanism, random Bi-Bi mechanism, Ping Pong Bi-Bi
mechanism [32] can all be cast into a generic form of enzymatic
rate equation. For a typical chemical reaction inside a cell,

S1 + S2 + · · · Sm

VF�
VB

P1 + P2 + · · · Pn, (3)

where each substrate Si or product Pi can be the same or
different chemicals, the generic rate format representing the
reaction can be written as

ν(xi,yj )

=
VF

∏m
i=1

xi

Ki
− VB

∏n
j=1

yj

K ′
j

f1(VF ,VB)
∏m

i=1

(
1+ xi

Ki

) + f2(VF ,VB)
∏n

j=1

(
1+ yj

K ′
j

) ,

(4)

where xi and yj are, respectively, the concentrations of the
substrates and the products. In Eq. (4), VF and VB are the
forward and backward maximum reaction rates. Ki and K ′

j are
the apparent Michaelis-Menten constants for each substrate
and product. f1 and f2 are normalization factors given by
f1(VF ,VB ) = V 2

F /(V 2
F + V 2

B ), f2(VF ,VB ) = V 2
B/(V 2

F + V 2
B ).

The generic rate equation is symmetrical in both directions
for a reversible reaction and is formally exact under the
quasi-steady-state condition. While the decision to employ
our simplified rate equation or different forms is a choice
of preference [11,12,33], the simplification is convenient for
both analytical and computational studies. In the Appendix,
an explicit instance of the generic rate equation is derived for
the ordered Uni-Bi mechanism.

III. METABOLIC NETWORK

We now consider a metabolic network of N metabolites
with their concentrations represented by a N × 1 vector, xT =
(x1,x2, . . . ,xN ). The superscript T stands for transverse of a
matrix. A set of kinetic questions can be readily written in the
form

ẋ = Sν(x) + b(x,t) = F (x,V,t), (5)

where V denotes a vector in the parameter space covering
all the reactions on the network, i.e., VF and VB [Eq. (4)]
for all reactions, and S is a (N × M) stoichiometric matrix
connecting the reactions to the metabolites. ν(x) is a (M × 1)
matrix with M being the total number of reactions. Each
component of ν(x) takes the form of Eq. (4). b(x,t) is a
(N × 1) vector representing fluxes in or out of the network. If
b(x,t) is not explicit in t , it can be absorbed into the first term
by adding virtual reactions to or from a fictitious “external”
metabolite. This will be discussed in Sec. V B. Hereafter, we
assume b(x,t) = b(x) and F (x,V,t) = F (x,V ).

A dynamical system under Eq. (5) is usually unstable: Some
metabolites will quickly accumulate and some others deplete
as demonstrated by a simple example in Fig. 1. Rather than
regarding the selection of reaction parameters as a modeling
problem, we need to incorporate both the biological and the
mathematical aspects of the model for our study. Here the
associated biological question is how a living cell adjusts
its parameters and maintains the metabolic stability under
fluctuations of concentrations in both metabolites and enzymes
(reaction rates). In fact a living cell is assisted by complex
biological processes [35]: At a short timescale, metabolites can
be transferred in and out of the cell and enzymes are modulated
by metabolites. At a longer timescale, enzymes are constantly
created and degraded. Note that mass conservation is still
satisfied at the coarse-grained level for tissues or colonies.
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FIG. 1. A simple network of two reactions with input and output fluxes. The network is shown in the inset of (a). When V1F , V1B , V2F , and
V2B are constant, the existence of steady-state solution depends on their values. (a) is calculated for V1F = 3, V1B = 0.1, V2F = 1, V2B = 0.1
and (b) for V1F = 0.3, V1B = 0.1, V2F = 0.5, V2B = 0.1. (c) and (d) are calculated with regulation, starting from the same initial values
corresponding to (a) and (b), respectively. The regulation dynamics of Eq. (18) is found to help the system reaching steady states. The solutions
are not unique on the network.

Mathematically, the stoichiometric matrix and therefore the
form of Eq. (5) remains unaffected. We may regard the param-
eters in the generic reaction rate Eq. (4), VF , VB , Ki , and K ′

j as
in vivo parameters, to be decided by experimental observations
and other constraints. We will handle VF and VB first.

IV. CONSTRUCTION OF STABLE
METABOLIC DYNAMICS

To find out how the enzymatic parameters in Eq. (4)
should be regulated in order to achieve stability across the
network, we return to Eq. (5) with an addition of random
noise ξ , representing stochastic fluctuations over the metabolic

network:

ẋ = F (x,V ) + ξ (x,V,t), (6)

〈ξ (x,V,t)ξ (x,V,t ′)T 〉 = 2D(x,V )δ(t − t ′), (7)

where D stands as the diffusion matrix for the noises, and
T denotes transpose of a matrix. Note that by stability, we
mean that the steady-state solutions can remain stable against
random perturbations. The latter are present in any biological
system. Thus, having their presence in the construction of the
regulation is quite logical.

