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Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model
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We present an analysis of conditions under which the dynamics of a frustrated Kuramoto—or Kuramoto-
Sakaguchi—model on sparse networks can be tuned to enhance synchronization. Using numerical optimization
techniques, linear stability, and dimensional reduction analysis, a simple tuning scheme for setting node-specific
frustration parameters as functions of native frequencies and degrees is developed. Finite-size scaling analysis
reveals that even partial application of the tuning rule can significantly reduce the critical coupling for the onset
of synchronization. In the second part of the paper, a codynamics is proposed, which allows a dynamic tuning
of frustration parameters simultaneously with the ordinary Kuramoto dynamics. We find that such codynamics
enhance synchronization when operating on slow time scales, and impede synchronization when operating on
fast time scales relative to the Kuramoto dynamics.

DOI: 10.1103/PhysRevE.93.062315

I. INTRODUCTION

The Kuramoto model of coupled oscillators [1] has proven
an enduring basic model of complex systems, particularly in
its extension to general networks, see Refs. [2–5] for recent
reviews. Application of the model are found in a variety of
contexts, ranging from arrays of Josephson junctions [6] to the
power grid [7] or biological oscillations found in populations
of yeasts [8] and various other types of biological rhythms, cf.,
e.g., Refs. [9,10]. This model consists of oscillators θi at nodes
i of an undirected network of size N given by an adjacency
matrix Aij , assigned native frequencies ωi that are typically
drawn from some distribution such as uniform, Gaussian,
Lorentzian, or generally unimodal symmetric. Through the
dynamics in the system of equations

θ̇i = ωi + σ
∑

j

Aij sin(θj − θi), (1)

after some critical coupling σc a macroscopic fraction of
the oscillators spontaneously phase synchronize θi ≈ θj to
a collective frequency given by the average ω̄ over the fre-
quency ensemble. A variation of this model is the Kuramoto-
Sakaguchi model [11] where a global shift λ—or frustration—
is introduced in the sine function. In this paper we show that
allowing localized frustrations λi , namely

θ̇i = ωi + σ
∑

j

Aij sin(θj − θi + λi), (2)

and tuning the λi in relation to the frequencies ωi , or
alternately providing a codynamics for them, allows improved
synchronization to a different collective frequency than ω̄ to
be achieved, and at lower coupling.

In the limit of all-to-all coupling Aij = 1 for all i,j and
N → ∞, the model Eq. (1) allows for an analytical solution
[1]. Inspired by Watts and Strogatz’s introduction of small
world networks [12], the literature has strongly focused on
analyzing the model on sparse complex networks [4,5]. A
particular interest in this line of thinking has been to understand
conditions under which synchronization can be improved, e.g.,

determining the types of correlations of native frequencies
along the links of a network that can strongly influence overall
synchronization behavior [13–18].

The global Kuramoto-Sakaguchi model with large N and
all-to-all coupling is similarly soluble for the critical coupling
[11]. Some variations of the model consider random pinning
fields [19] while in others the frustrations are either global
or random for every node [20,21], or allocated according to
a multinetwork structure for interacting populations [22,23].
While such additions introduce additional degrees of disorder
to the traditional Kuramoto dynamics, we are interested in
whether frustrations may be tuned to enhance synchronization.
We indeed find this to be the case, to a degree even more
than an equilibrium analysis reveals, where enhancement
occurs in two ways: macroscopic synchronization is found
at lower values of critical coupling than for the normal
Kuramoto system of Eq. (1); and this synchronization occurs
at collective frequencies �, which may be different from (both
less and greater than) ω̄, something already observed for the
global Kuramoto-Sakaguchi model [17,20]. Synchronization
in this setting requires specifically tuned frustration parameters
and one might wonder how appropriate configurations of
such parameters may be reached in real-world systems. By
introducing a codynamics in which frustration parameters
evolve simultaneously with the normal Kuramoto dynamics,
we illustrate a simple dynamical scheme via which tuned
configurations may be arrived at. The suggested tuning scheme
follows a similar approach to earlier work on adaptive coupling
schemes between coupled oscillators [24]. We propose that, in
adaptations of the Kuramoto model to social and technological
systems with multiple heterogeneous agents, for example
[25,26] (see Ref. [5] for an expanded list of such applications)
these mechanisms of tuned frustrations and codynamics may
offer new approaches to enhanced or more efficient cooperative
behavior.

The paper is organized in two main parts. First, we
examine the case of static frustration parameters in which
we study the steady-state solutions and then examine the
system numerically, particularly using an optimization scheme
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for tuning the parameters. We see there that enhancement
of synchronization consistent with the steady-state analysis
is possible. We supplement insights from this analysis by
calculating a critical condition for transitions using a di-
mensional reduction approach. Subsequently, we undertake
finite-size scaling analysis, which demonstrates that tuning
allows for an onset of synchronization for lower coupling than
for the ordinary Kuramoto model and that partial application
of the rule to a fraction of oscillators gradually improves
synchronization. In the second part we introduce a codynamics
that allows co-evolution of the frustration parameters with
the Kuramoto dynamics. We then demonstrate that such a
simple evolution scheme can tune the frustration parameters
to enhance synchronization and we analyze under what
conditions this is the case. The paper concludes with a
summary and discussion of results.