Although fluctuations exist in any biological system,
Eqs. (6) and (7) are not derived explicitly from a microscopic
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model, hence questions might arise if the equations are
appropriate for the present study. In arriving at the equations,
Markov process is explicitly imposed in the time-related
part δ(t − t ′) in Eq. (7). Such an assumption is widely
adopted in stochastic studies related to colloidal particles. In
our context, we primarily focus on the metabolic reactions,
which are chemical reactions in nature and should be well
described by the model. Our choice of the diffusion matrix
D(x,V ) is not limited to specific forms. In the lack of
any specific information, it can be taken as proportional to
the concentrations of reactants and reaction velocities. Note
that some biological fluctuations might not fall into Markov
process and should be further studied. Finally, there is a fine
line between stochastic fluctuations and purposeful biological
regulations. The latter is precisely the main area of study in
this work.

To proceed further, we can use a recently developed
method to identify a Lyapunov function for the nongradient
system [27]. Following the mathematical analysis developed
earlier [26,27], there exists a generalized potential φ(x,V ), a
Lyapunov function for Eq. (6) such that

[�(x,V ) + �(x,V )]F (x,V ) = −∇xφ(x,V ), (8)

[�(x,V ) + �(x,V )]D(x,V )[�(x,V ) − �(x,V )] = �(x,V ),

(9)

where �(x,V ) is a nonnegative and symmetric matrix, and
�(x,V ) is an antisymmetric matrix. Note that both �(x,V )
and �(x,V ) are determined by the diffusion matrix D. The
precise meaning of the potential φ becomes transparent near a
stable fixed point, where φ can be used to define a Boltzmann-
like stationary distribution [36] [cf. below Eq. (15)]. Such a
distribution can carry divergence-free probability currents. In
the linear case where F (x,V ) is a linear function of x, and
D(x,V ) is constant, the force can be split into two parts, one
of which gives rise to a detailed balance with diffusive motions,
the other induces cyclic motions on the surface of constant φ.
A stable metabolic network solution corresponds to a local
minimum in the potential φ(x,V ) in our definition. This does
not exclude φ(x,V ) from more complex topologies such as a
limit cycle when φ remains constant in the cycle [29].

We next define a nonnegative cost function ψ(x,V ),

ψ(x,V ) = F (x,V )T �(x,V )F (x,V ), (10)

which is related to the change in the potential for x (under
fixed V ) in the following way:

For the deterministic part of the dynamics we have

dφ(x,V )

dt

∣∣∣∣
V =const

= ∇xφ(x,V ) · F (x,V ) = F (x,V )T ∇xφ(x,V )

= −F (x,V )T [�(x,V ) + �(x,V )]F (x,V )

= −F (x,V )T �(x,V )F (x,V )

= −ψ(x,V ). (11)

In the above we have used the antisymmetric property of �.
We further introduce a regulation on V that aims to minimize

ψ(x,V ) by

W (x,V )
dV

dt
= −∇V ψ(x,V ). (12)

Here W (x,V ) is a matrix whose symmetric part has positive
eigenvalues. The form of W (x,V ) chosen for our metabolic
modeling will be discussed later. We will show below that
regulation on V will work toward stabilizing the original
network of x.

Let us look at this regulation when the dynamics of the
metabolites x and the parameters V are uncoupled. Note that
φ is in fact a Lyapunov function of the original network when
V remains constant [37,38]. On the trajectory of x(t), as a
property of Lyapunov function, φ monotonically decreases in
time. This is indeed confirmed by Eq. (11) as expected. If x

is near a steady state, then dφ(x,V )/dt → 0−. Therefore, the
goal of regulation is to vary V so that dφ(x,V )/dt can be
brought to 0−. When x is held constant and a dynamics in V

is imposed in the form of Eq. (12), the V dynamics suppresses
ψ , which in turn reduces the change in φ via Eq. (12) when x

is allowed to change. In other words, it leads the dynamics in
x into a more stable parametric space as a result.

We can illustrate explicitly that a coupled dynamics on x

and V is assisted by Eq. (12) to become more stable. Since
� is symmetric and at least semipositive, minimizing ψ via
Eq. (12) moves toward F (x,V ) = 0, and the dynamical system
is stable when only V is allowed to vary. When both x and V

are allowed to change, the system is not necessarily stable. For
the stability, we need to have dψ/dt � 0 along the trajectory
of x(t) and V (t), i.e., to decrease the absolute value of F (x,V ).
For simplicity we set W in Eq. (12) to be an identity matrix
(the result is essentially the same for different W ). Using the
relationships shown in Eqs. (6) and (8), we have

dψ

dt
= ∇V ψ · dV

dt
+ ∇xψ · dx

dt

= ∇V ψ · dV

dt
+ ∇xψ · (F + ξ )

= ∇V ψ · dV

dt
+ ∇x(FT �F ) · F + ∇xψ · ξ

= ∇V ψ · dV

dt
+ ∇x(FT (� + �)F ) · F + ∇xψ · ξ

= −∇V ψ · ∇V ψ − ∇x(FT ∇xφ) · F + ∇xψ · ξ

= −∇V ψ · ∇V ψ − FiFj∂xixj
φ

− (∂xi
φ)(∂xj

Fi)Fj + ∇xψ · ξ. (13)

In the final step of Eq. (13), the first three terms control the
deterministic part of dψ/dt . If V is unregulated and constant,
the first term is zero. To consolidate the argument, we shall
show explicitly that the summation of the second and the third
terms is negative near a stable fixed point in the unregulated
case. Therefore, the first term, arising from the regulation,
contributes to stabilize the network with another negative term.
Assuming that x0 is a fixed point, F (x0,V ) = 0, then linearize
F (x0,V ) = F̃ (x − x0), φ = (x − x0)T U (x − x0). Here F̃ and
U are constant matrices. Equations (8) and (9) can be written as
(� + �)F̃ = −U and F̃ = −(D + Q)U , where (D + Q) =
(� + �)−1 [26]. Q and � are antisymmetric matrices. The
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total contribution of the second and third terms to Eq. (13) is

−FiFj∂xixj
φ − (∂xi

φ)(∂xj
Fi)Fj

= −(x − x0)T U (D − Q)U (D + Q)U (x − x0)

− (x − x0)T U (D + Q)U (D + Q)U (x − x0)

= −2(x − x0)T UDUDU (x − x0) + 2(x − x0)T

×UQUQU (x − x0) − (x − x0)T

× (UDUQU − UQUDU )(x − x0)

= T1 + T2 + T3. (14)

Let DU (x − x0) = u1, QU (x − x0) = u2, then T1 and T2 in
Eq. (14) become T1 = −2uT

1 Uu1 and T2 = −2uT
2 Uu2. Note

that � and Q are a symmetric and an antisymmetric matrix,
respectively. For a stable fixed point, eigenvalues of U are
positive. Therefore, both T1 and T2 are negative. The third
term has no definite sign. But we can calculate the average
value of T3. The steady-state probability distribution is given
by [26]

ρ0 = 1

Z
exp

[
−1

2
(x − x0)T U (x − x0)

]
. (15)

We have

〈T3〉 =
∫

dx1dx2 . . . dxN (x − x0)T (UDUQU − UQUDU )

× (x − x0)
1

Z
exp

[
−1

2
(x − x0)T U (x − x0)

]
= tr[(U−1)(UDUQU − UQUDU )]

= tr(DUQU − QUDU ) = 0. (16)

Thus, for a stable fixed point without regulation, dψ/dt < 0
as expected. The first term in Eq. (13) adds a negative term
to dψ/dt < 0, to further stabilize the network. It is possible
that the contribution from the regulation is sufficient to bring
an unstable fixed point back to stable. This is shown in the
simple example given below. However, the above analysis
relies heavily on the Boltzmann-like distribution, which is
only valid near a stable point. Finally, it is worth mentioning
that the regulation moves towards ψ = 0 by lowering ψ , but
it does not guarantee to ever reach it.

A further consideration can be made for practical modeling
purposes. If x values are known, V and the stable metabolic
network may be obtained from Eq. (11). In the generic
enzyme reaction rate equation, x/K is invariant. Since the
in vivo values of the apparent Michaelis-Menten constants of
K are mostly unavailable, we can set x/K = 1 as a starting
point. Although from a network point of view the restriction
might appear too strong, in realistic biological systems that is
usually the case for a large range of metabolite concentrations.
Mathematically, if x/K values are set differently, different VF

and VB are obtained with no qualitative difference.