II. STATIC KURAMOTO-SAKAGUCHI SYSTEM

A. Steady-state analysis

To understand the basic properties of the local Kuramoto-
Sakaguchi model we repeat the steady-state solution consid-
ered for the global case, such as in Ref. [17]. We consider
solutions of the form

θi(t) = �t + φi(t), (3)

where φi is regarded as a small fluctuation allowing for
expansion up to linear terms, namely (φi)2 ≈ 0. Inserting this
ansatz into Eq. (2) we extract the equation with terms O[(φi)0]:

� = ωi − σki sin λi (4)

from the θi dynamics, where ki = ∑
j Aij denotes the

(in-)degree of node i. The corresponding equation linear in
the small fluctuations φi is

φ̇i = −σ
∑

j

cos λiLijφj , (5)

where Lij = δij ki − Aij is the combinatorial Laplacian whose
presence in such fluctuation problems is well known [17].
Multiplying by the cos λi gives a weighted version of the
Laplacian. The spectral property of such a Laplacian—that
it is positive semidefinite with a degeneracy of the zero
eigenvalue corresponding to the number of components of
the graph [27]—means here that the fluctuations are stable,
and will decay to exactly zero, if (but not only if) all the
cos λi � 0. We will focus on the fluctuations in more detail
later in the presence of codynamics. Noting that λ = ±π

2
represents marginal stability, thus we do not allow for repulsive
interactions in the sense of Ref. [28], for now we use the
resulting constraint on the −π

2 < λi < π
2 , and focus on the

equilibrium configurations.
Summing Eq. (4) over i and dividing by N gives

� = ω̄ − σ

N

∑
i

ki sin λi (6)

and this shows that without specific tuning of
∑

i ki sin λi to
equal zero then one generally has � �= ω̄. Thus, collective
frequencies other than the mean of the native frequencies can
be achieved in the presence of the frustration. This is related to

the property that Eq. (2) enjoys the same translation symmetry
as the ordinary Kuramoto model θi → θi + 
t,ωi → ωi +

 for any real 
 giving the freedom to fix one integration
constant. The contrast here is that the conserved charge no
longer follows from

∑
i θ̇i = 0 that is satisfied by Eq. (1);

rather, the charge for the Kuramoto-Sakaguchi case is not a
closed-form functional of θ .

Choosing some � now, the N equilibrium conditions of
Eq. (4) can be rewritten

sin λi = � − ωi

σki

, (7)

which represents a means of tuning the frustrations to achieve a
collective frequency �. Note that for σ increasingly large, the
frustrations λi become small so that perfect synchronization
requires fine tuning to vanishing values. If there is any
noise in practice, then tuning becomes difficult and perfect
synchronization becomes impossible leading to erosion effects
[29,30].

Observe now that because of the boundedness of the sine
in Eq. (7), solutions will exist only for

|� − ωi |
σki

� 1. (8)

We therefore refer to Eq. (8) as the recruitment condition. We
may also use Eq. (8) to obtain a threshold coupling condition
such that all oscillators across the network may be recruited
into a cluster oscillating at the chosen collective frequency �:

σr = maxi

|� − ωi |
ki

. (9)

We note that no analog to the threshold coupling, as
emerges from Eq. (8), exists as a sharp condition in the
ordinary Kuramoto model: the best one can do is demand
some consistency for the linearization approximation to hold
[31,32]. In this regime, the order parameter r defined via

r(t) exp[−iψ(t)] ≡ 1

N

∑
j

exp[−iθj (t)], (10)

may be expanded in fluctuations φi , as

r2 = 1

N2

∑
i,j

cos(φi − φj ) → 1 (11)

as t → ∞ if cos λi � 0 since, then, φi → 0 from Eq. (5).
This means that in this regime, the order parameter shows
exact phase synchronization as a consequence of the freedom
in the λi to tune them (or, alternately phrased, there is zero
erosion of synchronization in the sense of Refs. [29,30]
because of the freedom to tune the λi such that the synchrony
alignment function, see also Sec. 7 of Ref. [33], exactly
vanishes). The threshold coupling σr for all oscillators to be
recruited in this way must be distinguished from the critical
coupling σc usually defined as value where the ensemble or
time average of the order parameter r , deviates from zero.
This is typically far from the regime where linearization will
hold. We must therefore resort to numerical simulation to
examine the critical coupling σc. In particular, we explore what
choices of the frustration parameters enhance synchronization
for σ < σc, and demonstrate that even partial tuning of
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frustration parameters in ensembles of coupled oscillators can
significantly enhance synchronization.

B. Optimization experiments

We now examine numerically whether the system of Eq. (2)
allows for enhanced synchronization when the frustration
parameters are selected as above, and what occurs when only
a subset of oscillators satisfy the recruitment condition. To this
end we consider a numerical optimization scheme for a given
network with adjacency matrix Aij and given configuration
of native frequencies ωi drawn uniformly at random from
[−1,1]. We seek settings of the static frustration parameters λi

that optimize synchronization. Throughout the paper we solve
the dynamics for quite a variety of networks (random, random
regular, scale free, and small world), and network sizes (N =
50,100,1000,10000). Each choice tests certain aspects of the
frustrated and codynamics models in a targeted way, while
demonstrating the ubiquity of the behaviors across network
types and sizes. At this stage, we consider a regular random
graph where each node has degree ki = 4 and N = 100. The
degree of synchronization is measured by the order parameter
r , which we time average after discarding a transient.

Similar to Refs. [13,14] we use the following optimization
scheme: (i) start with some random initial condition; (ii) pick
a node i at random and add a phase shift randomly selected
from [−π,π ] to its frustration parameter to obtain a modified
configuration; (iii) calculate the average order parameter for
the modified configuration (for initial conditions set to zero);
and (iv) accept the new configuration if it gives a larger average
order parameter than the previous one and reject otherwise.
If a modified configuration is rejected, we revert to the last
previously accepted configuration and proceed with step (ii).
Experiments are run until no configuration has been accepted
for L2 trials, with L the number of links of the network. Results
in the optimization are obtained for initial conditions θi = 0,
but as observed in Refs. [13,14] we find that the optimized
configurations are independent of this choice.