A. Network stability, a simple example

Before turning to realistic biologic problems of interest,
let us use a simple reaction network model to demonstrate
explicitly the idea of this work with just two reactions A +
C

V1−→ B and B
V2−→ C. The two reactions form a simple cycle

in which one unit of metabolite A is lost per cycle, similar to a
futile cycle in biology. We also add an input and output to the
network. The dynamics of the network is given by

d[A]

dt
= v1 − V1 = fA,

d[B]

dt
= V1 − V2 − v2 = fB,

d[C]

dt
= −V1 + V2 − v3 = fC,

with

V1 =
V1F

[A]
KA

[C]
KC

− V1B
[B]
KB

V 2
1F

V 2
1F +V 2

1B

(
1 + [A]

KA

)(
1 + [C]

KC

) + V 2
1B

V 2
1F +V 2

1B

(
1 + [B]

KB

) ,

V2 =
V2F

[B]
KB

− V2B
[C]
KC

V 2
2F

V 2
2F +V 2

2B

(
1 + [B]

KB

) + V 2
2B

V 2
2F +V 2

2B

(
1 + [C]

KC

) . (17)

Here [A], [B], and [C] are the concentrations of metabolites
A, B, and C. V1F , V1B , V2F , V2B , KA, KB , and KC are the
parameters for the forward and backward maximum reaction
rates and the apparent Michaelis-Menten constants as defined
in Eq. (4). For demonstration purposes we set v1 = 0.2 to
metabolite A, v2 = 0.2[B]/(1 + [B]) from metabolite B, and
v3 = 0.1 to metabolite C, KA = KB = KC = 1. The choices
are arbitrary and they do not change the qualitative behavior
of the system. In Figs. 1(a) and 1(b), we show that the stability
of the two-reaction network indeed depends on the choice of
V1F , V1B , V2F , and V2B . Next, we include a simplified version
of the regulatory dynamics Eq. (12). Note that solving Eqs. (8)
and (9) for a given diffusion matrix D is not essential for
practical purposes because detailed in vivo information of D

is largely unavailable. Instead, we can choose an approximate
� to start with. In general, though, we may not arbitrarily
choose � while treating D as to be determined reversely by
Eqs. (8) and (9). In the case of limit cycle � approaches zero
on the cycle regardless of D [29].

On the given example, we choose � and W so that Eq. (12)
becomes

dV1F

dt
= −V1F ∂V1F

(
ωAf 2

A + ωBf 2
B + ωCf 2

C

)
,

dV1B

dt
= −V1B∂V1B

(
ωAf 2

A + ωBf 2
B + ωCf 2

C

)
,

(18)
dV2F

dt
= −V2F ∂V2F

(
ωAf 2

A + ωBf 2
B + ωCf 2

C

)
,

dV2B

dt
= −V2B∂V2B

(
ωAf 2

A + ωBf 2
B + ωCf 2

C

)
,

with fA, fB , fC given by Eq. (17),
and ωA = 1/

√
([A][C]V1F /KAKC)2 + ([B]V1B/KB)2,

ωB = ωC = 1/(
√

([A][C]V1F /KAKC)2 + ([B]V1B/KB)2 +√
([B]V2F /KB)2 + ([C]V2B/KC)2). The matrix W is assumed

to be diagonal. At the limit of small �, Eq. (9) implies that
� scales with the inverse of D. The diffusion matrix D

in turn scales with the reaction rates. This is the reason
to choose the above ωA, ωB , and ωC . We can further set
[A]/KA = [B]/KB = [C]/KC = 1 in their expressions. With
the inclusion of the added regulation, Eqs. (5) and (12) are
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then solved simultaneously. We see that in Fig. 1(d) when the
initial parameters are chosen to be the same as in Fig. 1(b),
the network eventually stabilizes, in contrast to what it does
in Fig. 1(b).

Given the simple example, we now briefly discuss its
possible connections to realistic biological regulations. The
regulation of Eqs. (10) and (12) minimizes a cost function
that is essentially the multiplication of the rate of change
F = synthesis − utilization for each metabolite and �. The
minimization of F is nothing but product inhibition and
substrate activation, as is often encountered in organisms. For
example, elevated blood sugar level in a person triggers the
enzyme transcription of glucokinase and fructose 6-phosphate
in the liver [30]. The dependence of � is subtler. The increase
on the diffusion matrix D is better for reactions to be evenly
spread and to avoid near-zero reaction rates. This feature might
have an implication in the understanding of evolution: Are
the reaction topologies of different species such as those in
Ref. [21] evolved along this direction?

Note that in the above construction the fluctuations-related
D only plays an auxiliary role and can be set to zero at the end if
only the stability at the deterministic level is concerned. While
the construction of the regulation is formal and analytically
shown to be effective towards stability, the approximation
used later in this paper may require further validations in
their own context. We need to handle the fluctuations more
realistically if we wish to explore the relationship between the
mathematically constructed regulation and the biological ones
found in cells. The latter can be complicated by both chemical
reactions [39] and biological processes involved [40].