Examining the dependence of the average order parameter
on coupling in Fig. 1 gives the key result of the optimiza-
tion experiments. For each of the ten network and native
frequency configurations (sampled at random at the start of
the optimization procedure) we calculate the dependence of
the order parameter on the coupling strength and average over
different initial conditions, and then present averages over the
ten configurations. In Fig. 1 the results for the optimization
are compared to different scenarios for tuning the frustration
parameters for the same network and native frequency con-
figurations, in particular for nodes where recruitment of an
oscillator, Eq. (8), cannot be implemented and where Eq. (7)
does not prescribe frustration parameters for oscillators with
|ω| > σk. For these scenarios we set � = 0 in imposing
Eq. (7) and choose for the nodes that cannot satisfy this
condition either λi = 0, labeled type I, or sin λi = −sgn(ωi),
denoted type II. Note that this second strategy means setting
nonrecruited frustrations to the value giving marginal stability,
as mentioned earlier, and might be regarded as a natural
continuation of Eq. (7). Both extremes are included in Fig. 1;
the closeness of the latter to the optimized case strongly
suggests that the second choice, namely that for marginal
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FIG. 1. Results from numerical simulations of the average order
parameter r at fixed values of coupling σ for variations of the
frustrated Kuramoto model on regular random graphs with ki = 4
for each node and N = 100. Each data point represents an average
over ten optimized configurations. Starting from the lowest curve, we
compare: (a) the ordinary Kuramoto dynamics with λi = 0, namely
Eq. (1); (b) type I, the frustrated Kuramoto(-Sakaguchi) dynamics,
Eq. (2), with frustration parameters set to sin λi = −ωi/(kiσ ) if
ωi < kiσ and λi = 0 otherwise; (c) type II, frustration dynamics
with frustration parameters set to sin λi = −ωi/(kiσ ) if ωi < kiσ and
sin λi = ±1 otherwise; and (d) frustrated dynamics with frustration
parameters determined by the optimization procedure.

stability in the nonrecruited oscillators, is superior to achieve
enhanced synchronization. We have also explored a range of
choices in between, which smoothly interpolate between the
results shown in the figure for sin λ = 0 and sin λ = −sgn(ω).

The first comparison in Fig. 1 is between any of the tuning
scenarios (asterisks and squares) to the usual nonfrustrated
Kuramoto dynamics (crosses): it is very obvious that targeted
tuning of the frustration parameters significantly improves
synchronization over that for the ordinary Kuramoto model.
However, comparing the optimization results to the two tuning
scenarios we see that further improvements in synchronization
are possible over and above the pure recruitment condition
Eq. (7).

We explore this further in Fig. 2 in which we investigate the
pattern of frustration parameters in optimized configurations.
We do this by plotting the dependence of the averaged sines of
the frustrations on native frequencies for two situations. Fig-
ure 2 shows solid lines that illustrate the recruitment condition
of Eq. (8), which can be approximated by sin λi = −ωi/(σki)
for the case of a symmetric initial distribution of native
frequencies (for which ω̄ ≈ 0) and � = 0. First, with coupling
σ = 0.17 (Fig. 2, top) we have a case where a significant
fraction of nodes is not synchronized to the main collective fre-
quency. This is based on the observation that in Fig. 1 the time-
averaged order parameter is well below 0.5 at this coupling.
Second, with σ = 0.24 (Fig. 2, bottom) we show a case where
almost all nodes can be recruited to a synchronized cluster, as
seen in r being close to one in Fig. 1 for this value of σ .

In Fig. 2(a) we see that, for coupling insufficient to recruit
oscillators with too large or too small native frequencies, those
oscillators with small native frequency on average follow
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FIG. 2. Plots of the average value of sin λi vs native frequencies
ωi to check fulfillment of the recruitment condition Eq. (7), given
by solid lines, for configurations evolved for (a) σ = 0.17, and
configurations evolved for (b) σ = 0.24. The data represent averages
over ten configurations of optimized frustration parameters on regular
random graphs (setting of graphs, etc., are as in Fig. 1).

a linear relationship, while the average sines of evolved
frustration parameters cluster close to 〈sin λ〉 = 0. Since oscil-
lators with large native frequencies cannot be recruited to the
synchronized cluster, their respective frustration parameters
appear to drift randomly during the optimization, resulting in
an average of zero with large fluctuations. Note that for this
reason the numerical optimization experiments do not replicate
the type II condition for nonrecruited oscillator phases. In
contrast, in Fig. 2(b) we see the appearance of an almost perfect
linear relationship for evolved frustration parameters when the
coupling is high.

C. Finite-size scaling analysis and determination
of the critical coupling

Optimization experiments in small systems backed up by
equilibrium analysis presented in the previous subsections
suggested that tuning the frustration parameters might allow
synchronization at lower coupling than for the ordinary
Kuramoto model. In this section we carry out a finite-size

scaling analysis that aims to establish (i) whether this earlier
finding persists in the thermodynamic limit or is an artifact of
small system size, and (ii) what influence partial fulfillment of
the recruitment condition has on the onset of synchronization.

For this purpose, the frustration parameters λi of the
static model are set as follows. For each i = 1, . . . ,N with
probability p we set

sin λi =
{−ωi/(kiσ ) if ωi < kiσ

−sgn(ω) if ωi � kiσ
(12)

and λi = 0 with probability 1 − p. This setting allows us
to smoothly explore the effect of tuned phase shifts λi .
Specifically, if p = 0 our framework reproduces the conven-
tional unfrustrated Kuramoto model on the network under
consideration, and if p = 1 we are in the regime in which
all oscillators are tuned.