V. LARGE-SCALE METABOLIC MODELING

Let us consider how the regulation process can be applied
to the forward and backward maximum reaction rates VF , VB

for metabolic modeling. We would like to find a simplified
version of Eqs. (11) and (12) that is both computationally
straightforward and biochemically transparent. In general, we
expect the diffusion matrix D to scale with the magnitude
of the fluxes, i.e., D ∼ F (x,V ) ∼ (x/K)VF [or (x/K)VB],
representing the level of an intrinsic stochastic process [39].
As a result of Eqs. (8) and (9), � (and �) should scale
inversely with D. We further simplify the cost function ψ

by taking � matrix diagonal for each VF (or VB), i.e., a
weighted square summation of the related fluxes. The weight
should scale with the inverse of metabolite concentrations.
Since the dominant part of metabolism is centered around
the usage of organic carbons, we simplify the requirement by
scaling the weight with the carbon numbers in the chemical
formulas; for example, CH3COOH has a carbon number =
2. The use of carbon number accounts for the stoichiometric
relation that a larger compound (with a high carbon number)
is synthesized from smaller ones, hence is less abundant in
a cell. It is also due to the majority of metabolic reactions
being centered around the carbon routes. Moreover, we let
W (x,V ) to scale as 1/V 2

F (or 1/V 2
B ) to counter balance the

factor 1/VF (or 1/VB ) in ψ . This sets a preference to smaller
but positive (forward and backward) maximum reaction rates
over large ones. In addition, the nonlinear factors before and
after the partial differentiation ∂νk

ensures that the solutions

fall into small but positive νk . Finally, we assume that the
cost function is evaluated at the physiological values of the
ratios {xi/Ki,yj /K

′
j } as appear in Eq. (4). The ratios are

either taken from experiments or set to 1. This is based on
observations that under normal physiological conditions the
reactions in a cell are catalyzed by enzymes that are most
effective when the concentrations match the affinities of the
underlying enzymes [30].

To summarize the above simplifications in terms of mathe-
matics, we have

τ
dVk

dt
= −V 2

k ∂Vk

[(
1

VkNk

)∑
n

(1 + cn)F 2
n (x,V )

]

Vk ∈ {VF ,VB}. (19)

Here τ is a characteristic timescale for the regulation process,
the summation is over the Nk number of metabolites affected
by Vk , and cn is the carbon number of the nth metabolite.
Note that any flux balance solution F (x,V ) = 0 is also a
solution to Eq. (19), therefore Eq. (19) can be considered
as an enhanced flux balance analysis that attempts to exclude
unstable solutions. The overall flow diagram of the modeling
procedure is presented in Fig. 2.

A. Thermodynamic constraints

We now revisit Eq. (4) and examine closely the impact
of the laws of thermodynamics on a metabolic network. The
balance of a chemical reaction is governed by the difference
in the apparent Gibbs free energy between the products and
reactants, which in turn determines an equilibrium constant
Keq for each reaction. Therefore,

VF

∏n
j=1 K ′

j

VB

∏m
i=1 Ki

= Keq ∝ exp

(
−
G

RT

)
. (20)

Since we do not require Eq. (4) to be an elementary reaction our
Keq is not always dimensionless. 
G may be considered as the
one taken from the rate-deciding step in the apparent chemical
reaction when it involves several stepwise reactions. A reaction
is irreversible if the drop in free energy is sufficiently large.
Equation (20) holds under quasistationary states. If we assume
most of the reactions are operated under that condition,
then for each set of {VF ,VB}, Eq. (20) provides a set of
optimization conditions for the apparent Michaelis-Menten
constants {K,K ′}. In real metabolism, the changes in their
values can be the results of inhibition or activation by any third-
party metabolites, e.g., via Eq. (2). Note that the invariance
of Eq. (4) under {xi/Ki}, {yj/K

′
j } implies that if the ratios

are kept constant, the solutions obtained for {VF ,VB} remain
unaffected.

Our operational process for the optimization is as follows.
We start with an initial set of {x0i/K0i}, {y0j /K

′
0j }, then

optimize K and K ′ for the best fit to Eq. (20) while keeping
the ratios of {x/K} and {y/K ′} fixed. In practice, we use a
cost function,

∑
r

{[
VF

∏n
j=1 K ′

0j /y0j

VB

∏m
i=1 K0i/x0i

]
·
[∏n

j=1 yj∏m
i=1 xi

]
− Keq

}2

, (21)
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Metabolic Model

Modeling Procedure

Enzyme concentration 
dependent

Modifiable by
multisubstrate 

kinetics

ParametersParameters

Thermodynamics

Steady state concentration

Metabolic 

input/output
Physiological 

concentration

Stability

Efficiency & Stability Initial 

Acetyl-CoA

Isocitrate

α-KG

Succ-CoA

Fumarate

Citrate Malate

OAA

Succinate

FIG. 2. A summary of the kinetic modeling method employed in the present work. The in vivo forward and backward maximum reaction
rate VF , VB and apparent Michaelis-Menten constants are determined by stability, thermodynamics constraints, and experimental data. Some
biological information on the metabolic input or output is required for the metabolite exchanges between the network in the model and the rest
of the cell. The exchanges are treated as reactions with an external pool and the maximum reaction rates to be determined in the same manner
as that for the normal VF , VB via Eq. (19). When initial values of VF , VB are smaller, the stable states of the network obtained are more efficient
in growth (via carbon conversion rate) but with larger relaxation times. The experimental measured efficiency may be used to pick the most
appropriate solution. Without adequate knowledge of in vivo enzyme kinetics, steady-state metabolite concentrations are assumed to be on the
order of Michaelis-Menten constants, and this assumption is used in Eq. (19). Such an approach can be adjusted when further experimental data
are available. In our model, thermodynamic constraints are imposed, independent of the stability requirement, to determine the steady-state
metabolite concentrations and the in vivo apparent Michaelis-Menten constants.

to determine the optimized concentrations. K and K ′ is then
obtained from {x/K} and {y/K ′} ratio by {x/K = x0i/K0i}
and {y/K ′ = y0i/K

′
0i}. The summation r runs over all the

reactions.

B. Boundary conditions

When only a subset of the complete metabolic reactions in
a cell is selected for study, we need to deal with the fluxes
between the selected part and the rest of the cell as well as
the cellular environment. We employ three types of couplings
to model the external interactions in Eq. (5). The first type is
to allow a metabolite such as CO2 or phosphate to maintain
a constant concentration. This applies when the metabolite
is involved in a large number of reactions, or can transfer in
and out of a cell freely or is buffered by other mechanisms.
The second type is for certain pair of metabolites, usually

coenzymes, e.g., adenosine triphosphate (ATP) and adenosine
diphosphate (ADP), where metabolites in the pair always
appear on different sides of reactions in which they participate.
As a result, the pair’s total concentration remains conserved on
the network. We handle this type by adding a virtual recycling
reaction for each pair to emulate the boundary flow. A third
and the most common type of boundary conditions concerns
nutrient intakes and biomass productions by the network.
They are again handled by fictitious reactions to and from an
“external” metabolite, which represents adjustable exchanges
between these metabolites and the part of metabolism not
included in the model.

C. Initial values

The systematic approach proposed in this paper is intended
for a large metabolic network without sufficient parametric
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details. In the absence of reliable experimental data, we can
set some zeroth-order initial values as the starting point. The
model can be improved over time when more accurate values
are obtained. In the zeroth order and when no further infor-
mation is available, the initial concentration of a metabolite is
set to 1 mM. Similarly, the initial apparent Michaelis-Menten
constants Ki and K ′

j of Eq. (4) are set to the respective
initial concentrations of the substrates and products involved;
i.e., xi/Ki = xj/K

′
j = 1. The thermodynamic equilibrium

constants Keq are set to 1 for all reactions that are known to be
reversible under the physiological condition in question. We
have experimented different choices of initial values VF and
VB and found that the final flux distribution is only sensitive
to the overall scale of the initial values. The regulation process
starts with small initial VF and VB for all reactions, Eq. (19)
works VF and VB up and settles into a steady state. This
process is similar to switch on a cell from constitutively
inactivate enzymes for better metabolism efficiency. When
further biological information is available, the choice of VF

and VB can be changed to represent either a constitutively
inactive enzyme (small initial value) or an active enzyme (large
initial value) on an individual basis. The above zeroth-order
approximation is used in our model study below.

D. Relaxation time

As an application, we show that the dynamical model
can be used to estimate dynamical properties of a network.
One of them is the relaxation time when deviated metabolic
concentrations return to a steady state. Given a set of metabolite
outputs from the network (based on the growth rate obtained
experimentally), we usually can obtain a range of steady-state
solutions. This is done by starting from different sets of
initial reaction rates and letting them evolve under Eq. (19).
To evaluate the stability of a solution, we can estimate the
“relaxation time” reacting to small fluctuations from a given
steady state. Biologically shorter relaxation time corresponds
to faster response and adaptation to environmental changes. To
quantify the analysis, we can linearize Eq. (5) at a steady state
to obtain the eigenvalues λi of the dynamics near the solution.
We define the average or typical response time as

1

N

(∑
i

1

λi

)
, (22)

where N is the number of nonzero eigenvalues. Zero ones are
excluded from the calculation as they correspond to redundant
degrees of freedom in the linearized equations. The number of
nonzero values is determined by the rank of the stoichiometric
matrix S in Eq. (5). The stability of a solution is justified when
there is no eigenvalue with negative real part.