We again explore the model via numerical simulations, first
by evaluating the dependence of the average order parameter
on the coupling strength for three types of network and
native frequencies drawn from a uniform distribution between
[−1,1]. In Fig. 3 we give results for Erdös-Rényi (ER)
random graphs [Fig. 3(a)], the Watts-Strogatz small-worlds
[Fig. 3(b)], and Barabasi-Albert scale-free networks [Fig. 3(c)]
of N = 1000 nodes. The data clearly indicate improved
synchronization behavior as the fraction of tuned oscillators is
increased, but also highlight that a boost for synchronization
can be obtained even by tuning only a small fraction of
oscillators. In comparing the enhancement of synchronization
between the three types of networks we also see that the most
significant change in dependence of r on σ occurs for the small
world case, where a gradual increase of r becomes almost a
sharp transition as p increases.

Next, for a more systematic exploration of critical thresh-
olds, we analyze the scaling of the order parameter r(σ,N )
with the system size N . Since the focus of the analysis is
determining the critical point rather than critical exponents
we follow the procedure outlined in Ref. [34] rather than more
elaborate finite-size scaling techniques [35,36]. The procedure
is based on the following observations. Below the critical
point oscillators rotate essentially independently and thus one
expects a scaling of the order parameter r(σ,N ) ∝ N−1/2 for
σ < σc. On the other hand, for σ > σc the order parameter is
expected to approach a nonzero value in the limit of N → ∞.
In this way plots of r(σ,N ) vs N for varying coupling σ allow
us to extract the critical point. This is illustrated in Fig. 4 from
which we extract the critical coupling as the smallest value
of σ for which r(N ) does not converge towards a constant
nonzero value as the system size is increased. For this example
of an ER random graph we find σc = 0.178(3) without tuning
[Fig. 4(a)], and σc = 0.089(2) when all frustration parameters
are tuned [Fig. 4(b)]. Analogous experiments for regular small
worlds (with rewiring probability prew = 0.1) are given in
Fig. 5, showing a similar dependence of the critical coupling
on the fraction of tuned oscillators. Finally, for this section, a
systematic exploration of critical couplings with p is shown in
Fig. 6. We observe here clearly that increasing the proportions
of tuned oscillators via p leads to a monotonic decrease in the
critical coupling.

From these results we learn that significant enhancement
of synchronization is possible even for couplings for which,
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FIG. 3. Dependence of the order parameter r on coupling strength
for networks [with 〈k〉 = 8] of N = 1000 oscillators with various
settings of the fraction of tuned oscillators p. From top to bottom,
(a) data for a regular ER random graph, (b) a regular Watts-
Strogatz small-world (with 10% shortcut density), and (c) Barabasi-
Alberts scale-free networks are shown. Data points correspond to
averages over at least 1000 random native frequency and network
arrangements.

by far, not all oscillators can fulfill the recruitment condition
sin λi = −ωi/(kiσ ). This even results in an onset of synchro-
nization for lower coupling strengths. Moreover, when the
coupling is sufficient that the recruitment condition can be
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FIG. 4. Dependence of the order parameter r on the system size N

for ER random graphs with various coupling and no tuned oscillators
[(a) p = 0] and all tuned oscillators [(b) p = 1]. The dashed lines
indicate power laws with exponents −1/2,−1/4 and 0 (constant).

fulfilled, even tuning only a fraction of the oscillators with the
recruitment condition will result in enhanced synchronization.
For this reason then we see that the threshold coupling for
recruitment, σr , cannot be equated with, or approximate, the
critical coupling.

D. A dimension reduction approach

Following the idea set out in Ref. [37] we also study the
Kuramoto-Sakaguchi model via a dimension reduction (or
collective coordinate) approach. For this purpose, we apply
the ansatz

θi(t) = α(t)ωi, (13)

which entails an error ei from the Kuramoto-Sakaguchi
dynamics of Eq. (2), given by

ei = α̇ωi − ωi − σ
∑

j

Aij sin[α(ωj − ωi) + λi]. (14)

An equation for the evolution of α(t) can be found by
minimizing the error of Eq. (14), which is usually done by
requiring that the error is orthogonal to the subspace defined
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FIG. 5. Dependence of the order parameter r on the system size
N for regular small worlds with prew = 0.1 with various coupling and
no tuned oscillators [(a) p = 0] and all tuned oscillators [(b) p = 1].
The dashed lines indicate power laws with exponents −1/2,−1/4,
and 0 (constant).
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FIG. 6. Dependence of the critical coupling on p for regular
random graphs and regular small worlds with rewiring probability
prew = 0.1.

by Eq. (13), which is spanned by the ∂θi/∂α = ωi , and we
obtain

α̇ = 1 + f (α) (15)

with

f (α) = σ

σ 2
ω

∑
i

ωi

∑
j

Aij sin[α(ωj − ωi) + λi] (16)

and σ 2
ω = ∑

i ω
2
i .

Gottwald [37] has shown that the onset of synchronization
in the unfrustrated Kuramoto model can be understood from
the point at which stationary solutions α∗ of Eq. (15) appear
when the coupling is changed. For the unfrustrated model,
Ref. [18] noticed that information about the position of α∗
may be inferred by studying 1 + f (α) at α = 0. Specifically,
f (0) = 0 is independent of the system configuration (frequen-
cies) and hence Ref. [18] [who define f slightly differently
from Eq. (16)] constructed an argument that, independent
of coupling strength, optimal synchronization of the system
should be obtained when f ′(0) is minimized—in other words,
the slope of f at α = 0 should be negative and as steep as
possible to allow for an α∗ as close as possible to zero.

In our case with frustration parameters we have that f (0) =
f (0,{λi}) as well as f ′(0) = f ′(0,{λi}). More precisely, one
obtains

f (0) = σ

σ 2
ω

∑
i

ωiki sin(λi), (17)

and

f ′(0) = σ

σ 2
ω

⎛
⎝∑

i

ωi cos λi

∑
j

Aijωj −
∑

i

ω2
i ki cos λi

⎞
⎠.

(18)

We observe in this structure a weighted version of the
Laplacian, with weights given by cos λi , as already seen in
Eq. (5).