VI. APPLICATION TO METHYLOBACTERIUM
EXTORQUENS AM1

We have successfully applied our methodology to the
central metabolism of Methylobacterium extorquens AM1, a
methylotrophic and environmental important bacterium that
has been extensively studied over the past two decades. In
particular, the flux distributions were carefully studied [41].
Methylobacterium extorquens AM1 grows on both single and

multiple carbon unit compounds. The central metabolism has
many well-known metabolic cycles, they adjust in different
conditions by changing expressions of relevant enzymes.
The metabolic pathways necessary for the growth under
methylotrophic conditions are included in our study. It covers
formaldehyde metabolism, serine cycle, citric acid cycle,
pentose phosphate pathway, poly-hydroxybutyrate (PHB)
synthesis, glyoxylate regeneration cycle, gluconeogenesis,
serine biosynthesis, and finally electron respiratory chain.
The metabolic network used in this work is taken from a
previous work [42]. See Supplemental Material for additional
information [43]. A summary of the metabolic pathways and
the calculated fluxes are depicted in Fig. 3. The results in
Fig. 3(a) quantitatively agree across all cycles to that presented
in Ref. [42], the latter were constructed from experimentally
available data. Figure 4 presents selected real-time plots of
concentrations returning to the steady state after a perturbation.
Especially, it illustrates a rapid detoxification of formaldehyde
in the cell.

Efficiency versus viability

We can explore, as a biological application, the efficiency of
growth versus the viability of a cell for M. extorquens AM1. In
our numerical calculation, the target biomass production and
the type of nutrient intake are set first. Starting with small initial
VF and VB for all reactions the regulation process, Eq. (19),
works the way upwards until VF and VB are settled into a
steady state. Varying the initial values allows us to obtain a
range of solutions and compare them to experiments. Larger
initial VF and VB lead to larger fluxes across the network with
lower carbon efficiency (measured by the nutrient intake). The
flux topologies remain qualitatively similar. Hence, certain
amount of energy appears wasted in some apparent futile
cycles. But, as shown in Fig. 3, the lower efficiency solution
has a faster relaxation time hence is more stable against random
fluctuations. Furthermore, the increase in the futile fluxes at
the expense of carbon efficiency smoothes the relative spread
of steady-state metabolic concentrations. The spread is an
unavoidable consequence of the thermodynamics constraints.
Biologically, extreme metabolite concentrations cause fatality
as they put severe burdens on osmotic pressure, maintenance,
and cellular transport.

The experimental data in Ref. [42] support the less
efficient solution shown in Fig. 3. The result indicates that
the bacteria do not go with the most efficient metabolism.
Instead, they choose to settle into a growth rate that, under
the physiological condition, has the optimal balance between
efficiency and viability. Finally, the better viability arises from
the futile cycles in metabolism for the reasons explained
above.

VII. CONCLUSION

To summarize the work, a regulatory dynamics for en-
zymatic parameters on a large-scale metabolic network has
been proposed. It is constructed to draw a vast number of
parameters into the phase spaces that stabilize the network.
Under a stabilized kinetic metabolic model, thermodynamical
constraints, the efficiency of growth and the viability of
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FIG. 3. Calculated steady-state fluxes in the dynamical model for Methylobacterium extorquens AM1 using two different sets of initial
values. See Supplemental Material [43] for detailed results, in the excel files. The set of parameters supporting a stable metabolic network is
not unique. However, the dynamical performance for the network with different parameters can be evaluated and compared with experiments.
The more efficient network (b), i.e., with less carbon intake on the set biomass output, is less viable due to a larger relaxation time and a wider
spread of metabolite concentrations. It also has less fluxes wasted in futile cycles. The fluxes given in (a) agree well with experiments. The
fluxes are in red; the unit is mM/second. The concentrations of selected metabolites are in green; the unit is mM. Note that some fluxes are
combination of multiple reactions and some fluxes and reactions are not shown in the figure.
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FIG. 4. Time-dependent relaxation of metabolites when perturbed from their steady-state values are shown in (a) and (b), calculated from
parameters corresponding to Figs. 3(a) and 3(b). It confirms that the parameters in Fig. 3(b) indeed results in a longer relaxation time.

the organism can all be studied. Our construction is built
upon a previously developed stochastic decomposition, the
latter offers a potential landscape via a Lyapunov function
on the network [26,38,44]. The regulatory dynamics can be
simplified in the biochemical context for practical purposes.
Moreover, as network stability is a generic topic in many fields,
our work might have implications beyond a simple math-
ematical method for establishing kinetic metabolic models
[45–47].