High values of the order parameter r may be obtained by
minimizing the intersection point of the nonlinear function
1 + f with the abscissa. Because of the λi dependence we
see an alternative to the scenario of Ref. [18], that this may
be obtained by changing the frustrations to give values of
1 + f (0) as close as possible to zero while also ensuring that
f ′(0) is as large as possible in magnitude and negative in sign.
Simultaneously, an onset of synchronization for low coupling
is obtained if 1 + f (0) is as small as possible for very small
coupling strengths σ .

In Fig. 7 we illustrate results for 1 + f (α) for one realization
of a regular random small world network. Figure 7(a) shows
that the tuning scheme can shift 1 + f (0). In particular,
1 + f (α) is minimized if sin λi = −1 for nonrecruitable
oscillators; however, at the coupling of σ = 0.15 no crossing
of the abscissa is found yet. In Fig. 7(b) we see that increasing
the value of coupling allows the lowest value of 1 + f (α) to
drop below zero, indicating the onset of synchronization via a
saddle node bifurcation.

It also becomes apparent that the most important con-
tributing factor towards finding solutions of 1 + f (α) = 0
for increasing coupling is a linear decrease in 1 + f (0)
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FIG. 7. (a) Comparison of the function 1 + f (α) for various
tuning schemes at σ = 0.15 for one realization of a configuration
of N = 10000 oscillators on a regular small world with k = 4,
unfrustrated (λi = 0), frustrated type I [tuning recruitable oscillators
according to Eq. (7) and setting λi = 0 for all other oscillators],
and frustrated type II [tuning recruitable oscillators according to
Eq. (7) and setting sin λi = −1 for all others]. (b) All oscillators
are tuned according to the third scheme above, the figure shows that
1 + f (α∗) = 0 is achieved for α∗ extremely close to zero, the onset of
synchronization corresponds to degenerate α∗, namely a saddle node
bifurcation.

corresponding to a linear increase in the number of recruitable
oscillators with σ . Thus, in the frustrated model, the main
contributing factor is reducing 1 + f (0) rather than f ′(0).
We thus realize that, provided the coupling strength is larger
than σr given in Eq. (9), optimal synchronization is obtained
when the recruitment condition given in Eq. (7) is fulfilled,
for which r = 1. However, macroscopic synchronization can
already be achieved for σ < σr . In that case 1 + f (0) can
obviously be minimized by tuning recruitable oscillators
according to Eq. (7) and setting frustration parameters of all
nonrecruited oscillators to λi = −sgnωi . For this particular
realisation of the network and the three tuning schemes, onsets
of synchronization are predicted for σ = 0.306 (ordinary
Kuramoto), 0.228 (type I tuning), and 0.208 (type II tuning).

Having establish that tuning of the frustration parameters
can significantly boost synchronization, it is interesting to see

how such tuning can be dynamically achieved. The next section
presents a simple codynamics of frustration parameters and
the ordinary Kuramoto dynamics, which can allow for the
emergence of tuned frustration parameters in certain parameter
regions.

III. CODYNAMICS OF FRUSTRATIONS AND ANGLES

A. Definition, equilibria, and numerical solution

Consider now the model

θ̇i(t) = ωi + σ
∑

j

Aij sin[θj (t) − θi(t) + μi(t)], (19)

μ̇i(t) = τ
∑

j

Aij sin[θj (t) − θi(t)], (20)

where the parameter τ sets the time scale for the co-evolution
of the frustration parameters. A choice of τ = 0 reproduces
the frustrated Kuramoto model, discussed above.

To study the equilibria of this system, consider the ansatz

θi(t) = �t + φi(t) (21)

μi(t) = λi + χi(t), (22)

where the fluctuations φ,χ are regarded as small. Thus λi

represents the static limit of the μi(t) frustration codynamics.
Inserting the ansatz into Eqs. (19), (20) and expanding in

fluctuations we again extract here the zeroth order equation
from the θi dynamics, which turns out to be identical to Eq. (4)
from the static system. We consider the fluctuations in detail
shortly. For now, we see one key difference in the role of �

between the static and co-evolving systems, namely, the role
of a conservation law for the latter. Summing over i in Eq. (20)
gives ∑

i

μ̇i(t) = 0.

(The θi enjoy no such conservation, as in the static frustrated
system.) From this, the recruitment condition and assuming
stability (the conditions for which are to be determined below),
we obtain∑

i

arcsin

(
� − ωi

σki

)
=

∑
i

μi(0) + 2nπ, (23)

with n any integer due to the periodicity of the recruitment
condition, Eq. (7). Thus � in the co-evolving system is
effectively determined from the initial conditions for the μi

(which were selected at random in simulations shown above)
with the value of n selected according to the number of jumps
of oscillators around the circle by the time the equilibria are
reached.

To give a first sense of the behavior of the system of
Eqs. (19), (20), we solve the equations numerically for a ran-
dom regular graph of N = 50 with degrees ki = 4 at coupling
σ = 0.35 and a specific realization of frequencies drawn from
[−1,1], and initial conditions θi(0),μi(0). In Fig. 8 we show
plots for different τ of the individual oscillator phases θi(t)
(gray curves), the dynamical frustration variables μi(t) (red
curves), the equilibrium frustration parameters λi (black lines)
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FIG. 8. Plots of θi (gray) and μi (red) on the left (a), (d), (g), (j), the μi(t) (red) and fixed points λi (black) in the middle (b), (e), (h), (k),
and the order parameter r of Eq. (10) on the right (c), (f), (i), (l) computed by numerically integrating the system Eqs. (19), (20) for a random
regular graph of 〈k〉 = 4 and N = 50 and coupling σ = 0.35. The same random seed has been applied to each case, with different τ , namely
τ = 0 (top), τ = 0.005 (second row), τ = 0.2 (third row), and τ = 0.5. On the left-hand plots (a), (d), (g), (j), we superimpose the trajectories
ω̄t (blue) and �t (dashed green and dot-dashed black), where � is solved from Eq. (23) with n = 0 (dashed green) and n = −1 (dot-dashed
black).

from the recruitment condition for the �—itself solved from
the initial conditions using Eq. (23)—and the order parameter
r(t). The same random seed is used to generate the particular
graph, frequency, and initial condition realizations. Superim-
posed on the θi,μi trajectories in the left-hand panels of Fig. 8
we show ω̄t and �t ; for τ = 0.2 we show �t for choices of
n = 0 (dashed green line) and n = −1 (dot-dashed black line
in the left-hand third row plot [Fig. 8(g)] ) in solving for �.

We observe that for τ = 0 [Figs. 8(a)–8(c)] the μi assume
constant values but poor synchronization of the θi , manifested
in erratic behavior of r . For τ = 0.005 [Figs. 8(d)–8(f)], the
system synchronizes—but not to ω̄t , rather to �t as seen in the
match of the slope of the dashed green and gray trajectories in
Fig. 8(d). The tick marks of the vertical axis here emphasize
that the parallel trajectories are 2π copies of each other so

that some trajectories have wrapped around the circle multiple
times before synchronizing into the pack. We observe in
Fig. 8(e) at this value of τ that the μi(t) converge to the fixed
point values λi , given by Eq. (7). Increasing to τ = 0.2 one first
notices that synchronization is maintained and initial transients
become shorter [Figs. 8(g)–8(i)]. However, the θi trajectories
converge to �t , with � solved using n = −1 [black line in
Fig. 8(g)]; computing the equilibria using this value of � shows
convergence of the μi to these values in Fig. 8(h). Further
increases in τ [Figs. 8(j)–8(l)] eventually lead to destruction
of the synchronized state, in particular with erratic behavior
now evident in the μi [red trajectories in Figs. 8(j) and 8(k)].
With τ = 0, significantly higher σ is required to enable the
system to synchronize to the same degree as in the second and
third rows of Fig. 8.
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FIG. 9. Dependence of the order parameter r on the coupling
strength σ for numerically integrated Kuramoto systems of 500
oscillators on a regular random graph with coordination number
k = 8. Compared are: (a) normal Kuramoto (λ = 0, crosses);
(b) λ-tuned Kuramoto (asterisks); and integration of the coupled
system with dynamics for the phases and the λ’s for various choices
of the timescale for the lambda dynamics τ = 0.001−0.2 (star,
open, and closed squares and circles). Native frequencies are drawn
uniformly at random from [−1,1].

We see that the codynamical system allows for synchroniza-
tion at lower couplings, and at collective frequencies other than
the mean, but also note that the timescale of the codynamics set
by the parameter τ plays a crucial role in determining whether
a fully synchronized state can be reached.

The observations just made for a particular network
configuration are confirmed by examining the average order
parameter against the coupling for larger systems using
numerical simulation, displayed in Fig. 9, which also compares
results to the ordinary (unfrustrated) Kuramoto dynamics. The
networks here are now random regular graphs of N = 500
with degree ki = 8 and frequencies drawn from the uniform
distribution between [−1,1]. The key feature in this plot is
that the unfrustrated Kuramoto system lies in the middle range
of the curves, with tuned and slow (small τ ) codynamics to
the left, and fast (large τ ) codynamics to the right. These
results confirm that the codynamics improves synchronization
compared to the ordinary Kuramoto dynamics. Moreover,
increasing τ (namely, making the μ dynamics faster in
comparison to the phase dynamics) strongly influences the
synchronization transition. By choosing small τ a substantial
improvement in synchronization is possible, while large τ

impedes synchronization such that it only occurs for larger
coupling.

These results are reflected more specifically at the coupling
value where r deviates from zero: the critical couplings for
small τ lie to the left in a pattern consistent with the position of
the overall curves. In contrast, the coupling values where r ≈ 1
nearly coincide for 0.001 � τ � 0.1, with then an appreciable
jump in this value of σ for τ = 0.3 and beyond. We shall return
to this in our further examination of the linearization next.

B. Stability analysis

Thus far we have derived the equilibria for the codynamical
system, focusing on the conditions to zeroth order in fluctu-
ations around the static frustration condition and driving of
oscillators to some frequency � �= ω̄. Now we test the stability
of these configurations, using ideas from Ref. [38], and explore
the degree to which they explain some of the behaviors seen
above.

The first-order equations in fluctuations are

φ̇i = −σ
∑

j

cos λiLijφj + σki(cos λi)

χiχ̇i = −τ
∑

j

Lijφj . (24)

Here Lij is again the combinatorial Laplacian of the network.
Note that the zeroth-order terms are not given here, with the
recruitment condition Eq. (7) imposed strongly given that
it defines the fixed point. Setting τ = 0 we recover in the
first equation the weighted Laplacian with entries cos λi , as
mentioned in the first part of the paper. From this we confirm
a sufficient condition for stability, that |λi | � π/2. Forming
a 2N -dimensional vector v = ( �φ, �χ ) enables Eqs. (24) to be
written in terms of a super-Laplacian L. We denote the 2N

eigenvalues of this matrix by � (since λ is used for frustrations),
but use �(0) to represent the N eigenvalues of the standard
Laplacian L.

To gain an initial crude analytic picture of the spectrum
we assume—in contrast to our numerical computations thus
far—that ωi are matched to the degrees of the network, ki ,
such that in the recruitment condition λi = λ ∀ i. This leads
to a form for the super-Laplacian

Lij =
(

σ (cos λ)Lij −σ (cos λ)δij kj

τLij 0

)
. (25)

We observe here that as λ → 0 the ordinary combinatorial
Laplacian emerges.