Biologically, we aim to provide a useful tool to analyze
and extract properties of large metabolic networks whose
parameters are difficult to obtain from in vivo measurements.
Our approach differs from the usual type of methods that
are based on static stoichiometric matrices plus conservations
and/or optimizations. Our results offer a range of kinetic
metabolic models (solutions) all having stable steady states
under which dynamical metabolic properties can be analyzed.
One such property is the relaxation time of a steady state, the
inverse of which can be interpreted as the viability of a cell. It
allows us to quantify the tradeoff between the growth efficiency
(on carbon conversion rate) and the viability (as inverse of
the relaxation time, futile cycles) of an organism. Hence we
can sift through the solutions to identify the most appropriate
one under a given physiological condition. Finally, large scale
metabolic modeling may also offer global perspective on
metabolic engineering [48].
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APPENDIX: GENERIC RATE EQUATION
FROM ORDERED UNI-BI MECHANISM

We can explicitly derive the generic rate equation in
the ordered Uni-Bi mechanism as a demonstration [32].
The ordered Uni-Bi mechanism is schematically shown in
Fig. 5. There are two products P and Q [34]. The final
steady-state rate equation for the ordered Uni-Bi mechanism,
when the intermediate enzyme states are eliminated, is given
by [34]

u = N1A − N2PQ

D1 + D2A + D3P + D4Q + D5AP + D6PQ

(A1)

under quasi-steady-states assumption. Here A and P , Q are
the concentrations of the substrate and products in the reaction.
The eight quantities N1, N2, and D1–D6 are functions of
the six rate constants ν±1, ν±2, ν±3 as well as the enzyme
concentration e0:

N1 = ν1ν2ν3e0,

N2 = ν−1ν−2ν−3e0,

D1 = ν2ν3 + ν−1ν3,

D2 = ν1ν2 + ν1ν3,

FIG. 5. Ordered Uni-Bi mechanism.
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D3 = ν−1ν−2,

D4 = ν−3ν2 + ν−3ν−1,

D5 = ν1ν−2,

D6 = ν−2ν−3.

The numerator in Eq. (A1) can be rewritten as

A (N1/D1)︸ ︷︷ ︸
VF /KA

−PQ (N2/D1)︸ ︷︷ ︸
VB/K ′

P K ′
Q

= VF

A

KA

− VB

PQ

K ′
P K ′

Q

,

where the underbraces indicate that N1/D1 has been rewritten
into VF /KA and likewise for the other term. After dividing by
D1, the denominator of Eq. (A1) becomes

1 + D′
2A + D′

3P + D′
4Q + D′

5AP + D′
6PQ, (A2)

where D′
2 = D2/D1... D′

6 = D6/D1. Defining f1 + f2 = 1
and regrouping Eq. (A2), we have

1 + D′
2A + D′

3P + D′
4Q + D′

5AP + D′
6PQ = f1 + D′

2A + f2 + P (D′
3 + D′

5A)︸ ︷︷ ︸
D′′

3

+D′
4Q + D′

6PQ

= f1

[
1 + A (D′

2/f1)︸ ︷︷ ︸
1/KA

]
+ f2

[
1 + P D′′

3/f2︸ ︷︷ ︸
g

+Q (D′
4/f2)︸ ︷︷ ︸
h

+PQ (D′
6/f2)︸ ︷︷ ︸
l

]

= f1(1 + A/KA) + f2(1 + P (g + Qlα) + Q(h + P lβ) + PQl(1 − α − β))

= f1(1 + A/KA) + f2

[
1 + P (g + Qlα)︸ ︷︷ ︸

1/K ′
P

][
1 + Q (h + P lβ)︸ ︷︷ ︸

1/K ′
Q

]

= f1

(
1 + A

KA

)
+ f2

(
1 + P

K ′
P

)(
1 + Q

K ′
Q

)
.

In the above we have defined D′′
3 = D′

3 + D′
5A, 1/KA = D′

2/f 1, g = D′′
3/f 2, h = D′

4/f 2, l = D′
6/f2, 1/K ′

P = g + Qlα, and
1/K ′

Q = h + P lβ. K ′
P and K ′

Q are defined if (g + Qlα)(h + P lβ) = l(1 − α − β), the latter should be regarded as the equation
for α and β. Since A, P , and Q are positive and so are all the Di , g, h, and l must be positive. As a result, the sign of the term P lβ

follows the sign of β. Similarly, the sign of the term Qlα follows the sign of α. If gh = l, α = β = 0. If gh < l, then a solution
exists with α > 0 and β > 0. If gh > l, there is a solution with α < 0 and β < 0 [but (g + Qlα) > 0 hence (h + P lβ) > 0]. To
this end we have successfully transformed the reaction rate Eq. (A1) into the form of Eq. (4) in the sense that all the parameters
defined in the latter are positive. Since Eq. (A2) does not have the exact polynomial expression as the denominator in Eq. (4),
our derivation reveals the implicit approximation when regarding the apparent Michaelis-Menten constants as constant. Strictly
speaking, they can partially depend on the concentrations.
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