Expanding the N variables φj in all N eigenvectors of
L, which, given knowledge of its spectrum, we label by r =
0, . . . ,N − 1 (since it has at least one zero mode).

Lrj =
(

σ (cos λ)�(0)
r −σ (cos λ)kj

τ�(0)
r 0

)
. (26)

If we assume the network consists of one component there is
exactly one zero eigenvalue of L, and so L has eigenvalues
�0 = 0 and

�rj = σ�(0)
r cos λ

2

(
1 ±

√
1 − 4τkj

σ�
(0)
r cos λ

)
(27)

for r �= 0; note here we have used two indices for the spectrum
as a consequence of this approximation scheme. Thus, stability
is guaranteed when cos λ > 0; for every λ that is marginal,
there will be an additional zero mode of L. Second, for

τ > σ�(0)
r cos λ/4kj (28)

the eigenvalues develop an imaginary part. Moreover, because
�(0)

r cos λ also appears in the real part, these modes that become
complex will be associated with small real parts, which are
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FIG. 10. (a) Eigenvalues of the super-Laplacian L for the random regular graph of N = 500,〈k〉 = 8,σ = 0.125, plotting their imaginary
part against the real part for different τ , with inset zooming in to the origin, and (b) plotting the imaginary parts of all modes as a function of τ

at small values where different colors represent different modes; only two have nonzero imaginary parts in this range seen in an top and bottom
branch.

always negative. Thus, here and in the following we are dealing
with a system that is always stable but where, due either
to negative real parts close to zero and/or imaginary parts,
the equilibria may take a long time to reach with increasing
oscillations.

To test this more realistically we numerically solve for
the spectrum of the super-Laplacian for a situation closer
to our numerical simulations: we choose an instance of the
random regular graph of N = 500, k = 8 and an instance
of frequencies drawn from [−1,1]. We set the coupling to
σr = 0.125 using Eq. (9), and the λi using Eq. (7) (thus
cos λi � 0 ∀ i), and set � = 0. In Fig. 10(a) we plot the
imaginary part of each eigenvalue against its real part for
various values of τ . In Fig. 10(b) we plot the eigenvalues
in order of increasing absolute value but showing separately
the real and imaginary parts. By inspection of the numerical
values in the eigenvectors we have verified that the modes
i = 1,500 are dominated by θ excitations while for i > 500
the eigenvectors are increasingly dominated by μ excitations.

We observe a number of features in the Fig. 10(a). First,
the analytical prediction is verified: at every τ the spectrum
involves negative real parts or zero eigenvalues (guaranteeing
stability) but at very low τ eigenvalues are all negative real
or zero (black points), while at τ = 0.01 the first eigenvalues
with imaginary parts are associated with small negative real
parts (orange points), with the rest lying along the negative real
axis. Note that in this case there are two zero eigenvalues for
every τ because we have chosen the coupling σ exactly at the
point, Eq. (9), where one λ is marginally stable. Importantly,

we observe that while eigenvalues are purely real there are gaps
in the spectrum, especially observed for the black points in the
inset of Fig. 10(a), which fill in once imaginary parts appear;
we see that the real parts of the lowest values for τ = 0.1
(orange points) are smaller than a corresponding set of purely
real negative eigenvalues. With larger τ all eigenvalues are all
complex, with increasing value of their imaginary parts. The
inset plot focuses on the lowest eigenvalues and emphasizes
that for the lowest-lying nonzero mode the real parts do not
change in magnitude but the imaginary parts increase as τ

increases. Thus, there is a threshold in τ below which all
eigenvalues are purely negative real or zero. This is clearly
seen in the Fig. 10(b) of the imaginary parts as functions of
τ at small values, where in this instance at approximately
τ = 0.000035 two oppositely signed imaginary parts appear;
these modes are numbered 499 and 500 in the spectrum in
terms of their order in absolute magnitude of the eigenvalue.
Inspection of the eigenvector structure of these modes show
these to be dominated by θi excitations. The main import of
Fig. 10 is that as τ passes a threshold the number of modes
with imaginary parts proliferates—starting with the low-lying
modes.

The corresponding dynamical behavior of fluctuations in
this regime is, thus, that, although with cos λ � 0 there is
always stability, an increasing number of (predominantly) θi

modes undergo long transients towards the equilibrium (due
to the small negative real part). Associated with these same
long transients are oscillations from the imaginary part, whose
frequency increases with τ , hindering (but never thwarting) the
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recovery of the synchronized state. That there is a threshold
value of τ for which there is no imaginary part and a constant
spectral gap (as seen in the inset of the top plot of Fig. 10)
implies that there is no substantial change in the dynamics
across these values. We therefore expect that for couplings
allowing for near perfect synchronization there should be no
difference across a range of τ up to the threshold. This is
consistent with the observed coincidence of the curves for the
order parameter at r ≈ 1 in Fig. 9 up to τ = 0.1.

C. Basin of attraction

Ultimately, the shift in the curves in Fig. 9 for different τ

beyond r ≈ 1 is a nonperturbative phenomenon, particularly
the strong dependence of the critical coupling on τ . We
hypothesize that the cause of this change is a shrinking of the
basin of attraction of the fixed point with increasing τ . To test
this we explore the influence of instantaneous perturbations on
the synchronized state. Again for the N = 500 random regular
network of k = 8 we simulate with very small τ = 0.001 and
σ = 0.15, which guarantees that a perfectly synchronized state
is attained. When this state is reached, at time t = 5000, we
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FIG. 11. Averaged order parameter behaviors [(a) shortly after
the perturbation; (b) longer term] for various τ after perturbing the
system with noise of magnitude ε = 0.3 at time 5000. Inset in the
bottom panel is a histogram of final average order parameter values
for τ = 0.6. Note that the curves for τ = 0.15 and τ = 0.30 overlap
almost completely in the bottom panel.

perturb by adding to the state variables θi,μi a random shift
drawn uniformly at random from [−ε,ε]. We simultaneously
change the value of τ and measure the recovery of the order
parameter over time.

In Fig. 11 we plot time dependence of the order parameter,
averaged over graphs, frequencies, and perturbations for a
given perturbation strength ε and time scale τ . In Fig. 11(a) we
show the short time behavior after the perturbation and in the
Fig. 11(b) the long term. We may make two observations from
this result. For larger τ the system reverts more quickly back to
the fully synchronized state or to partial synchronization. If τ is
too large, however, for an increasing number of configurations
the system will no longer revert back to the fully synchronized
state but move towards desynchronization. The blue trajectory
shown in Fig. 11(b) is an example of the latter. The inset plot in
Fig. 11 shows that a histogram of final r values across instances
gives a bimodal distribution. The true average value of r is then
measured across these giving a result between 0 and 1.

From such averaging we compute the average final order
parameter r for different values of the maximum perturbation
strength, ε, shown in Fig. 12. We see in Fig. 12(a) more clearly
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FIG. 12. Dependence of the final average r on the maximum
perturbation strength ε for various τ when perturbations are (a)
applied equally to all state variables, and (b) applying in three different
ways for τ = 0.3, first equally to all state variables, second only to
the phases θ , and third only to the μ.
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FIG. 13. Size of the basin of attraction as measured by the
intercept in ε of the curves in Fig. 12 with the r = 0.9 line plotted
against τ for perturbations applied in both directions or in single
directions as given in the legend.

that for low τ as ε increases beyond some threshold there is
a recovery from the perturbation only to a state of partial
synchronization, whereas for larger τ for arbitrary strength
there is a complete loss of synchronization. The sigmoidal
nature of the curves indicates the presence of some critical
perturbation strength beyond which systems cannot recover
from perturbations larger than that value. In Fig. 12(b) we show
results where the perturbation is applied differently across the
θ,μ state variables: either identically for both (combined) or
for one or the other. The figure indicates that perturbations on
the phases θ are the determining factor—the system is far more
robust or insensitive to perturbations in the μ directions. This is
not inconsistent with our observation close to synchronization
that the coincidence of imaginary parts with low-lying real
parts in the spectrum of fluctuations from equilibrium occurs
predominantly in the θ modes.

Motivated by the observation that values of r � 0.9 are
typically associated with complete phase synchronization, we
finally obtain a proxy measure of the size of the basin of
attraction by recording the intercept of the curves for ε in
Fig. 12 with the line r = 0.9 for different τ and perturbation
regimes. This leads to the results shown in Fig. 13, which
gives the dependence of this measure for the size of basins of
attraction on the choice of the time scale parameter τ . We note
that choices of the intercept value of r other than r = 0.9 lead
to qualitatively similar results. Regarding ε in Fig. 13 as the
average size of the basin of attraction of the fully synchronized
state we see that it shrinks with increasing τ—more so in the
θ directions than the μ.

This explains then the results in Fig. 9 that as τ increases
the critical coupling increases: the basin of attraction of the
synchronized state shrinks requiring larger coupling in order
to compensate and allow the system to find the state starting
from a random configuration.

IV. CONCLUSIONS

Summarizing our results, we have presented a model for
local static and dynamic frustrations, or time delays, in the
Kuramoto-Sakaguchi system on finite networks with random

frequencies. Combining analytical and numerical studies we
have shown that in the static model it is possible to optimize
synchronization—at lower couplings than for the ordinary
Kuramoto model—by tuning frustrations using the local
connectivity and frequency properties of a node, and setting
nonrecruitable nodes to a value consistent with marginal
stability. In the time-dependent frustrated model, for small
value of the time constant for the frustrations the codynamics
allow these to dynamically attain values consistent with
recruitment. However, at larger time constants the frustrations
are hindered, at strong coupling, in finding the tuned state
by rapid limit cycles, which becomes, at values of coupling
close to the critical point, a shrinking of the basin of attraction
particularly for the phase modes. These behaviors are seen
across a wide variety of networks and network sizes. We note
a somewhat similar example of partially effective adaptivity
in the case of coupled dynamical systems [39], where a
constant γ controls the speed of adaptation of link weights
to the dynamics of the coupled oscillators; in some cases too
fast an adaptation results in failure of synchronization. Our
basin of attraction approach may elucidate this behavior there.
Returning to the Kuramoto-Sakaguchi model, it is its extra
complexity—the completely localized frustration parameters
or variables—that, interestingly, has provided some scope
for analytical approximation via linearization to generate a
threshold in coupling. Though it is not the critical coupling, it
is a threshold that demarcates different dynamical regimes of
behavior visible in the numerical solutions. This is in contrast
to the ordinary Kuramoto model where linearization gives
only a weak indication of the point for change in dynamical
behavior [31].

The beauty of this model lies in the novelty that by intro-
ducing additional disorder into the usual Kuramoto system,
but allowing for a degree of adaptation through a codynamics,
we may enhance order, manifested in synchronized behavior.
Moreover, the collective behavior is no longer cursed by
the mean of the limit cycle ensemble, but may be adjusted,
up to a certain point, to operate faster or slower than the
average. The application of these ideas lies in new mechanisms
for controllability or guidance of networked systems of
heterogeneous agents. Certainly, the Kuramoto model is quite
a stylized representation of networked cycles. However, to
the degree that it may be enfleshed in a real sociotechnical
system such tuned frustration or codynamics may also be
adapted to a real-world mechanism for enhanced cooperation
in complex systems. The model presented in this paper also
raises interesting questions for future research. For instance,
it would appear of interest to study phase tuning in models of
network control [40]: Does phase tuning oscillators influenced
by external controllers ease control?
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